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Abstract

When the normative goals for a set of agents can be summarized in a set-valued

rule and agents take actions that are rationalizable, a new theory of incentives

emerges in which standard Bayesian incentive compatibility (BIC) is relaxed sig-

nificantly. The paper studies the interim rationalizable implementation of social

choice sets with a Cartesian product structure, a leading example thereof being

ex-post efficiency. Setwise incentive compatibility (setwise IC), much weaker than

BIC, is shown to be necessary for implementation. Setwise IC enforces incentives

flexibly within the entire correspondence, instead of the pointwise enforcement en-

tailed by BIC. Sufficient conditions, while based on the existence of SCFs in the

correspondence that make truthful revelation a dominant strategy, are shown to be

permissive to allow the implementation of ex-post efficiency in many settings where

equilibrium implementation fails (e.g., bilateral trading, multidimensional signals).

Furthermore, this success comes at little cost: all our mechanisms are well behaved,

in the sense that best responses always exist.
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1 Introduction

The theory of incentives is one of the cornerstones of modern economic theory. One of its

central conditions is Bayesian incentive compatibility (BIC), viewed as a minimal condi-

tion necessary for the implementation of any set of rules or contracts under incomplete

information.1 BIC stipulates that, in the direct mechanism associated with a given rule,

truth-telling be a best response for every type to the belief that the others are also telling

the truth. Indeed, in the elicitation of the private information held by a group of agents,

the mechanism designer should at least hope that, under common knowledge of rational-

ity, if all but one of the agents are going to be truthful, so will be the remaining agent;

this is the rationale for BIC as a minimal desideratum. As such, BIC is an equilibrium

condition, based on the rational-expectations assumption, by which all agents share ex-

actly the same belief about how the others will play, i.e., the truthful equilibrium belief.

The restriction imposed by BIC can sometimes be quite severe, being one of the culprits

for impossibility results in some settings (e.g., Myerson and Satterthwaite (1983), Jehiel

and Moldovanu (2001)).

Suppose instead that, although the mechanism designer continues to assume that ratio-

nality is commonly known by the agents, she does not insist on the rational-expectations

assumption. Under incomplete information, this means that she expects the agents to

use (interim) rationalizable strategies.2 In general, if the designer’s goals are summarized

by a social choice set (SCS), she would seek to design a mechanism whose set of out-

comes resulting from agents choosing rationalizable messages will coincide with the SCS

of interest.3 This is the notion of full implementation in interim rationalizable strategies.4

We contend that, when the normative goals for a set of agents can be summarized in a

set-valued rule and agents take actions that are rationalizable, a new theory of incentives

emerges in which standard BIC is relaxed significantly. This is the central message of the

1See, e.g., Dasgupta, Hammond, and Maskin (1979), Myerson (1979, 1981), d’Aspremont and Gerard-
Varet (1979), Green and Laffont (1979), Harris and Townsend (1981), and Holmstrom and Myerson
(1983) for seminal contributions to this fundamental idea.

2See Bernheim (1984), Pearce (1984), Brandenburger and Dekel (1987), and Lipman (1994) for the
formalization of the idea of rationalizability; in this paper, we use the interim extension to games with
incomplete information of Dekel, Fudenberg, and Morris (2007).

3If her goal is a unique outcome in each state, this is described by a social choice function (SCF).
4For full implementation in rationalizable strategies in complete information environments, see Berge-

mann, Morris, and Tercieux (2011), Xiong (2023), and Jain, Korpela, and Lombardi (2023) for SCFs, and
Kunimoto and Serrano (2019) and Jain (2021) for correspondences. For interim rationalizable implemen-
tation of SCFs, see Bergemann and Morris (2008) and Oury and Tercieux (2012) for early contributions,
Kunimoto, Saran, and Serrano (2024) for an almost characterization, and Jain, Lombardi, and Penta
(2024) for a robustness notion building on the double implementation in Kunimoto, Saran, and Serrano’s
(2024) Section 8.
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current work.

In this paper, we confine our attention to SCSs with a Cartesian product structure

(we leave the problem of general SCSs to be studied elsewhere). Equivalently, we begin by

specifying a social choice correspondence (SCC) and seek to implement all its selections.

For a leading illustration of our theory in this paper, the reader is invited to think of ex-

post Pareto efficiency (as opposed to ex-ante or interim efficiency). We shall also insist on

the use of “well behaved” mechanisms, which for us will mean mechanisms satisfying the

property that best responses always exist (we shall describe two versions of this property,

which we will call BRP and weak BRP).

Our first main result may seem striking at first: BIC is not necessary for implemen-

tation in rationalizable strategies in mechanisms satisfying the weak BRP.5 Rather, the

necessary condition is what we call setwise incentive compatibility (setwise IC). As opposed

to the standard “pointwise” BIC, setwise IC enforces incentives more flexibly through the

creation of chains of incentive constraints within the correspondence. Specifically, under

the assumption that all other agents are truthful, for every agent i and every f
′
in the

SCS of interest, there exists f in the same SCS such that the truthful report behind f is

better for every type ti of agent i than any manipulated version of f
′
. This seems to make

good sense: the designer should not exhibit a strict preference among different outcomes

in the SCC, so enforcing incentives in this more flexible manner should suit her normative

goal. Of course, setwise IC reduces to BIC in the case of SCFs.

Instead of attempting to close the gap between necessary and sufficient conditions

for implementation, which sometimes leads to the use of unrestricted mechanisms, we

pursue sufficient conditions that, while being permissive, rely on mechanisms with the

best-response property (BRP) or its weaker version (weak BRP). BRP means that best

responses always exist against any mixed strategy profile of the other agents, while weak

BRP asserts this existence against pure strategy profiles.

Indeed, our sufficiency results rely on a dominance version of setwise IC. The first such

condition is termed setwise dominance. Setwise dominance requires the existence of an

SCF for each agent that strictly dominates every other SCF in the SCC, i.e., where the

agent wishes to strictly tell the truth over any misrepresentation of her type, regardless of

the type reports of others. We show in our first sufficiency result that setwise dominance

is sufficient for interim implementation in rationalizable strategies using mechanisms with

the weak BRP. If the dominating SCFs are independent of the types of other agents,

setwise dominance is strengthened to setwise independent dominance, which is essen-

5See also de Clippel, Saran, and Serrano (2019) and Kneeland (2022) for results showing that BIC is
not necessary for level-k implementation of an SCS.
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tially sufficient for rationalizable implementation with mechanisms satisfying the BRP, as

demonstrated in our second sufficiency result.

Our concept of implementation allows for a flexible way to overcome a number of

impossibility results, as we illustrate in Section 7. This section contains examples to

show how one can get to implement –at least approximately– the ex-post Pareto corre-

spondence in bilateral trading with private values, in a standard exchange economy with

interdependent values, or in environments with multidimensional signals, settings in which

different impossibility results had been furnished for equilibrium implementation.6 The

flexibility of the approach stems from the use of rationalizability. Rather than insisting

on the pointwise implementation of each SCF –as BIC entails even for SCSs–, we allow

the designer to come up with institutions where incentives can be provided using different

SCFs in the SCC. These are the rationalizable incentives enunciated in the paper’s title,

which sometimes allow for the implementation of SCCs where violations of BIC can be

severe.

The rest of the paper is organized as follows. In Section 2, we introduce the gen-

eral notation. Section 3 proposes the concept of interim implementation in rationalizable

strategies. In Section 4, we prove the necessity of setwise IC for interim rationalizable

implementation with mechanisms satisfying the weak BRP. Section 5 relies on setwise

dominance to prove a sufficiency result for that class of mechanisms. In Section 6, we

provide a different sufficiency result, this time for mechanisms satisfying the BRP, based

on setwise independent dominance. Section 7 contains the examples showcasing our ap-

proach, and Section 8 concludes with several remarks on extensions of our results. While

most proofs are in the main text, a couple of them are relegated to the appendix.

2 Preliminaries

Let I = {1, . . . , n} denote the finite set of agents or players, and Ti be the finite set of

types of agent i ∈ I. We endow each Ti with the discrete topology.7 Let T ≡ T1×· · ·×Tn,

and T−i ≡ T1 × · · · × Ti−1 × Ti+1 × · · · × Tn.
8 Let ∆(T−i) denote the set of probability

6Thus, the paper continues to develop the theme that rationalizable institutions are more permissive
than equilibrium ones (see Kunimoto and Serrano (2019), Kunimoto and Saran (2020), and Kunimoto,
Saran, and Serrano (2024) for previous steps in this overall theme).

7All finite sets will be endowed the the discrete topology and all topological spaces are endowed with
the Borel σ-algebra.

8Similar notation will be used for the products of other sets. All product sets are endowed with the
product topology.
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distributions on T−i.
9 Each agent i has a system of “interim” beliefs that is expressed as

a function πi : Ti → ∆(T−i). Then, we call (Ti, πi)i∈I a type space.

Let A denote the set of pure outcomes, which is independent of the information state

and assumed to be a compact metric space. Agent i’s state dependent von Neumann-

Morgenstern utility function is denoted ui : ∆(A) × T → R, which is assumed to be

continuous. Note that the utility function is bounded due to the compactness of its

domain and the assumption of continuity. We can now define an environment as E =

(A, {ui, Ti, πi}i∈I). The environment is one of private values if the utility of each player

i ∈ I is independent of the other players’ types t−i ∈ T−i. Otherwise, the environment

has interdependent values. In a private-values environment, we simplify notation and

write the expected utility of player i as a function of the lottery and her own type, i.e.,

ui : ∆(A)× Ti → R.
The designer’s goals are contingent on the realization of the agents’ types and, in

this paper, are described by a social choice correspondence. Formally, a social choice

correspondence (SCC) is a nonempty- and compact-valued mapping F : T → 2∆(A). The

SCC F is deterministic if F (t) ⊆ A, for all t ∈ T . Let T ∗ ⊆ T be the set of states that

the designer cares about. Consider any two SCCs F and F
′
. We say that F and F

′
are

equivalent (denoted by F ≈ F
′
) if F (t) = F

′
(t), for all t ∈ T ∗.

A social choice function (SCF) is a single-valued function f : T → ∆(A). Notice that

a selection of an SCC is an SCF. A social choice set (SCS) H is a collection of SCFs.

In environments with incomplete information, it is standard to summarize the de-

signer’s goals by a SCS. We plan to undertake the study of general SCS’s elsewhere. In

the current paper, we take an admittedly more restrictive approach and study the imple-

mentability of SCC’s, which means effectively that we are considering only SCS’s with

the Cartesian product property, in the sense that we seek to implement all selections of

the given SCC. For our purposes, this will suffice in suggesting a first version of the new

theory of incentives that the paper proposes.

That is, given the SCC F , define the SCS generated by F as

HF ≡ {f : f is a selection of F}.

Notice that HF = ×t∈TF (t). As F is compact-valued, HF is compact in the product

topology.

A mechanism (or game form) Γ = ((Mi)i∈I , g) describes: (i) a nonempty topological

9For any topological space X, we let ∆(X) denote the set of Borel probability measures on X. Recall
that ifX is compact and metrizable, then ∆(X), under the weak∗ topology, is also compact and metrizable
(Aliprantis and Border, 2006, Theorem 15.11).
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space of messages Mi for each agent i ∈ I, and (ii) a measurable outcome function

g : M → ∆(A), where M = ×i∈IMi. The mechanism Γ is compact if Mi is compact for

all i ∈ I.

Let ΓDM
f = ((Ti)i∈I , f) denote the direct mechanism associated with an SCF f , i.e., a

mechanism where Mi = Ti, for all i ∈ I, and g = f . In the direct mechanism associated

with the SCF f , the interim expected utility of agent i of type ti who pretends to be of

type t
′
i, while all other agents truthfully announce their types, is defined as:

Ui(f ; t
′

i|ti) ≡
∑

t−i∈T−i

πi(ti)[t−i]ui

(
f(t

′

i, t−i), (ti, t−i)
)
.

Let Ui(f |ti) ≡ Ui(f ; ti|ti).

3 Implementation in Interim Rationalizable Strate-

gies

Fix a mechanism Γ = ((M)i∈I , g) and define a message correspondence profile S =

(S1, . . . , Sn), where each Si : Ti → 2Mi is measurable. We write S for the collection

of message correspondence profiles. The collection S is a complete lattice with the natu-

ral ordering of set inclusion: S ≤ S
′
if Si(ti) ⊆ S

′
i(ti), for all i ∈ I and ti ∈ Ti. The largest

element is S̄ = (S̄1, . . . , S̄n), where S̄i(ti) = Mi, for all ti ∈ Ti and i ∈ I. The smallest

element is S = (S1, . . . , Sn), where Si(ti) = ∅, for all ti ∈ Ti and i ∈ I.

We define the operator b to eliminate never best responses. In what follows, G(S−i)

denotes the graph of S−i. The operator b : S → S is thus defined as follows: For every

i ∈ I and ti ∈ Ti,

bi(S)[ti] ≡

mi ∈ Mi :

∃λi ∈ ∆(T−i ×M−i) such that

(1) λi

(
G(S−i)

)
= 1;

(2) margT−i
λi = πi(ti);

(3) mi ∈ argmaxm′
i

∫
T−i×M−i

ui

(
g(m

′
i,m−i), (ti, t−i)

)
dλi

 ,

where λi

(
G(S−i)

)
= 1 means that λi assigns probability 1 to a measurable subset of

G(S−i).

Observe that b is increasing by definition: i.e., S ≤ S
′ ⇒ b(S) ≤ b(S

′
). By Tarski’s

fixed-point theorem, there is a largest fixed point of b, which we label SΓ and refer to as

the interim correlated rationalizability (ICR) correspondence. That is, (i) b(SΓ) = SΓ and

(ii) b(S) = S ⇒ S ≤ SΓ.
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A (pure) strategy for agent i is a function σi : Ti → Mi. (Notice that strategies are

measurable since type spaces are finite.) For any message correspondence profile S ∈ S
and agent i ∈ I, we let Σi(S) denote the set of all strategies σi of agent i such that

σi(ti) ∈ Si(ti), for all ti ∈ Ti. Then Σ(S) ≡ ×i∈IΣi(S).

We have the following definition of implementation in interim rationalizable strategies:

Definition 1. A mechanism Γ implements the SCC F in interim rationalizable strategies

if there exists an SCC F
′ ≈ F such that the following two conditions hold:

1. For any f ∈ HF ′ , there exists σ ∈ Σ(SΓ) such that g(σ(t)) = f(t), for all t ∈ T .

2. For any σ ∈ Σ(SΓ), there exists f ∈ HF ′ such that g(σ(t)) = f(t), for all t ∈ T .10

The SCC F is implementable in interim rationalizable strategies if there exists a mecha-

nism Γ that implements F in interim rationalizable strategies.

4 Necessity

In this section, we present a necessary condition for implementation in rationalizable

strategies while restricting the designer to mechanisms that satisfy the following property.

Definition 2. The mechanism Γ = ((M)i∈I , g) satisfies the weak best response property

(weak BRP) if for all i ∈ I, ti ∈ Ti, and σ−i : T−i → M−i, we have

arg max
mi∈Mi

∑
t−i∈T−i

πi(ti)[t−i]ui

(
g(mi, σ−i(t−i)), (ti, t−i)

)
̸= ∅.

Thus, the weak BRP requires that, for each type of each agent, a best response exist

regardless of the pure strategies played by the other agents. The weak BRP is clearly

satisfied by compact and continuous mechanisms because the utility functions are also

continuous. However, if a mechanism is not continuous, it might not satisfy the weak

BRP, even though it is compact.11

We note that the so-called integer and modulo games, often used as part of the imple-

menting mechanisms proposed in the literature, as well as any mechanism involving these

10The requirement “for all t ∈ T” makes the statements of the results more transparent, while the
requirement “F

′ ≈ F” takes care of the designer’s preferences for T ∗.
11For instance, in the standard quasilinear setting, the first-price auction with the usual tie-breaking

rule (random assignment among the highest bidders) does not satisfy the weak BRP: imagine a bidder
whose expected value for the object is 1 but believes that all other bidders are bidding 1/2 regardless of
their types. Then the bidder does not have a best response against that belief.
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games, satisfy the weak BRP.12 Bergemann, Morris, and Tercieux (2011) and Serrano and

Vohra (2005, 2010), among others, use what we call a stochastic integer game as part of

their implementing mechanisms. In a stochastic integer game, each agent has to announce

an integer; the higher the integer she announces, the higher the probability with which

she can choose her best outcome; but, no matter how high an integer she announces,

she cannot obtain her best outcome with probability 1. Thus, the mechanisms involving

stochastic integer games do not satisfy the weak BRP.

Definition 3. The SCC F satisfies setwise incentive compatibility (setwise IC) if for all

i ∈ I and f
′ ∈ HF , there exists an f ∈ HF such that

Ui(f |ti) ≥ Ui(f
′
; t

′

i|ti),∀ti, t
′

i ∈ Ti.

Note how setwise IC imposes incentive constraints for each type of each agent under

the assumption that all other types of all other agents are truth-telling; but, to discipline

each type ti’s behavior, the condition does not fix a single SCF. Rather, for any SCF of

interest, setwise IC allows the designer to find another SCF also of interest, i.e., some

other selection of the SCC, that provides the incentives to tell the truth. Thus, setwise

IC is considerably weaker than Bayesian incentive compatibility –BIC– (this requires BIC

on each SCF f ∈ HF ); in principle, it is possible that each SCF f ∈ HF may violate BIC,

while the entire SCC F satisfies setwise IC. Of course, setwise IC reduces to the standard

(“pointwise”) BIC if we are focusing only on SCFs.

The main result of this section follows, showing that setwise IC is a necessary condition

for implementation in rationalizable strategies by mechanisms satisfying the weak BRP:

Theorem 1. If the SCC F is implementable in rationalizable strategies by a mechanism

with the weak BRP, then there exists an F
′ ≈ F that satisfies setwise IC.

Proof. Suppose that the mechanism Γ satisfies the weak BRP and implements the SCC

F in interim rationalizable strategies. Then there exists an SCC F
′ ≈ F such that the

following two conditions hold:

1. For any f ∈ HF ′ , there exists σ ∈ Σ(SΓ) such that g(σ(t)) = f(t), for all t ∈ T .

2. For any σ ∈ Σ(SΓ), there exists f ∈ HF ′ such that g(σ(t)) = f(t), for all t ∈ T .

12In the typical integer game, each agent announces some integer and the person who announces the
highest integer gets to name her favorite outcome. When the agents’ favorite outcomes differ, an integer
game has no pure-strategy equilibria. This feature is also shared by modulo games, regarded as finite
versions of the integer game in which agents announce integers from a finite set. The agent who matches
the modulo of the sum of the integers gets to name an allocation. However, there is one key difference
between the two: the modulo game is compact, whereas the integer game is not.
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Pick any i ∈ I and f
′ ∈ HF ′ . By the first requirement of implementation, there exists

σ
′ ∈ Σ(SΓ) such that g(σ

′
(t)) = f

′
(t), for all t ∈ T .

Fix ti ∈ Ti. Let λi ∈ ∆(T−i ×M−i) be the probability distribution corresponding to

the belief of agent i that the type profile of all other agents t−i is distributed according

to πi(ti) and they play according to the (pure) strategy profile σ
′
−i.

Since σ
′
−i is measurable, G(σ

′
−i) is a measurable subset of T−i ×M−i (Aliprantis and

Border, 2006, Theorem 4.45). By definition, margT−i
λi = πi(ti) and λi

(
G(σ

′
−i)

)
= 1.

Since G(σ
′
−i) ⊆ G(SΓ

−i), it follows that λi

(
G(SΓ

−i)
)
= 1.

For all mi ∈ Mi, due to the constructed λi, we have∫
T−i×M−i

ui

(
g(mi,m−i), (ti, t−i)

)
dλi =

∑
t−i∈T−i

πi(ti)[t−i]ui

(
g(mi, σ

′

−i(t−i)), (ti, t−i)
)
.

Then, as Γ satisfies the weak BRP, there exists an mi(ti) ∈ Mi such that

mi(ti) ∈ arg max
mi∈Mi

∫
T−i×M−i

ui

(
g(mi,m−i), (ti, t−i)

)
dλi.

As margT−i
λi = πi(ti) and λi

(
G(SΓ

−i)
)
= 1, we have mi(ti) ∈ bi(S

Γ)[ti]. Hence, mi(ti) ∈
SΓ
i (ti).

Define σi such that σi(ti) = mi(ti), for all ti ∈ Ti. Then (σi, σ
′
−i) ∈ Σ(SΓ). Hence,

by the second requirement of implementation, there exists an SCF f ∈ HF ′ such that

g
(
σi(ti), σ

′
−i(t−i)

)
= f(t), for all t ∈ T . Then, for all ti ∈ Ti, we have

Ui(f |ti) =
∑

t−i∈T−i

πi(ti)[t−i]ui

(
f(ti, t−i), (ti, t−i)

)
=

∑
t−i∈T−i

πi(ti)[t−i]ui

(
g(σi(ti), σ

′

−i(t−i)), (ti, t−i)
)

=

∫
T−i×M−i

ui

(
g(mi(ti),m−i), (ti, t−i)

)
dλi

≥
∫
T−i×M−i

ui

(
g(σ

′

i(t
′

i),m−i), (ti, t−i)
)
dλi,∀t

′

i ∈ Ti

=
∑

t−i∈T−i

πi(ti)[t−i]ui

(
g(σ

′

i(t
′

i), σ
′

−i(t−i)), (ti, t−i)
)
,∀t′i ∈ Ti

=
∑

t−i∈T−i

πi(ti)[t−i]ui

(
f

′
(t

′

i, t−i), (ti, t−i)
)
,∀t′i ∈ Ti

= Ui(f
′
; t

′

i|ti),∀t
′

i ∈ Ti.

Thus, F
′
satisfies setwise IC.
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Remark 1. Setwise IC is a necessary condition even when the SCC is not compact-valued

or the SCS does not have the Cartesian product property – these two assumptions were

not used in the above proof. If, as per our assumptions, the SCC is compact-valued and

the SCS has the Cartesian product property, then setwise IC is equivalent to the following

condition: For all i ∈ I there exists an fi ∈ HF such that

Ui(fi|ti) ≥ Ui(f
′
; t

′

i|ti),∀ti, t
′

i ∈ Ti and f
′ ∈ HF . (1)

Thus, for each player i, we can find a single SCF fi ∈ HF that gives player i the incentives

for truthful revelation relative to any other SCF in HF . Clearly, if (1) is true, then the

SCC F satisfies setwise IC. To argue the converse, since F is compact-valued, for each

i and t ∈ T , there exists an ai(t) ∈ F (t) such that ai(t) ∈ argmaxa∈F (t) ui(a, t). Then

define fi(t) = ai(t), for all t ∈ T . By the Cartesian product property of HF , we have

fi ∈ HF . Also, by the construction of fi, we have Ui(fi|ti) ≥ Ui(f |ti), for all f ∈ HF .

Hence, if setwise IC holds, then (1) must be true.

Our sufficient condition of setwise dominance, which is presented in the next section,

also requires that, for each player, there is a single SCF in HF that provides that player

with the incentives for truthful revelation. However, unlike (1), those incentive make

truth-telling a dominant action, and whenever t
′
i ̸= ti, a “strictly” dominant one. ⋄

5 Sufficiency: Mechanisms Satisfying Weak BRP

In this section, we introduce a sufficient condition for implementation using a mechanism

that satisfies the weak BRP. A different sufficient condition will be provided later using

a mechanism with the best response property (BRP), to be defined in the sequel.

First, consider a preliminary definition. Given the SCC F and i ∈ I, we say that the

SCF fi ∈ HF is setwise dominant for agent i if

ui

(
fi(ti, t

′

−i), (ti, t−i)
)
≥ ui

(
f

′
(t

′

i, t
′

−i), (ti, t−i)
)
,

for all ti, t
′
i ∈ Ti, t−i, t

′
−i ∈ T−i, and f

′ ∈ HF , with a strict inequality if ti ̸= t
′
i.

Definition 4. The SCC F satisfies setwise dominance if for all i ∈ I, there exists an

fi ∈ HF such that fi is setwise dominant for agent i.

It is straightforward to see that if the SCC F satisfies setwise dominance, then F

satisfies setwise IC. For a single-valued SCC F , setwise dominance is equivalent to truth-

telling being a strictly dominant strategy for all i ∈ I in the direct mechanism associated
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with the unique f ∈ HF , that is, f is strictly dominant-strategy incentive compatible.13

However, setwise dominance is much weaker in the context of multivalued SCCs. We will

illustrate this point in the examples below.

A condition related to setwise dominance appears in Jackson (1992). In a private-

values environment, Jackson (1992) proposes strategy-resistance as a necessary condition

for a deterministic SCC to be implementable in weakly undominated strategies by a

bounded mechanism. A deterministic SCC F satisfies strategy-resistance if, for each

i ∈ I, ti, t
′
i ∈ Ti, t

′
−i ∈ T−i, and b ∈ F (t

′
i, t

′
−i), there exists a ∈ F (ti, t

′
−i) such that

ui(a, ti) ≥ ui(b, ti), where we use private values.14 The following lemma helps us clarify

the relation between setwise dominance and strategy-resistance (the latter uses private

values and does not insist on strict inequalities for distinct types).

Lemma 1. Assume private values. Then, the SCC F satisfies strategy-resistance if

and only if, for all i ∈ I, there exists an SCF fi ∈ HF such that ui

(
fi(ti, t

′
−i), ti

)
≥

ui

(
f

′
(t

′
i, t

′
−i), ti

)
, for all ti, t

′
i ∈ Ti, t

′
−i ∈ T−i, and f

′ ∈ HF .

Proof. We argue necessity and leave the simple proof of sufficiency to the reader. So,

suppose F satisfies strategy-resistance. Fix an i ∈ I and define fi as follows: fi(t) ∈
argmaxa∈F (t) ui(a, ti), for all t ∈ T . Now, pick any ti, t

′
i ∈ Ti, t

′
−i ∈ T−i, and f

′ ∈ HF .

Then, by strategy-resistance, there exists a ∈ F (ti, t
′
−i) such that ui(a, ti) ≥ ui

(
f(t

′
i, t

′
−i), ti

)
.

Next, by the definition of fi, we have ui

(
fi(ti, t

′
−i), ti

)
≥ ui(a, ti

)
. Thus, ui

(
fi(ti, t

′
−i), ti

)
≥

ui

(
f

′
(t

′
i, t

′
−i), ti

)
.

Hence, on the one hand, the setwise dominance condition we just stated is more

general than strategy resistance because Jackson (1992) only considers private-values en-

vironments, while we can also handle interdependent values. On the other hand, setwise

dominance is slightly stronger than strategy resistance because we strengthen weak dom-

inance into strict dominance for distinct types of an agent.

Example 1. 15 There are two agents I = {1, 2}, two states {α, β}, and a finite number

of pure outcomes A = {a1, a2, . . . , aK}, where K ≥ 4. Assume that agent 1 is uninformed

of the state, while agent 2 is fully informed. Accordingly, we define T2 = {tα, tβ} as the

set of types for agent 2 such that agent 2 of type tα knows that the state is α and type tβ

13An SCF f is dominant-strategy incentive compatible if ui

(
f(ti, t

′

−i), (ti, t−i)
)
≥ ui

(
f(t

′

i, t
′

−i), (ti, t−i)
)
,

for all i ∈ I, ti, t
′

i ∈ Ti, and t−i, t
′

−i ∈ T−i. If the inequality is strict whenever ti ̸= t
′

i, then the SCF is
strictly dominant-strategy incentive compatible.

14When we focus on SCFs, strategy-resistance is reduced to dominant-strategy incentive compatibility.
15This is an elaboration of very useful examples in Bergemann, Morris, and Tercieux (2011) and

Kunimoto and Serrano (2019), albeit complete information is assumed in those papers.
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knows that it is β. Assume also that agent 1 believes with probability qα that the state

is α and with probability (1 − qα) that it is β, where qα ∈ (0, 1). Since agent 1 has only

one type, we simplify notation to write tα or tβ for the type profile.

Agent 1’s utility function has the following features: (1) u1(ak) ≡ u1(ak, tα) = u1(ak, tβ)

for each ak ∈ A (state-independence) and (2)

u1(aK) > u1(a1) > u1(a2) > · · · > u1(aK−1).

Agent 2’s utility function in state α has the following features:

u2(aK , tα) > u2(a2, tα) > u2(aK−1, tα) > · · · > u2(a1, tα).

Agent 2’s utility function in state β has the following features:

u2(aK , tβ) > u2(aK−1, tβ) > · · · > u2(a1, tβ) > u2(a2, tβ).

We further assume that u2(ak) ≡ u2(ak, tα) = u2(ak, tβ) for any ak ∈ A\{a2} (state-

independence, except for a2).

We consider the following SCC F : F (tα) = {a1, a2, . . . , aK−1, aK} and F (tβ) =

{aK−1, aK}. Then, the SCS generated by F is given as HF = {fk,K−1, fk,K}Kk=1, where fi,j

denotes the SCF that assigns alternative ai in state α and aj in state β. It is easy to see

that the SCF fK,K dominates any other SCF for each agent i ∈ {1, 2}. Thus, the SCC

F satisfies setwise dominance. Therefore, F also satisfies setwise IC. However, F violates

BIC (in fact, other than the two constant SCFs, fK−1,K−1 and fK,K , only the SCF f2,K−1

satisfies BIC). Hence, if K is large, the SCS HF constitutes a massive violation of BIC.⋄

The next result shows that setwise dominance is sufficient for implementation in ra-

tionalizable strategies by a compact mechanism satisfying the weak BRP. It will be in-

structive to describe verbally the mechanism employed. The mechanism, of simultaneous

moves, asks each agent to report three items: her type, a selection (SCF) of the correspon-

dence F , and a real number in the closed unit interval. The latter, if it is less than 1, is

interpreted as a bid to become the actor that can potentially change the SCF. Of course,

the type report allows for arbitrary manipulation of the selections. As for the outcome

function, a fixed arbitrary SCF (selection of F ) –the status quo– is implemented, unless:

either (1) there is an unanimous agreement on an alternative SCF, in which case that

is the outcome; or (2) there is a single maximal bid, in which case that person gets to

implement her announced SCF.

The statement of the result and its proof follow:
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Theorem 2. For any SCC F , if there exists an SCC F
′ ≈ F that satisfies setwise

dominance, then F is implementable in interim rationalizable strategies by a compact

mechanism with the weak BRP.

Proof. Consider the mechanism Γ = ((Mi)i∈I , g), where Mi = Ti × HF ′ × [0, 1] with a

generic element mi = (m1
i ,m

2
i ,m

3
i ), for all i ∈ I, and where the outcome function g is

defined as follows: for all m ∈ M ,

Rule 1: If all agents agree on the SCF, i.e., there exists f ∈ HF ′ such that m2
i = f , for

all i ∈ I, then g(m) = f(m1).

Rule 2: If there is any disagreement on the SCF, i.e., m2
j ̸= m2

k for some j, k ∈ I, then

the following subrules apply:

Rule 2.1: If Jm ≡ {j ∈ I : m3
j < 1} ≠ ∅ and argmaxj∈Jm m3

j = {i}, then g(m) = m2
i (m

1).

Rule 2.2: In all other cases (i.e., if Jm = ∅ or argmaxj∈Jm m3
j is not a singleton),

g(m) = f̌(m1), for any fixed arbitrary f̌ ∈ HF ′ .

We endow [0, 1] with the Euclidean topology. Since Ti is finite, it is compact. Since

F
′
is compact-valued, HF ′ is compact in the product topology. It then follows that the

mechanism Γ is compact. The rest of the argument proceeds in five steps.

Step 1: The mechanism Γ is measurable.

Proof of Step 1: Pick any measurable subset E ⊆ ∆(A). We show that g−1(E) ≡
{m ∈ M : g(m) ∈ E} is a measurable subset of M . To do so, we partition g−1(E) into

the following finite number of subsets of M :

Let M1 denote the set of all m ∈ M such that m induces Rule 1 and the resulting

outcome g(m) is in E. To argue the measurability of M1, first define H̄ =
⋃

f∈H
F
′ {f

n} ⊆
Hn

F ′ , where fn ≡ f × · · · × f and Hn
F ′ ≡ HF ′ × · · · × HF ′ . Let fn denote a typical

element of H̄. Next, define the function K : T × H̄ → ∆(A) such that K(t, fn) = f(t),

for all (t, fn) ∈ T × H̄. For each fn ∈ H̄, the function K(·, fn) = f : T → ∆(A) is

a measurable function, whereas, for each t ∈ T , the function K(t, ·) : H̄ → ∆(A) is a

continuous function.16 Hence, K is a Carathéodory function.17 Since H̄ is a subset of a

separable metrizable space Hn
F ′ , it follows that H̄ is also separable and metrizable.18 As

16Since HF ′ is endowed with the product topology, a sequence of SCFs in HF ′ converges to the SCF
f ∈ HF ′ if it converges pointwise. Likewise, any sequence in Hn

F ′ that converges, it converges pointwise.
So, for a fixed t ∈ T , the function K(t, ·) is continuous by the definition of pointwise convergence.

17A function is Carathéodory if it is continuous in one variable and measurable in another variable.
18Since ∆(A) is compact and metrizable, and T is finite, the finite product ∆(A)T is also compact and

metrizable. Hence, ∆(A)T is separable and metrizable. As HF ′ is a subset of ∆(A)T , it too is separable
and metrizable. Then its finite product Hn

F ′ is also seperable and metrizable.
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∆(A) is metrizable, it follows that K is jointly measurable (Aliprantis and Border, 2006,

Lemma 4.51).

Now, pick any m ∈ M1. Since m induces Rule 1, it follows that the profile m2 is in H̄

and g(m) = K(m1,m2). Hence,

M1 = K−1(E)× [0, 1]n.

Since K is jointly measurable, K−1(E) is a measurable subset of T × H̄, which in turn

is a measurable subset of T ×Hn
F ′ because H̄ is a closed subset of Hn

F ′ . Hence, M1 is a

measurable subset of M .

Pick any i ∈ I and let M i denote the set of all m ∈ M such that m induces Rule 2.1

and the outcome g(m) = m2
i (m

1) is in E. Pick any m ∈ M i. Since m induces Rule 2.1,

the profile m2 must be such that m2
j ̸= m2

k for some j, k ∈ I. Thus, m2 ∈ Hn
F ′\H̄.

To argue the measurability of M i, define the function Ki : T × (Hn
F ′\H̄) → ∆(A)

such that Ki(t,m
2) = m2

i (t), for all (t,m2) ∈ T × (Hn
F ′\H̄). For each m2 ∈ Hn

F ′\H̄,

the function Ki(·,m2) = m2
i : T → ∆(A) is a measurable function whereas, for each

t ∈ T , the function Ki(t, ·) : (Hn
F ′\H̄) → ∆(A) is a continuous function. Hence, Ki is a

Carathéodory function. Since Hn
F ′\H̄ is a subset of a separable metrizable space Hn

F ′ , it

follows that Hn
F ′\H̄ is also separable and metrizable. As ∆(A) is metrizable, it follows

that Ki is jointly measurable.

Furthermore, since g(m) = m2
i (m

1), the profile m3 must be such that one of the

following two cases is true:

• Jm = {i}. In this case, m3
i ∈ [0, 1) and m3

j = 1, for all j ̸= i. The set of all such m3

is equal to [0, 1)× {1}n−1, which is a measurable subset of [0, 1]n.

• There exists j ̸= i such that {i, j} ⊆ Jm. In this case, we must have m3
i ∈ (0, 1),

m3
j ∈ [0,m3

i ), for all j ∈ Jm\{i}, and m3
j = 1, for all j ∈ I\Jm. Let Ji denote the

set of all J ⊆ I such that i ∈ J and |J | ≥ 2. Then, the set of all such m3 is equal to

⋃
J∈Ji

 ⋃
m3

i∈(0,1)

{m3
i } × [0,m3

i )
|J |−1 × {1}n−|J |

 . (2)

For each J ∈ Ji, the set
⋃

m3
i∈(0,1)

{m3
i } × [0,m3

i )
|J |−1 is an open subset of [0, 1]|J |.

Hence, the product set
⋃

m3
i∈(0,1)

{m3
i }× [0,m3

i )
|J |−1×{1}n−|J | is a measurable subset

of [0, 1]n. Finally, since Ji is finite, the set in (2) is a measurable subset of [0, 1]n.

Let M i3 denote the set of all profiles m3 that fall into one of the two above cases. It
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follows that M i3 is a measurable subset of [0, 1]n.

Hence, M i = K−1
i (E)×M i3. Since Ki is jointly measurable, K−1

i (E) is a measurable

subset of T × (Hn
F ′\H̄), which in turn is a measurable subset of T ×Hn

F ′ because Hn
F ′\H̄

is an open subset of Hn
F ′ . Hence, M i is a measurable subset of M .

Let M2.2 denote the set of message profiles m ∈ M such that m induces Rule 2.2 and

the outcome g(m) = f̌(m1) is in E. Pick any m ∈ M2.2. As g(m) = f̌(m1) ∈ E, the

profile m1 ∈ f̌−1(E). Next, since m induces Rule 2, the profile m2 must be such that

m2
j ̸= m2

k for some j, k ∈ I, i.e., m2 ∈ Hn
F ′\H̄. Since H̄ is closed, it follows that Hn

F ′\H̄
is open, and hence, a measurable subset of Hn

F ′ . Furthermore, since m induces Rule 2.2,

the profile m3 is in [0, 1]n\
(⋃

i∈I M
i3
)
. Since M i3 is a measurable subset of [0, 1]n, for all

i ∈ I, it follows that [0, 1]n\
(⋃

i∈I M
i3
)
is a measurable subset of [0, 1]n.

Hence, M2.2 = f̌−1(E)× (Hn
F ′\H̄)× ([0, 1]n\(

⋃
i∈I M

i3)), which is a measurable subset

of M .

Thus, g−1(E) = M1 ∪ (
⋃

i∈I M
i) ∪M2.2. Since g−1(E) is a finite union of measurable

sets, it is a measurable subset of M . ■

Step 2: The mechanism Γ satisfies the weak BRP.

Proof of Step 2: Pick any i ∈ I, ti ∈ Ti, and σ−i : T−i → M−i. For all j ̸= i and

tj ∈ Tj, let σj(tj) =
(
σ1
j (tj), σ

2
j (tj), σ

3
j (tj)

)
∈ Tj ×HF ′ × [0, 1].

For all t−i ∈ T−i, let

z(t−i) =

{
maxj ̸=i:σ3

j (tj)<1 σ
3
j (tj), if {j ̸= i : σ3

j (tj) < 1} ≠ ∅
0, otherwise.

Next, let z = maxt−i∈T−i
z(t−i). Clearly, z < 1. Let mi = (ti, fi, zi), where zi ∈ (z, 1).

Then, we argue that mi is a best response of type ti against σ−i. So pick any m
′
i =

(t
′
i, f

′
, z

′
i) ∈ Mi such that m

′
i ̸= mi.

Consider any t−i ∈ T−i. On the one hand, if agent i of type ti plays mi, then the

outcome is g
(
mi, σ−i(t−i)

)
= fi

(
ti, σ

1
−i(t−i)

)
, regardless of whether

(
mi, σ−i(t−i)

)
induces

Rule 1 or 2 .1 – notice that Rule 2.2 never applies at
(
mi, σ−i(t−i)

)
because zi < 1, whereas

the outcome under Rule 2.1 is determined according to fi because zi > z ≥ z(t−i). On

the other hand, if agent i of type ti plays m
′
i, then there exists an ft−i

∈ HF ′ such that

g
(
m

′
i, σ−i(t−i)

)
= ft−i

(
t
′
i, σ

1
−i(t−i)

)
. By setwise dominance, ui

(
fi
(
ti, σ

1
−i(t−i)

)
, (ti, t−i)

)
≥

ui

(
ft−i

(
t
′
i, σ

1
−i(t−i)

)
, (ti, t−i)

)
. Hence,∑

t−i∈T−i

πi(ti)[t−i]ui

(
g
(
mi, σ−i(t−i)

)
, (ti, t−i)

)
=

∑
t−i∈T−i

πi(ti)[t−i]ui

(
fi
(
ti, σ

1
−i(t−i)

)
, (ti, t−i)

)
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≥
∑

t−i∈T−i

πi(ti)[t−i]ui

(
ft−i

(
t
′

i, σ
1
−i(t−i)

)
, (ti, t−i)

)
=

∑
t−i∈T−i

πi(ti)[t−i]ui

(
g
(
m

′

i, σ−i(t−i)
)
, (ti, t−i)

)
.

Since the above is true for all m
′
i ̸= mi, it follows that mi is a best response of type ti

against σ−i.

Step 3: mi ∈ SΓ
i (ti) ⇒ m1

i = ti, for all ti ∈ Ti and i ∈ I.

Proof of Step 3: Suppose not, i.e., there exist i ∈ I, ti ∈ Ti and mi ∈ SΓ
i (ti) such

that m1
i = t

′
i ̸= ti. As mi ∈ SΓ

i (ti), there must exist a belief λi ∈ ∆(T−i ×M−i) such that

λi

(
G(SΓ

−i)
)
= 1, margT−i

λi = πi(ti), and

mi ∈ arg max
m

′
i∈Mi

∫
T−i×M−i

ui

(
g(m

′

i,m−i), (ti, t−i)
)
dλi.

Suppose agent i of type ti deviates to m
′
i ≡ (ti, fi, zi), where zi < 1. Pick any

(t−i,m−i) in the support of λi. The outcome before the deviation by type ti is g(mi,m−i) =

f
′
(t

′
i,m

1
−i) for some f

′ ∈ HF ′ . The outcome after the deviation by type ti will depend on

one of the following three scenarios:

• First, if m3
j = 1, for all j ̸= i, then either Rule 1 (when m2

j = fi, for all j ̸= i)

or Rule 2.1 (when m2
j ̸= fi for some j ̸= i) will be induced by (m

′
i,m−i) and the

outcome will be fi(ti,m
1
−i). By setwise dominance, we have ui

(
fi(ti,m

1
−i), (ti, t−i)

)
>

ui

(
f

′
(t

′
i,m

1
−i), (ti, t−i)

)
.

• Second, if there exists j ̸= i such that m3
j < 1 and zi > maxk ̸=i:m3

k<1m
3
k, then again

either Rule 1 or Rule 2.1 will be induced by (m
′
i,m−i) and the outcome will be

fi(ti,m
1
−i). Hence, again by setwise dominance, we have ui

(
fi(ti,m

1
−i), (ti, t−i)

)
>

ui

(
f

′
(t

′
i,m

1
−i), (ti, t−i)

)
.

• Finally, in all other cases, it follows that there exists f
′′ ∈ HF ′ such that (m

′
i,m−i)

induces the outcome f
′′
(ti,m

1
−i), which may or may not be better for type ti than

f
′
(t

′
i,m

1
−i), the outcome before the deviation.

As zi → 1, the probability that either the first or the second scenario is realized (i.e., either

mj = 1, for all j ̸= i, or there exists j ̸= i such that m3
j < 1 and zi > maxk ̸=i:m3

k<1m
3
k)

converges to 1. Furthermore, as argued in the previous paragraph, in either of those two

scenarios, agent i of type ti strictly improves her payoff after the deviation to (ti, fi, zi).

Finally, outside of those two scenarios, while individual i of type ti may suffer a loss after
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she deviates to (ti, fi, zi), that loss is bounded. Hence, it follows that if zi is sufficiently

high, individual i of type ti can increase her expected payoff if she were to deviate to

(ti, fi, zi), a contradiction. ■

Step 4: Define the message correspondence profile S as follows: For all i ∈ I,

Si(ti) = {ti} ×HF ′ × [0, 1],∀ti ∈ Ti.

Then, S = SΓ.

Proof of Step 4: It follows from Step 3 that SΓ ≤ S. We prove that S ≤ SΓ. To do

so, it is sufficient to argue that S ≤ b(S).

Fix i ∈ I and ti ∈ Ti.

First, pick any f
′ ∈ HF ′ and zi ∈ [0, 1). We prove that (ti, f

′
, zi) ∈ bi(S).

Fix any j ̸= i and zj ∈ (zi, 1). Let σj : Tj → Mj be such that σj(tj) = (tj, fi, zj), for

all tj ∈ Tj. For all j
′ ∈ I\{i, j}, let σj′ : Tj′ → Mj′ be such that σj′ (tj′ ) = (tj′ , fi, 1), for

all tj′ ∈ Tj′ . Then consider the probability measure λi ∈ ∆(T−i ×M−i) corresponding to

the belief of agent i that the type profile of all other agents t−i is distributed according to

πi(ti) and they play according to the strategy profile σ−i. Since σ−i is measurable, G(σ−i)

is a measurable subset of T−i×M−i. By definition, margT−i
λi = πi(ti) and λi

(
G(σ−i)

)
= 1.

Since G(σ−i) ⊆ G(S−i), it follows that λi

(
G(S−i)

)
= 1.

Now, given the belief λi, if agent i of type ti reports (ti, f
′
, zi), then either Rule 1

(when f
′
= fi) or Rule 2.1 (when f

′ ̸= fi) is induced by any (t−i,m−i) in the support

of λi and the outcome is fi(ti, t−i). (When Rule 2.1 applies, the outcome is determined

by the SCF fi announced by agent j.) Thus the expected payoff of agent i of type ti is

Ui(fi|ti).
Suppose agent i of type ti deviates to some mi ≡ (t

′
i, f

′′
, z

′
i) ∈ Mi. If f

′′
= fi, then

Rule 1 is induced by any (t−i,m−i) in the support of λi and the outcome is fi(t
′
i, t−i). If

f
′′ ̸= fi and z

′
i < zj or z

′
i = 1, then Rule 2.1 is induced by any (t−i,m−i) in the support

of λi and the outcome is fi(t
′
i, t−i). If f

′′ ̸= fi and z
′
i = zj, then Rule 2.2 is induced

by any (t−i,m−i) in the support of λi and the outcome is f̌(t
′
i, t−i). Finally, if f

′′ ̸= fi

and z
′
i ∈ (zj, 1), then Rule 2.1 is induced by any (t−i,m−i) in the support of λi and the

outcome is f
′′
(t

′
i, t−i). It thus follows that there exists an f ∈ HF ′ such that, for all

(t−i,m−i) in the support of λi, the outcome is f(t
′
i, t−i). Thus, the expected payoff of

agent i of type ti after the deviation is Ui(f ; t
′
i|ti). By setwise dominance, we have that

Ui(fi|ti) ≥ Ui(f ; t
′
i|ti), for all t

′
i ∈ Ti. Hence, agent i of type ti cannot improve by any

deviation. Thus, (ti, f
′
, zi) ∈ bi(S).
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Second, pick any f
′ ∈ HF ′ . We prove that (ti, f

′
, 1) ∈ bi(S).

Fix any j ̸= i and zj ∈ (0, 1). Now let σj : Tj → Mj be such that σj(tj) = (tj, fi, zj),

for all tj ∈ Tj. And, as before, for all j
′ ∈ I\{i, j}, let σj′ : Tj′ → Mj′ be such that

σj′ (tj′ ) = (tj′ , fi, 1), for all tj′ ∈ Tj′ . Consider the probability measure λi ∈ ∆(T−i×M−i)

corresponding to the belief of agent i that the type profile of all other agents t−i is

distributed according to πi(ti) and they play according to the strategy profile σ−i. By

definition, margT−i
λi = πi(ti) and λi

(
G(S−i)

)
= 1.

Now, given the belief λi, if agent i of type ti reports (ti, f
′
, 1), then as in the previous

case, the outcome is fi(ti, t−i) at any (t−i,m−i) in the support of λi. Suppose agent i of

type ti deviates to some mi ≡ (t
′
i, f

′′
, z

′
i) ∈ Mi. As in the previous case, there exists an

f ∈ HF ′ such that, for all (t−i,m−i) in the support of λi, the outcome is f(t
′
i, t−i). Thus,

the expected payoff of agent i of type ti after the deviation is Ui(f ; t
′
i|ti). By setwise

dominance, we have that Ui(fi|ti) ≥ Ui(f ; t
′
i|ti), for all t

′
i ∈ Ti. Hence, agent i of type ti

cannot improve by any deviation. Thus, (ti, f
′
, 1) ∈ bi(S).

It follows that S ≤ b(S), as claimed. ■

Step 5: The mechanism Γ implements F in interim rationalizable strategies.

Proof of Step 5: Pick any f ∈ HF ′ . For each i ∈ I and ti ∈ Ti, let σi(ti) = (ti, f, 0).

It then follows from Step 4 that σ ∈ Σ(SΓ). So, we have g(σ(t)) = f(t), for all t ∈ T .

This verifies the first requirement of implementation.

Next, pick any σ ∈ Σ(SΓ). Consider any t ∈ T and the corresponding message

profile σ(t) =
(
σ1(t), σ2(t), σ3(t)

)
. By the construction of the mechanism, there exists an

ft ∈ HF ′ such that g(σ(t)) = ft(σ
1(t)). From Step 3, we have that σ1(t) = t, for all t ∈ T .

Hence, g(σ(t)) = ft(t) ∈ F
′
(t). Thus, g ◦ σ is a selection of F

′
, i.e., g ◦ σ ∈ HF ′ . This

verifies the second requirement of implementation. ■

Steps 1 through 5 complete the proof of the theorem.

6 Sufficiency: Mechanisms Satisfying BRP

In this section, we present a different sufficiency result, using a mechanism with the best

response property (BRP), which will be defined shortly.

Given any SCF f and i ∈ I, we say that the SCF f is independent of the types of all

j ̸= i if for all t, t
′ ∈ T ,

ti = t
′

i ⇒ f(t) = f(t
′
).

18



Definition 5. The SCC F satisfies setwise independent dominance if for all i ∈ I, there

exists an SCF fi ∈ HF such that fi is independent of the types of all j ̸= i and dominant

for agent i. That is,

ui

(
fi(ti, t

′

−i), (ti, t−i)
)
≥ ui

(
f

′
(t

′

i, t
′

−i), (ti, t−i)
)
,

for all ti, t
′
i ∈ Ti, t−i, t

′
−i ∈ T−i, and f

′ ∈ HF , with a strict inequality if ti ̸= t
′
i.

To illustrate this definition, we revisit the environment in Example 1:

Example 2. We have already argued that the SCC F in Example 1 satisfies setwise

dominance. More specifically, we confirm that the SCF fK,K is a member of HF and

dominates any other SCF for each agent i ∈ {1, 2}. Also, fK,K is trivially independent of

each agent’s type because it is constant. Therefore, the SCC F in this example satisfies

setwise independent dominance.

As promised, we now define the best response property as a strengthening of the weak

BRP:

Definition 6. The mechanism Γ = ((M)i∈I , g) satisfies the best response property (BRP)

if for all i ∈ I, ti ∈ Ti, and λi ∈ ∆(T−i ×M−i) such that margT−i
λi = πi(ti), we have

arg max
mi∈Mi

∫
T−i×M−i

ui

(
g(mi,m−i), (ti, t−i)

)
dλi ̸= ∅.

Thus, unlike the weak BRP, which only requires a best response to exist against all

pure strategies of the other agents, the BRP requires that a best response exist against

all beliefs about the behavior of the other agents – including correlated strategies. Unless

there is a unanimous agreement on the best outcome, BRP prevents us from using the

integer game as part of the implementing mechanisms.19 While the mechanism we propose

in the proof of Theorem 2 does not satisfy BRP, it has nonempty best responses to any

belief that has a finite support (not just pure strategies, as required in weak BRP).

The next result shows that setwise independent dominance is, along with an assump-

tion often met in economic environments, sufficient for implementation in interim ra-

tionalizable strategies by a compact mechanism satisfying BRP. We construct separate

implementing mechanisms for n ≥ 3 and n = 2. For the sake of brevity, we focus on the

mechanism for n ≥ 3 in the main body of the paper. It will again be helpful to convey

19The modulo game, being finite, satisfies the BRP. However, the modulo game fails to provide ap-
propriate incentives because an agent may not have a winning strategy in the game when others play a
mixed strategy or the environment is one of incomplete information.
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the main elements of the implementing mechanism verbally. The mechanism builds on

the collection of SCFs fi that are independent of the types of others and dominant for

each agent i (the reader could think of fi as the maximal element in the ex-post efficient

individually rational frontier for agent i in an economy with monotone preferences). The

mechanism, of simultaneous moves, asks each agent to report three items: her type, a

selection – SCF – of the correspondence F , and either the integer 0 or the integer 1. The

type report, as is standard, allows for the manipulation of the implemented SCF. The

choice of the integer 0 should be viewed, roughly, as wishing to take a passive role in

society, while the choice of integer 1 conveys a wish for a more active role. Since the

mechanism works for at least three agents, if there is a unanimous agreement on the SCF

and the integer 0, that consensus SCF is implemented. If there is an “odd person out”

(agent i is the only one either announcing the integer 1 or a different SCF), she gets to

implement her dominant fi. In all other cases, the average of the dominant fi’s over those

agents who announce the integer 1 (or the average of all fi’s if everyone is passive) is

implemented.

The statement and proof of the next result now follow:

Theorem 3. For any SCC F , if there exists an SCC F
′ ≈ F that is convex-valued and

satisfies setwise independent dominance, then F is implementable in interim rationalizable

strategies by a compact mechanism satisfying the BRP.

Proof. We now present the proof of the theorem for the case of n ≥ 3. The proof for

n = 2 is relegated to the Appendix.

Since F
′
satisfies setwise independent dominance, for each i ∈ I, there exists fi ∈ HF ′

such that fi dominates all other SCFs in HF ′ for agent i and is independent of the types

of all j ̸= i. The mechanism we propose below utilizes the collection of such SCFs {fi}i∈I .
Consider the mechanism Γ = ((Mi)i∈I , g), where Mi = Ti × HF ′ × {0, 1} with a typical

element mi = (m1
i ,m

2
i ,m

3
i ), for all i ∈ I, and the outcome function g is defined as follows:

for all m ∈ M ,

Rule 1: If m2
i = f and m3

i = 0, for all i ∈ I, then g(m) = f(m1).

Rule 2: If there exists an i ∈ I such that m2
j = f and m3

j = 0, for all j ̸= i, but either

m2
i ̸= f or m3

i ̸= 0, then g(m) = fi(m
1).

Rule 3: In all other cases, the following subrules apply: Let Im ≡ {i ∈ I : m3
i = 1}.

Rule 3.1: If Im ̸= ∅, then
g(m) =

1

|Im|
∑
i∈Im

fi(m
1).
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Rule 3.2: If Im = ∅, then
g(m) =

1

n

∑
i∈I

fi(m
1).

We endow {0, 1} with the discrete topology. Then, since Ti is finite, and hence compact

for all i ∈ I, and since HF ′ is compact, it follows that the mechanism Γ is compact. The

rest of the argument proceeds in five steps.

Step 1: The mechanism Γ is measurable.

Proof of Step 1: Pick any measurable subset E ⊆ ∆(A). We show that g−1(E) =

{m ∈ M : g(m) ∈ E} is a measurable subset of M . To do so, we partition g−1(E) into

the following finite number of subsets of M :

Let M1 denote the set of all m ∈ M such that m induces Rule 1 and the outcome g(m)

is in E. Recall from the proof of Theorem 2 that we introduced H̄ =
⋃

f∈H
F
′ {f

n} ⊆ Hn
F ′

and fn is a typical element of H̄. Also recall the function K : T × H̄ → ∆(A), which was

defined as follows: K(t, fn) = f(t), for all (t, fn) ∈ T × H̄. Finally, recall that K is a

Carathéodory function that is jointly measurable.

Now, pick any m ∈ M1. Since m induces Rule 1, it follows that m2 ∈ H̄, m3 ∈ {0}n,
and g(m) = K(m1,m2). Hence,

M1 = K−1(E)× {0}n.

Since K is jointly measurable, K−1(E) is a measurable subset of T × H̄, which in turn is

a measurable subset of T ×Hn
F ′ . Hence, M1 is a measurable subset of M .

Pick any i ∈ I and let M i denote the set of all m ∈ M such that m induces Rule 2,

agent i is the “odd-one-out”, and the outcome g(m) = m2
i (m

1) ∈ E. Pick any m ∈ M i.

Since agent i is the “odd-one-out” at m, the profile (m2,m3) must be such that one of

the following two cases applies:

• There exists an f ∈ HF ′ such that m2
j = f , for all j ̸= i, and m2

i ̸= f . Let

H̄i =
⋃

f∈H
F
′ {f

n−1}. Furthermore, the profile m3 must be such that m3
j = 0, for all

j ̸= i, and m3
i ∈ {0, 1}. Thus,

m2 ∈ (H̄i ×HF ′ )\H̄ and m3 ∈ {0}n−1 × {0, 1}.

Finally, as g(m) = fi(m
1) ∈ E, the profile m1 is in f−1

i (E).

Let M i1 ≡ f−1
i (E) ×

(
(H̄i ×HF ′ )\H̄

)
× {0}n−1 × {0, 1}. Since fi is measurable,

f−1
i (E) is a measurable subset of T . Moreover, (H̄i × HF ′ )\H̄ is a measurable
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subset of Hn
F ′ because H̄i and H̄ are closed, and hence, measurable subsets of Hn−1

F ′

and Hn
F ′ , respectively. Hence, M i1 is a measurable subset of M .

• There exists an f ∈ HF ′ such that m2
j = f , for all j ∈ I. In this case, for agent i to

be the “odd-one-out”, the profile m3 must be such that m3
j = 0, for all j ̸= i, and

m3
i = 1. Thus,

m2 ∈ H̄ and m3 ∈ {0}n−1 × {1}.

Finally, as g(m) = fi(m
1) ∈ E, the profile m1 is in f−1

i (E).

Let M i2 ≡ f−1
i (E)× H̄ × {0}n−1 × {1}. Clearly, M i2 is a measurable subset of M .

Hence, M i = M i1 ∪M i2, which is a measurable subset of M .

Pick any i ∈ I and let M i,3.1 denote the set of message profiles m ∈ M such that

m induces Rule 3.1, Im = {i}, and the outcome g(m) = fi(m
1) is in E. Pick any

m ∈ M i,3.1. The profile m3 must be such that m3
j = 0, for all j ̸= i, and m3

i = 1. Since

m induces Rule 3.1, the profile m2 must be such that m2
j ̸= m2

k, for some j, k ̸= i. Hence,

m2 ∈ Hn
F ′\(H̄i ×HF ′ ). Finally, as g(m) = fi(m

1) ∈ E, the profile m1 is in f−1
i (E). Thus,

M i,3.1 = f−1
i (E) ×

(
Hn

F ′\(H̄i ×HF ′ )
)
× {0}n−1 × {1}. Clearly, M i,3.1 is a measurable

subset of M .

Let J = {J ⊆ I : |J | ≥ 2}. Pick any J ∈ J and let MJ,3.1 denote the set of

message profiles m ∈ M such that m induces Rule 3.1, Im = J , and the outcome g(m) =

(1/|J |)
∑

j∈J fj(m
1) is in E. Pick any m ∈ MJ,3.1. The profile m3 must be such that

m3
j = 1, for all j ∈ J , and m3

i = 0, for all i /∈ J . Then, the profile m2 can be any element

of Hn
F ′ . Finally, letting the function fJ ≡ (1/|J |)

∑
j∈J fj, the profile m1 is in f−1

J (E).

Thus, MJ,3.1 = f−1
J (E) ×Hn

F ′ × {0}n−|J | × {1}|J |. Clearly, MJ,3.1 is a measurable subset

of M .

Let M3.2 denote the set of message profiles m ∈ M such that m induces Rule 3.2 and

the outcome g(m) = (1/n)
∑

i∈I fi(m
1) ≡ fI(m

1) is in E. Pick any m ∈ M3.2. The profile

m3 must be such that m3
i = 0, for all i ∈ I. Then, the profile m2 must not be in H̄i×HF ′ ,

for all i ∈ I. Thus, m2 ∈ Hn
F ′\(

⋃
i∈I

(
H̄i ×HF ′

)
). Finally, the profile m1 is in f−1

I (E).

Thus, M3.2 = f−1
I (E) × (Hn

F ′\(
⋃

i∈I
(
H̄i ×HF ′

)
)) × {0}n. Clearly, M3.2 is a measurable

subset of M .

Thus, g−1(E) = M1 ∪
⋃

i∈I(M
i ∪M i,3.1)∪

⋃
J∈J MJ,3.1 ∪M3.2. Since g−1(E) is a finite

union of measurable sets, it is a measurable subset of M . ■
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Step 2: Define the message correspondence profile S as follows: For all i ∈ I,

Si(ti) = {ti} ×HF ′ × {0},∀ti ∈ Ti.

Then, S ≤ SΓ.

Proof of Step 2: It is sufficient to argue that S ≤ b(S). Fix i ∈ I and ti ∈ Ti. Pick

any f
′ ∈ HF ′ . We prove that (ti, f

′
, 0) ∈ bi(S).

For all j ̸= i, let σj : Tj → Mj be such that σj(tj) = (tj, fi, 0), for all tj ∈ Tj.

Then consider the probability measure λi ∈ ∆(T−i × M−i) corresponding to the belief

of agent i that the type profile of all other agents t−i is distributed according to πi(ti)

and they play according to the strategy profile σ−i. Since σ−i is measurable, G(σ−i) is a

measurable subset of T−i ×M−i. By definition, margT−i
λi = πi(ti) and λi

(
G(σ−i)

)
= 1.

Since G(σ−i) ⊆ G(S−i), it follows that λi

(
G(S−i)

)
= 1.

Now, given the belief λi, if agent i of type ti reports (ti, f
′
, 0), then either Rule 1 (when

f
′
= fi) or Rule 2 (when f

′ ̸= fi) is applied at any (t−i,m−i) in the support of λi and

the outcome is fi(ti, t−i). Thus, the expected payoff of agent i of type ti when she reports

(ti, f
′
, 0) is Ui(fi|ti).

Suppose agent i of type ti deviates to some mi = (t
′
i, f

′′
, zi) ∈ Mi. On the one hand, if

f
′′
= fi and zi = 0, then Rule 1 is applied at any (t−i,m−i) in the support of λi and the

outcome is fi(t
′
i, t−i). On the other hand, if f

′′ ̸= fi or zi ̸= 0, then Rule 2 is applied at

any (t−i,m−i) in the support of λi and, again, the outcome is fi(t
′
i, t−i). Thus, in either

case, the expected payoff of agent i of type ti equals Ui(fi; t
′
i|ti). By setwise independent

dominance, we have Ui(fi|ti) ≥ Ui(fi; t
′
i|ti). Hence, agent i of type ti cannot improve by

any deviation. Thus, (ti, f
′
, 0) ∈ bi(S). ■

Step 3: (t
′
i, f, zi) ∈ SΓ

i (ti) ⇒ t
′
i = ti.

Proof of Step 3: Suppose not, i.e., there exists mi ≡ (t
′
i, f, zi) ∈ SΓ

i (ti) such that

t
′
i ̸= ti. Then there must exist a belief λi ∈ ∆(T−i × M−i) such that λi

(
G(SΓ

−i)
)
= 1,

margT−i
λi = πi(ti), and

mi ∈ arg max
m

′′
i ∈Mi

∫
T−i×M−i

ui

(
g(m

′′

i ,m−i), (ti, t−i)
)
dλi. (3)

Suppose that instead of mi, agent i of type ti were to report m
′
i = (ti, fi, z

′
i), where

z
′
i = 1. Pick any (t−i,m−i) in the support of λi. Let us denote mj = (t

′
j,m

2
j , zj), for all

j ̸= i.

First, suppose (mi,m−i) induces Rule 1. Then it must be that zi = 0, and m2
j = f
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and zj = 0, for all j ̸= i. Hence, the outcome is f(t
′
i, t

′
−i). Since z

′
i = 1, (m

′
i,m−i) induces

Rule 2 so that the outcome is fi(ti, t
′
−i). By setwise independent dominance, we have

ui

(
fi(ti, t

′
−i), (ti, t−i)

)
> ui

(
f(t

′
i, t

′
−i), (ti, t−i)

)
.

Second, suppose (mi,m−i) induces Rule 2. There are two possibilities to consider:

1. Agent i is the “odd-one-out” at (mi,m−i): Suppose there is some f
′ ∈ HF ′ such

that m2
j = f

′
and zj = 0, for all j ̸= i, but either f

′ ̸= f or zi ̸= 0. Then

g(mi,m−i) = fi(t
′
i, t

′
−i).

Rule 2 is induced by (m
′
i,m−i) because z

′
i = 1. Then, as per Rule 2, g(m

′
i,m−i) =

fi(ti, t
′
−i). By setwise independent dominance, we have ui

(
fi(ti, t

′
−i), (ti, t−i)

)
>

ui

(
fi(t

′
i, t

′
−i), (ti, t−i)

)
.

2. Agent k ̸= i is the “odd-one-out” at (mi,m−i): Suppose that either m2
k ̸= f or

zk = 1, m2
j = f and zj = 0, for all j ̸= k, i, and zi = 0. Then g(mi,m−i) = fk(t

′
i, t

′
−i).

Now (m
′
i,m−i) induces Rule 3 because agent i announces z

′
i = 1 and either m2

k ̸=
f = m2

j , for all j ̸= k, i, or zk = 1. Recall that zj = 0, for all j ̸= k, i. Thus, either

I(m′
i,m−i)

= {i} or I(m′
i,m−i)

= {i, k} and Rule 3.1 is induced by (m
′
i,m−i). On the one

hand, if I(m′
i,m−i)

= {i}, then, as per Rule 3.1, g(m
′
i,m−i) = fi(ti, t

′
−i). By setwise

independent dominance, we have ui

(
fi(ti, t

′
−i), (ti, t−i)

)
> ui

(
fk(t

′
i, t

′
−i), (ti, t−i)

)
. On

the other hand, if I(m′
i,m−i)

= {i, k}, then, as per Rule 3.1, we have

g(m
′

i,m−i) = (1/2)fi(ti, t
′

−i) + (1/2)fk(ti, t
′

−i).

We have ui

(
fk(ti, t

′
−i), (ti, t−i)

)
= ui

(
fk(t

′
i, t

′
−i), (ti, t−i)

)
since fk is independent of

agent i’s type. By setwise independent dominance,20 we have ui

(
fi(ti, t

′
−i), (ti, t−i)

)
>

ui

(
fk(t

′
i, t

′
−i), (ti, t−i)

)
. Hence,

ui

(
g(m

′

i,m−i), (ti, t−i)
)
=

1

2
ui

(
fi(ti, t

′

−i), (ti, t−i)
)
+

1

2
ui

(
fk(ti, t

′

−i), (ti, t−i)
)

>
1

2
ui

(
fk(t

′

i, t
′

−i), (ti, t−i)
)
+

1

2
ui

(
fk(ti, t

′

−i), (ti, t−i)
)

=
1

2
ui

(
fk(t

′

i, t
′

−i), (ti, t−i)
)
+

1

2
ui

(
fk(t

′

i, t
′

−i), (ti, t−i)
)

= ui

(
fk(t

′

i, t
′

−i), (ti, t−i)
)

= ui

(
g(mi,m−i), (ti, t−i)

)
.

Finally, suppose (mi,m−i) induces Rule 3. There are three possibilities to consider:

20We remark that all applications of setwise independent dominance in this proof, prior to this one,
did not use the fact that the SCFs fi are independent of the types of others.
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1. I(mi,m−i) ̸= ∅ and zi = 1. Then, (mi,m−i) induces Rule 3.1, and hence,

g(mi,m−i) =
1

|I(mi,m−i)|
∑

j∈I(mi,m−i)

fj(t
′

i, t
′

−i).

Then, (m
′
i,m−i) also induces Rule 3.1 because z

′
i = 1. Since zi = 1, we have

I(mi,m−i) = I(m′
i,m−i)

. Hence,

g(m
′

i,m−i) =
1

|I(mi,m−i)|
∑

j∈I(mi,m−i)

fj(ti, t
′

−i).

Since fj is independent of agent i’s type for all j ̸= i, we have ui

(
fj(ti, t

′
−i), (ti, t−i)

)
=

ui

(
fj(t

′
i, t

′
−i), (ti, t−i)

)
. Also, we have ui

(
fi(ti, t

′
−i), (ti, t−i)

)
> ui

(
fi(t

′
i, t

′
−i), (ti, t−i)

)
because of setwise independent dominance. Hence,

ui

(
g(m

′

i,m−i), (ti, t−i)
)

=
1

|I(mi,m−i)|

ui

(
fi(ti, t

′

−i), (ti, t−i)
)
+

∑
j∈I(mi,m−i)

\{i}

ui

(
fj(ti, t

′

−i), (ti, t−i)
)

>
1

|I(mi,m−i)|

ui

(
fi(t

′

i, t
′

−i), (ti, t−i)
)
+

∑
j∈I(mi,m−i)

\{i}

ui

(
fj(ti, t

′

−i), (ti, t−i)
)

=
1

|I(mi,m−i)|

ui

(
fi(t

′

i, t
′

−i), (ti, t−i)
)
+

∑
j∈I(mi,m−i)

\{i}

ui

(
fj(t

′

i, t
′

−i), (ti, t−i)
)

= ui

(
g(mi,m−i), (ti, t−i)

)
.

2. I(mi,m−i) ̸= ∅ and zi = 0. Then, (mi,m−i) induces Rule 3.1, and hence,

g(mi,m−i) =
1

|I(mi,m−i)|
∑

j∈I(mi,m−i)

fj(t
′

i, t
′

−i).

By setwise independent dominance, we have ui

(
fi(ti, t

′
−i), (ti, t−i)

)
> ui

(
fj(t

′
i, t

′
−i), (ti, t−i)

)
,

for all j ∈ I(mi,m−i). Hence,

ui

(
fi(ti, t

′

−i), (ti, t−i)
)
> ui

(
g(mi,m−i), (ti, t−i)

)
. (4)

Then, (m
′
i,m−i) induces Rule 3.1 because z

′
i = 1. Also, I(m′

i,m−i)
= I(mi,m−i) ∪ {i}.
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Hence,

g(m
′

i,m−i) =
1

|I(mi,m−i)|+ 1

fi(ti, t
′

−i) +
∑

j∈I(mi,m−i)

fj(ti, t
′

−i)

 .

Since fj is independent of agent i’s type for all j ̸= i, we have ui

(
fj(ti, t

′
−i), (ti, t−i)

)
=

ui

(
fj(t

′
i, t

′
−i), (ti, t−i)

)
for all j ̸= i. Hence,

ui

(
g(m

′

i,m−i), (ti, t−i)
)

=
1

|I(mi,m−i)|+ 1

ui

(
fi(ti, t

′

−i), (ti, t−i)
)
+

∑
j∈I(mi,m−i)

ui

(
fj(ti, t

′

−i), (ti, t−i)
)

=
1

|I(mi,m−i)|+ 1

ui

(
fi(ti, t

′

−i), (ti, t−i)
)
+

∑
j∈I(mi,m−i)

ui

(
fj(t

′

i, t
′

−i), (ti, t−i)
)

=
1

|I(mi,m−i)|+ 1

(
ui

(
fi(ti, t

′

−i), (ti, t−i)
)
+ |I(mi,m−i)|ui

(
g(mi,m−i), (ti, t−i)

))
> ui

(
g(mi,m−i), (ti, t−i)

)
(∵ of(4)).

3. I(mi,m−i) = ∅. Then, (mi,m−i) induces Rule 3.2, and hence,

g(mi,m−i) =
1

n

∑
j∈I

fj(t
′

i, t
′

−i).

Then, (m
′
i,m−i) induces Rule 3.1 because z

′
i = 1. Thus, I(m′

i,m−i)
= {i}. Hence,

g(m
′

i,m−i) = fi(ti, t
′

−i).

By setwise independent dominance, we have ui

(
fi(ti, t

′
−i), (ti, t−i)

)
> ui

(
fj(t

′
i, t

′
−i), (ti, t−i)

)
,

for all j ∈ I. Hence,

ui

(
g(m

′

i,m−i), (ti, t−i)
)
= ui

(
fi(ti, t

′

−i), (ti, t−i)
)

>
1

n

∑
j∈I

ui

(
fj(t

′

i, t
′

−i), (ti, t−i)
)

= ui

(
g(mi,m−i), (ti, t−i)

)
.

It follows from the above arguments that ui

(
g(m

′
i,m−i), (ti, t−i)

)
> ui

(
g(mi,m−i), (ti, t−i)

)
,
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for all (t−i,m−i) in the support of λi. However, this contradicts the hypothesis that mi is

a best response against λi, expressed in (3). ■

Step 4: The mechanism Γ satisfies the BRP.

Proof of Step 4: Pick any i ∈ I, ti ∈ Ti, and λi ∈ ∆(T−i × M−i) such that

margT−i
λi = πi(ti). In Step 3, we have in fact shown that for type ti, reporting (ti, fi, 1)

is strictly better than reporting any (t
′
i, f, zi) such that t

′
i ̸= ti in every ex-post realization

of (t−i,m−i) ∈ T−i ×M−i. The same arguments can be repeated to show that for type ti,

reporting (ti, fi, 1) is weakly better than reporting any (ti, f, zi) in every ex-post realization

of (t−i,m−i) ∈ T−i × M−i. Thus, (ti, fi, 1) is a best response for type ti against any λi

such that margT−i
λi = πi(ti). ■

Step 5: The mechanism Γ implements F in interim rationalizable strategies.

Proof of Step 5: Pick any f ∈ HF ′ . Let σ be a strategy profile such that σi(ti) =

(ti, f, 0), for all i ∈ I. Then, we have σ ∈ Σ(SΓ) so that g(σ(t)) = f(t), for all t ∈ T .

This verifies the first requirement of implementation.

Next, pick any σ ∈ Σ(SΓ). Consider any t ∈ T and the corresponding message profile

σ(t) =
(
σ1(t), σ2(t), σ3(t)

)
. By the construction of the mechanism, there exists a finite set

of SCFs, say {f 1, . . . , fZ} ⊆ HF ′ , such that g(σ(t)) = 1
Z

∑Z
z=1 f

z(σ1(t)). It follows from

Step 3 that σ1(t) = t, for all t ∈ T . Hence, g(σ(t)) = 1
Z

∑Z
z=1 f

z(t) ∈ F
′
(t), where the

inclusion in F
′
is due to the assumption that F

′
is convex-valued. So, g ◦ σ is a selection

of F
′
, i.e., g ◦ σ ∈ HF ′ . This verifies the second requirement of implementation. ■

Steps 1 through 5 complete the proof of the theorem.

The above sufficiency result can be strengthened by weakening two of its assumptions:

convex-valuedness of the SCC and the independence of the dominant SCFs fi from the

types of all j ̸= i. We discuss these issues in the following remarks.

Remark 2. [On Convex-Valuedness] We use the assumption that the equivalent SCC

F
′
is convex-valued in Step 5 of the proof of Theorem 3. This assumption helps us conclude

that g ◦σ ∈ HF ′ , for all σ ∈ Σ(SΓ). Notice that the constructed mechanism is such that a

convex combination of lotteries defines the outcome only in Rule 3. Moreover, this convex

combination lies in the set of lotteries induced by the dominant SCFs {f1, . . . , fn}. Thus,
the claim in Step 5 will also hold as long as F

′
satisfies the following condition: For all

subsets J ⊆ I, we have 1
|J |

∑
j∈J fj(t) ∈ F

′
(t), for all t ∈ T . The sufficiency result holds

even under this condition, which is of course weaker than assuming F
′
is convex-valued.

One can completely drop the assumption of convex-valuedness as long as the designer is

allowed to use a two-stage mechanism, where the second stage uses a random dictatorship
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when the agents’ reports meet certain conditions. To elaborate on this possibility, consider

a two-stage mechanism with the same message space as the one for the mechanism in the

proof above. If the message profile satisfies the conditions for Rule 1 or 2, then there is

no second stage and the outcome is determined according to those rules. However, if the

profile satisfies the conditions for Rule 3, then in the second stage, the designer selects a

random dictator from the set of those agents who announce 1; if no one announces 1, the

designer selects a random dictator from the set of all agents. After selecting the random

dictator in this way, say agent i, the designer implements the outcome according to the

dominant SCF fi of agent i at the reported type profile. The ICR correspondence in

this two-stage mechanism is the same as in the mechanism in the proof. Therefore, every

rationalizable strategy profile is such that every agent reports her type truthfully. As a

result, the outcome at the end of the second stage is always an element of the SCC at

the true type profile. Hence, the two-stage mechanism implements the SCC in interim

rationalizable strategies. ⋄

Remark 3 (On Independence). We say that the SCC F satisfies extended setwise

dominance if (i) the SCC F satisfies setwise dominance and (ii) for all i ∈ I, the SCF fi –

found in the definition of setwise dominance – is dominant-strategy incentive compatible.

It is straightforward to argue that setwise independent dominance implies extended set-

wise dominance. Furthermore, Theorem 3 holds even if we replace setwise independent

dominance with extended setwise dominance of the SCC.21

Interestingly, extended setwise dominance is related to another condition that has been

proposed recently by Mukherjee, Muto, and Sen (2024). In a private-values environment,

a deterministic SCC F satisfies what Mukherjee et al. (2024) call extended strategy resis-

tance if the following two conditions hold: (i) F satisfies strategy-resistance of Jackson

(1992) and (ii) for each agent i ∈ I, there exists agent i’s top selection fi ∈ HF such

that fi is dominant-strategy incentive compatible.22 Mukherjee et al. (2024) show that,

in private-values environments, extended strategy resistance and the “flip condition” are

sufficient for a deterministic SCC to be implementable in weakly undominated strategies

by a finite mechanism. Recall from the discussion in Section 5 that strategy resistance

is almost equivalent to setwise dominance in private-values environments. (The gap is

21Independence of each fj from the type of agent i is used only in Step 3 of the proof of Theo-

rem 3. There, at multiple points, we apply independence to conclude that ui

(
fj(ti, t

′

−i), (ti, t−i)
)
=

ui

(
fj(t

′

i, t
′

−i), (ti, t−i)
)
. It is easy to see that the argument that follows this conclusion also holds if

ui

(
fj(ti, t

′

−i), (ti, t−i)
)
≥ ui

(
fj(t

′

i, t
′

−i), (ti, t−i)
)
, which will be the case if fj is dominant-strategy incen-

tive compatible.
22In the context of private-values environments, agent i’s top selection is an SCF fi ∈ HF such that

fi(t) ∈ argmaxa∈F (t) ui(a, ti), for all t ∈ T .
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present because the former requires weak whereas the latter requires strict dominance.)

Likewise, extended strategy resistance is almost equivalent to extended setwise domi-

nance in private-values environments. Of course, unlike extended strategy resistance, the

extended setwise dominance condition applies to interdependent-values environments as

well. ⋄

7 Examples to Showcase the Significance of our Re-

sults

Example 3 (Efficient Bilateral Trade). This example addresses the impossibility

result in Myerson and Satterthwaite (1983) for bilateral trading, i.e., the nonexistence of

an SCF that is Bayesian incentive compatible, ex post efficient, and interim individually

rational. We present our framework next.

There is a single buyer b and a single seller s of an indivisible object. The buyer’s

type is equal to her value vb for the object whereas the seller’s type is her cost vs for the

object. Both players’ value/cost are elements of the finite grid

V ≡
{
0,

1

K
,
2

K
, . . . ,

K − 1

K
, 1

}
,

where K is some positive integer.

Thus, we set Tb = Ts = V as the set of types. The traders’ beliefs, given by the

functions πb and πs, do not play any role in what follows. More importantly, we assume

that T ∗ = Tb × Ts, i.e., the designer cares about all states in Tb × Ts.

An alternative is a pair (p, z), where p specifies the allocation of the object and z the

payment from the buyer to the seller. Let p = 1 (p = 0) denote the allocation where the

buyer (seller) receives the object. We assume that the payment z can be any amount in

the unit interval [0, 1].23 As before, A is the set of alternatives.

The utility functions of the buyer and sellers are as follows: On the one hand, if the

good is allocated to the buyer and she pays z to the seller, then the buyer’s utility is

vb − z whereas the seller’s utility is z − vs. On the other, if the good is allocated to the

seller and the buyer pays z to the seller, then the buyer’s utility is −z whereas the seller’s

utility is z.

We define the ex-post efficient and individually rational SCC F as follows: For all

23The argument works even if the set of payments is finite as long as it is sufficiently fine.
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(vb, vs) ∈ Tb × Ts,

F (vb, vs) =

{ {
(1, z) : z ∈ [vs, vb]

}
, if vb ≥ vs

{(0, 0)} if vb < vs.

Notice that F is nonempty- and compact-valued. Consider HF , the SCS generated by

F . The SCS HF includes two SCFs, f̄ and f̃ , that are important for our argument. The

SCF f̄ is such that the buyer pays a price equal to the seller’s cost whenever the good

is allocated to the buyer, whereas the SCF f̃ is such that the buyer pays a price equal

to her value whenever the good is allocated to the buyer. Of course, since f̄ , f̃ ∈ HF ,

both of these SCFs are ex-post efficient. The SCF f̄ is such that it is weakly dominant

for the buyer to report her value truthfully. In fact, as f̄ awards all the trade surplus to

the buyer, it weakly dominates every SCF in HF for the buyer, i.e., ub

(
f̄(vb, vs), vb

)
≥

ub

(
f(v

′

b, vs), vb
)
, for all vb, v

′

b ∈ Tb, vs ∈ Ts, and f ∈ HF . However, f̄ does not satisfy

BIC; specifically, it is in the interest of the seller to misreport her cost even though the

buyer is reporting truthfully as long as the seller assigns a positive probability for the

buyer to have a value greater than her cost. Similarly, the SCF f̃ , which allocates all the

trade surplus to the seller, weakly dominates every SCF in HF for the seller but it does

not satisfy the Bayesian incentive constraints for the buyer.

The SCC F , however, does not satisfy setwise dominance. Recall that setwise dom-

inance requires that, for each agent i, the dominant SCF fi provide strict incentives for

truth-telling. This is not the case here for f̄ and f̃ . Hence, we now construct another

SCC that is approximately equal to F , and show that it satisfies setwise dominance. To

do so, we first construct two perturbed versions of every SCF f ∈ HF , as follows.

Consider the SCF f̂ such that, for all (vb, vs), the good is allocated to the buyer with

probability vb and, regardless of the allocation, the buyer pays v2b/2 to the seller. Next,

pick any ε ∈ (0, 1) and f ∈ HF , and define the SCF f ε
b as follows: For all (vb, vs) ∈ Tb×Ts,

f ε
b (vb, vs) = (1− ε)f(vb, vs) + εf̂(vb, vs).

Also, consider the SCF f̌ such that, for all (vb, vs), the good is allocated to the buyer

with probability (1− vs) and, regardless of the allocation, the buyer pays 1− v2s/2 to the

seller. Next, pick any ε ∈ (0, 1) and f ∈ HF , and define the SCF f ε
s as follows: For all

(vb, vs) ∈ Tb × Ts,

f ε
s (vb, vs) = (1− ε)f(vb, vs) + εf̌(vb, vs).
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For all ε ∈ (0, 1), define the SCC F ε as follows: For all (vb, vs) ∈ Tb × Ts,

F ε(vb, vs) = {f ε
b (vb, vs), f

ε
s (vb, vs) : f ∈ HF} .

The SCC F ε is nonempty- and compact-valued, for all ε.24

We then have the following lemma, whose proof can be found in the appendix:

Lemma 2. For all ε ∈ (0, 1), the SCC F ε satisfies setwise dominance.

It then follows from Theorem 2 that, for all ε ∈ (0, 1), the SCC F ε is implementable in

interim rationalizable strategies by a compact mechanism with the weak BRP. Thus, it is

possible to design rationalizable incentives in mechanisms with the weak BRP achieving

outcomes that are arbitrarily close to ex-post efficiency in bilateral trading.

How about trying to achieve this goal, but insisting on mechanisms satisfying the

more demanding BRP? Although F ε satisfies setwise dominance, it fails to satisfy setwise

independent dominance. Indeed, to attain anything close to ex-post efficiency, the SCF

must respond to changes in the traders’ values and costs. Thus, if an SCC satisfies

setwise independent dominance, the dominant SCFs for each trader, being independent

of the other trader’s types, cannot be ex-post efficient or come close to attaining that

goal. Another way to see this is that the dominant SCFs in the setwise independent

dominance condition satisfy dominant-strategy incentive compatibility, which is of course

incompatible with ex-post efficiency when the type space is sufficiently fine (Myerson and

Satterthwaite, 1983).

But it is worth noting that, for all ε ∈ (0, 1), there exists an SCC F
′ε ⊃ F ε, a different

perturbation of F , such that F
′ε satisfies setwise independent dominance. Of course, in

24To see compact-valuedness, since F ε(vb, vs) ⊆ ∆(A), and ∆(A) is compact in the weak* topology,
it is sufficient to argue that F ε(vb, vs) is closed. If vb < vs, then F ε(vb, vs) is finite. Specifically, it has
two elements: (i) the probability measure that assigns the probabilities (1 − ε), εvb, and ε(1 − vb) to
the alternatives (0, 0), (1, v2b/2), and (0, v2b/2), respectively, and (ii) the probability measure that assigns
the probabilities (1 − ε), ε(1 − vs), and εvs to the alternatives (0, 0), (1, 1 − v2s/2), and (0, 1 − v2s/2),
respectively. So F ε(vb, vs) is closed if vb < vs. Now consider the case vb ≥ vs. Pick any sequence of
probability measures {ℓk}∞k=1 in F ε(vb, vs) such that ℓk converges to some probability measure ℓ ∈ ∆(A)
as k → ∞. By construction, ℓk either assigns the probabilities (1 − ε), εvb, and ε(1 − vb) to the
alternatives (1, zk), (1, v

2
b/2), and (0, v2b/2), respectively, or assigns the probabilities (1 − ε), ε(1 − vs),

and εvs to the alternatives (1, zk), (1, 1− v2s/2), and (0, 1− v2s/2), respectively. Since zk ∈ [vs, vb], there
exists a convergent subsequence {zkj

}∞j=1 that converges to some z ∈ [vs, vb] as j → ∞. Consider any

continuous and bounded function h : A → ℜ. For each kj ,
∫
hdℓkj

is equal to either (1 − ε)h(1, zkj
) +

εvbh(1, v
2
b/2)+ ε(1− vb)h(0, v

2
b/2) or (1− ε)h(1, zkj

)+ ε(1− vs)h(1, 1− v2s/2)+ εvsh(0, 1− v2s/2). As h is
continuous, the subsequence

∫
hdℓkj

converges to either (1−ε)h(1, z)+εvbh(1, v
2
b/2)+ε(1−vb)h(0, v

2
b/2)

or (1− ε)h(1, z) + ε(1− vs)h(1, 1− v2s/2) + εvsh(0, 1− v2s/2) as j → ∞. Hence, ℓ must equal either the
probability measure that assigns the probabilities (1 − ε), εvb, and ε(1 − vb) to the alternatives (1, z),
(1, v2b/2), and (0, v2b/2), respectively, or the probability measure that assigns the probabilities (1 − ε),
ε(1− vs), and εvs to the alternatives (1, z), (1, 1− v2s/2), and (0, 1− v2s/2), respectively. In either case,
ℓ ∈ F ε(vb, vs).
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light of the above comments, F
′ε must contain outcomes that are far from being ex-post

efficient. To construct F
′ε, define two SCFs h̄ and h̃, as follows: h̄(vb, vs) = (1, 0) whereas

h̃(vb, vs) = (1, 1), for all (vb, vs) ∈ Tb × Ts. Thus, both h̄ and h̃ always allocate the good

to the buyer but the price is zero in the former and 1 in the latter. Clearly, h̄ and h̃ are

far from being ex-post efficient. Now, consider the SCS H
′ ≡ HF ∪ {h̄, h̃}. As before, we

define f ε
b = (1 − ε)f + εf̂ and f ε

s = (1 − ε)f + εf̌ , for all SCFs f ∈ H
′
and ε ∈ (0, 1).

Finally, for all ε ∈ (0, 1), we define the SCC F
′ε as follows: For all (vb, vs) ∈ Tb × Ts,

F
′ε(vb, vs) =

{
f ε
b (vb, vs), f

ε
s (vb, vs) : f ∈ H

′
}
.

Notice that F
′ε(vb, vs) = F ε(vb, vs) ∪

{
h̄ε(vb, vs), h̄

ε(vb, vs), h̃
ε(vb, vs), h̃

ε(vb, vs)
}
, for all

(vb, vs) ∈ Tb × Ts Thus, F
′ε ⊃ F ε and it is nonempty- and compact-valued.

By applying similar arguments as in the proof of Lemma 2, we can show that the SCC

F
′ε satisfies setwise independent dominance, for all ε ∈ (0, 1). Specifically, the SCF h̄ε

b

(h̃ε
s) is independent of the seller’s (buyer’s) type and dominates every other SCF in HF ′ε

for the buyer (seller). Although the SCC F
′ε satisfies setwise independent dominance, it is

not necessarily convex-valued. Thus, we cannot apply Theorem 3. However, as discussed

in Remark 2, the assumption of convex-valuedness is not essential. The designer can use

a two-stage mechanism in which the second stage is basically a random dictatorship. The

two-stage mechanism implements the original SCC F
′ε in interim rationalizable strategies,

is compact, and has the BRP. (The small price to pay –especially if F consists of a large

number of allocations– for this success in the implementation with BRP is that the extreme

SCFs h̄ and h̃ also get to be implemented.) ⋄

Example 4 (Pareto Optimal Allocation of Private Goods). In this example, we

address several impossibility results concerning efficiency in terms of their implementabil-

ity in Bayesian equilibrium (Palfrey and Srivastava (1987), Chakravorti (1992)). We note

that the culprit for these impossibilities is Bayesian monotonicity, a condition that is

necessary for implementation in Bayesian equilibrium and that is entirely avoided in our

approach. The description of the model follows.

There are a finite number of goods, L, where we use L to denote both the set and

number of goods. Let el ∈ ℜ++ denote the endowment of good l in the economy. Then,

e = (e1, . . . , eL) is the endowment of all goods in the economy.

An alternative a = (a1, . . . , an) ∈ RLn
+ is an allocation of the endowment, i.e.,

∑
i∈I a

l
i =

el, for all l ∈ L. The set of alternatives is A. When endowed with the Euclidean metric,

A is a compact metric space.

As in the general model, there are a finite set of types of each agent and we allow
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for interdependent values. Each agent cares about only her own consumption. That is,

for all i ∈ I, t ∈ T , and a, â ∈ RLn
+ , if ai = âi, then ui(a, t) = ui(â, t). We assume that

the agents’ utility functions are continuous and strictly increasing in the quantity of each

good, i.e., for all i ∈ I, t ∈ T , and a, â ∈ RLn
+ , if ai > âi, then ui(a, t) > ui(â, t).

25

The agents’ beliefs (πi)i∈I do not play any role in what follows. More importantly, we

assume that T ∗ = T , i.e., the designer cares about all states in T .

We assume that the environment is such that, for all i ∈ I, there exists an SCF fi

such that truth-telling is a strictly dominant strategy for agent i in the direct mechanism

associated with fi, i.e.,

ui

(
fi(ti, t

′

−i), (ti, t−i)
)
> ui

(
fi(t

′

i, t
′

−i), (ti, t−i)
)
,∀ti ∈ Ti, t

′

i ∈ Ti\{ti}, t−i, t
′

−i ∈ T−i. (5)

This assumption is satisfied, for instance, in private-values environments under the mild

condition that, for all agents i ∈ I, distinct types of agent i induce different preference

rankings on ∆(A) (see the lemma in Abreu and Matsushima, 1992).26

The above assumption is clearly a necessary condition for any SCC to satisfy setwise

dominance in any given environment. Moreover, whenever the assumption is satisfied, it

is without loss of generality to assume that, for each i ∈ I, the SCF fi is independent of

the types of all agents j ̸= i. This is because for each i ∈ I, we can fix t
′
−i ∈ T−i and

then define another SCF f
′
i such that f

′
i (ti, t−i) = fi(ti, t

′
−i), for all (ti, t−i) ∈ T . Then,

the SCF f
′
i is independent of the types of all j ̸= i and satisfies (5).

So, suppose that the above assumption is satisfied, and that, for each i ∈ I, the SCF

fi is independent of the types of all j ̸= i. Then, for each agent i ∈ I, define āi as the

alternative in which agent i is allocated the aggregate endowment, i.e., āii = e. Pick an

ε ∈ (0, 1) and define the SCF f ε
i such that f ε

i (t) = (1−ε)āi+εfi(t), for each t ∈ T . Then,

by construction,

ui

(
f ε
i (ti, t

′

−i), (ti, t−i)
)
> ui

(
f ε
i (t

′

i, t
′

−i), (ti, t−i)
)
, ∀ti ∈ Ti, t

′

i ∈ Ti\{ti}, t−i, t
′

−i ∈ T−i. (6)

Clearly, for all i ∈ I and ε ∈ (0, 1), the SCF f ε
i is independent of the types of all j ̸= i.

The alternative a ∈ A is Pareto optimal in state t ∈ T if there does not exist another

alternative a
′ ∈ A such that ui(a

′
, t) ≥ ui(a, t), for all i ∈ I, and uj(a

′
, t) > uj(a, t),

for at least some j ∈ I. The Pareto Correspondence is the SCC Fp such that Fp(t) is

the set of Pareto optimal allocations in each state t ∈ T . Since the utility functions are

25ai > âi ⇔ ali ≥ âli, for all l ∈ L, with at least one strict inequality.
26Notice that the assumption that the utility functions are strictly monotonic rules out total indifference

over all lotteries.
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continuous and strictly monotonic, the Pareto correspondence coincides with the weak

Pareto correspondence and is nonempty- and compact-valued.

Fix any δ > 0. For all t ∈ T , let F δ
p (t) be the set of all a ∈ Fp(t) such that |āii−ai| ≥ δ,

for all i ∈ I. Then, given ε ∈ (0, 1), define the SCC F ε as follows:

F ε(t) =
⋃
i∈I

{f ε
i (t)} ∪ F δ

p (t).

The SCC F ε is clearly nonempty- and compact-valued. For all i ∈ I, the lottery f ε
i (t)

converges to āi as ε → 0. Moreover, since the utility functions are strictly monotonic,

the alternative āi ∈ Fp(t), for all t ∈ T . Hence, the set of alternatives F ε(t) converges to

{ā1, . . . , ān} ∪ F δ
p (t) ⊂ Fp(t), for all t ∈ T . We now prove the following result:

Lemma 3. There exists ε̄ > 0 such that the SCC F ε satisfies setwise independent domi-

nance for all ε ≤ ε̄.

Proof. Pick any i ∈ I, ti, t
′
i ∈ Ti, and t−i, t

′
−i ∈ T−i. Since the utility of agent i is

strictly monotonic, there must exist κ > 0 such that ui(ā
i, (ti, t−i)) > ui(a, (ti, t−i)) + κ,

for all a ∈ F δ
p (t

′
i, t

′
−i).

27 Then, since the utility functions are continuous and f ε
i (ti, t

′
−i)

converges to āi as ε → 0, there exists a positive number εi(ti, t
′
i, t−i, t

′
−i) such that, for all

ε ≤ εi(ti, t
′
i, t−i, t

′
−i),

ui

(
f ε
i (ti, t

′

−i), (ti, t−i)
)
> ui(a, (ti, t−i)),∀a ∈ F δ

p (t
′

i, t
′

−i). (7)

Let ε̄ ≡ mini,ti,t
′
i,t−i,t

′
−i
εi(ti, t

′
i, t−i, t

′
−i) > 0, which is well-defined because the set of

agents I and the type space T are finite. Fix ε ≤ ε̄. We now argue that the SCC F ε

satisfies setwise independent dominance.

Pick any i ∈ I. We show that the SCF f ε
i ∈ HF ε is setwise independent dominant for

agent i. By construction, the SCF f ε
i is independent of the types of all j ̸= i. Now, fix

ti, t
′
i ∈ Ti, t−i, t

′
−i ∈ T−i, and f ∈ HF ε . By construction, f(t

′
i, t

′
−i) ∈ F ε(t

′
i, t

′
−i) implies

that either f(t
′
i, t

′
−i) = f ε

i (t
′
i, t

′
−i) or f(t

′
i, t

′
−i) ∈ F δ

p (t
′
i, t

′
−i). If f(t

′
i, t

′
−i) = f ε

i (t
′
i, t

′
−i), then

using (6), whereas if f(t
′
i, t

′
−i) ∈ F δ

p (t
′
i, t

′
−i), then using (7), we obtain that

ui

(
f ε
i (ti, t

′

−i), (ti, t−i)
)
≥ ui

(
f(t

′

i, t
′

−i), (ti, t−i)
)
,

27We can prove this by contradiction. Suppose, on the contrary, that we can find a sequence of
alternatives a(κ) ∈ F δ

p (t
′

i, t
′

−i) such that ui(ā
i, (ti, t−i)) ≤ ui(a(κ), (ti, t−i)) + 1/κ, for all κ. Since a(κ) ∈

{a ∈ A : |āii − ai| ≥ δ} – which is a compact set –, taking the limit as κ → ∞, we find an a(∞) ∈ A such
that |āii − ai(∞)| ≥ δ and, since the utility functions are continuous, ui(ā

i, (ti, t−i)) ≤ ui(a(∞), (ti, t−i)).
As the utility of agent i is strictly monotonic and a(∞) ∈ A such that |āii − ai(∞)| ≥ δ, we obtain that
ui(ā

i, (ti, t−i)) > ui(a(∞), (ti, t−i)), a contradiction.
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with a strict inequality if ti ̸= t
′
i, completing the argument.

It follows that, for all ε ∈ (0, ε̄], the SCC F ε is implementable in interim rationalizable

strategies by a compact mechanism with the weak BRP. Although the SCC F ε satisfies

setwise independent dominance, it is not necessarily convex-valued. Thus, we cannot ap-

ply Theorem 3. However, as discussed in Remark 2, the assumption of convex-valuedness

is not essential. The designer can use a two-stage mechanism in which the second stage is

basically a random dictatorship. The two-stage mechanism implements the original SCC

F ε in interim rationalizable strategies, is compact, and has the BRP. Note how, as ε → 0,

one gets to approximately implement the entire ex-post Pareto correspondence because

one can also choose values of δ arbitrarily close to 0. ⋄

Example 5 (Social Choice with Multidimensional Signals). Also considering in-

terdependent values, Jehiel and Moldovanu (2001) presents a remarkable impossibility

result for the social choice problem (i.e., the society aims to choose a social alternative

in every state) in interdependent-values environments with multidimensional signals. We

base our discussion on Example 4.4 in their paper, which is described next.

There are two agents i ∈ {1, 2} and three social alternatives k ∈ {A,B,C}. Suppose

that only agent 1 receives a signal, denoted by s = (sA, sB, sC). Let S ≡ [0, 1]3 be the set

of signals.

Let αkisk be agent i’s value for alternative k in state s. Assume that agents’ valuations

are such that αki > 0, for all i ∈ {1, 2} and k ∈ {A,B}, whereas αC1 = αC2 = 0. Thus,

regardless of the signal s ∈ S, the alternative C has zero value for both agents – we can

thus view alternative C as the status quo option.

The above assumptions further imply that agent’s valuations are independent of the

third signal, sC . We thus define the set of types of agent 1 simply as T1 = [0, 1]2, i.e., the

set of all possible signals (sA, sB). Since agent 2 is uninformed, she has only one type.

We thus simplify notation and write (sA, sB) for the type profile.

Let vi
(
k, (sA, sB)

)
denote agent i’s value for alternative k at the type profile (sA, sB).

That is,

vi
(
k, (sA, sB)

)
=

{
αkisk, if k ∈ {A,B}
0, if k = C.

Utilities are quasilinear such that, for each i ∈ {1, 2} and (sA, sB) ∈ T1, agent i’s

utility is given by vi
(
k, (sA, sB)

)
+ xi when alternative k is chosen and agent i receives a

monetary transfer equal to xi.
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Pick any x̄ > max{αA1, αB1}. Let

Ā ≡ {(k, x1, x2) : k ∈ {A,B,C}, x1 ∈ [−x̄, x̄], x2 = −x1}

be the set of pure outcomes. Then, Ā is a compact metric space because {A,B,C} is

compact when endowed with the discrete topology and the set of all (x1, x2) ∈ ℜ2 such that

x1 ∈ [−x̄, x̄] and x2 = −x1 is compact in ℜ2 endowed with the Euclidean distance. Notice

that every outcome (k, x1, x2) ∈ Ā satisfies ex-post budget balancedness since x2 = −x1.

For each (sA, sB) ∈ T1, let κ
∗(sA, sB) denote the set of alternatives that maximize the

utilitarian social welfare at the type profile (sA, sB), i.e.,

κ∗(sA, sB) = arg max
k∈{A,B,C}

v1
(
k, (sA, sB)

)
+ v2

(
k, (sA, sB)

)
.

It follows that all alternatives are efficient at the boundary where sA = sB = 0. But,

excluding that boundary, either only alternative A is efficient, only alternative B is effi-

cient, or both alternatives A and B are efficient. We say that an outcome (k, x1, x2) ∈ Ā

is efficient at (sA, sB) if k ∈ κ∗(sA, sB).

Let f : T1 → Ā be an SCF. We say that the SCF f is efficient if, for each (sA, sB) ∈ T1,

the outcome f(sA, sB) is efficient at (sA, sB). Indeed, Jehiel and Moldovanu (2001) show

that for generic valuations, no efficient SCF satisfies BIC. To overcome this impossibil-

ity, we show that a slight extension of a sub-correspondence of the efficient SCC – the

extension only adds an approximately Pareto efficient SCF – is implementable in interim

rationalizable strategies.

Let then the type space T̂1 be any finite subset of T1, and assume that T̂1 = T ∗
1 . As

in the other examples, the interim beliefs for the uninformed agent (i.e., agent 2) are of

no relevance.

Pick any δ ∈ [0, 1). Then define the SCC F δ : T̂1 → 2Ā as follows: for each (sA, sB) ∈
T̂1,

F δ(sA, sB) = {(k, x1, x2) : k ∈ κ∗(sA, sB),−x̄ ≤ x1 ≤ δx̄, x2 = −x1},

This means that F δ is the SCC such that the efficient alternative is always chosen and

agent 1 receives at most δx̄ < x̄ amount of monetary transfer, which is paid for by agent

2. Clearly, F δ is nonempty- and compact-valued.

For each (sA, sB) ∈ T̂1, define κ∗
1(sA, sB) as the set of best alternatives for agent 1 of

type (sA, sB). Thus,

κ∗
1(sA, sB) = arg max

k∈{A,B,C}
v1
(
k, (sA, sB)

)
.
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We now define κ̄∗
1 as a single-valued selection of κ∗

1 that satisfies the following:

κ̄∗
1(sA, sB) ∈ arg max

k∈κ∗
1(sA,sB)

v2
(
k, (sA, sB)

)
.

Thus, among the best alternatives for agent 1, κ̄∗
1 selects that one which gives agent 2 the

highest value.

We next define the SCF f as follows: for each (sA, sB) ∈ T̂1,

f(sA, sB) = (κ̄∗
1(sA, sB), x̄,−x̄).

This means that the SCF f always chooses agent 1’s best alternative and allocates the

maximal amount of monetary transfer to agent 1, which is paid for by agent 2. Notice that,

although not necessarily welfare-maximizing, the outcome f(sA, sB) is Pareto efficient at

the type profile (sA, sB).
28

For each alternative k ∈ {A,B}, we define the SCF fk as follows: for each (sA, sB) ∈
T̂1,

fk(sA, sB) =
(
k,−αk1sk

2
,
αk1sk
2

)
.

That is, the SCF fk always chooses alternative k and allocates to agent 2 the monetary

transfer equal to half of agent 1’s value for alternative k, which is paid for by agent 1. We

also define the SCF fC such that fC(sA, sB) = (C, 0, 0), for all (sA, sB) ∈ T̂1.

Finally, pick any ε ∈ (0, 1), and let the SCF f ε
1 be as follows: for each (sA, sB) ∈ T̂1,

f ε
1 (sA, sB) = (1− ε) f(sA, sB) +

ε

2

∑
k∈{A,B}

(
skfk(sA, sB) + (1− sk)fC(sA, sB)

)
.

Thus, the SCF f ε
1 is such that at each profile (sA, sB), the outcome is determined according

to a lottery in which the outcome f(sA, sB) is selected with probability 1−ε, and for each

k ∈ {A,B}, the outcome fk(sA, sB) is selected with probability εsk/2 and the outcome

fC(sA, sB) is selected with probability ε(1 − sk)/2. Notice that as ε → 0, f ε
1 (sA, sB) →

f(sA, sB), for all (sA, sB) ∈ T̂1.

28This follows from the definition of κ̄∗
1. Suppose f(sA, sB) were not Pareto efficient at (sA, sB). Then

there exists an outcome (k, x1, x2) ∈ Ā such that v1
(
k, (sA, sB)

)
+ x1 ≥ v1

(
κ̄∗
1(sA, sB), (sA, sB)

)
+ x̄ and

v2
(
k, (sA, sB)

)
+ x2 ≥ v2

(
κ̄∗
1(sA, sB), (sA, sB)

)
− x̄, with at least one strict inequality. By the definition

of κ̄∗
1 and the fact that x1 ≤ x̄, it must be that v1

(
k, (sA, sB)

)
+ x1 = v1

(
κ̄∗
1(sA, sB), (sA, sB)

)
+ x̄,

k ∈ κ∗
1(sA, sB), and x1 = x̄. Then, we must have v2

(
k, (sA, sB)

)
+ x2 > v2

(
κ̄∗
1(sA, sB), (sA, sB)

)
− x̄.

But, by budget balance, x2 = −x1 = −x̄. So, it must be that v2
(
k, (sA, sB)

)
> v2

(
κ̄∗
1(sA, sB), (sA, sB)

)
.

But that leads to a contradiction because k ∈ κ∗
1(sA, sB) and hence, by the definition of κ̄∗

1, we must
v2
(
κ̄∗
1(sA, sB), (sA, sB)

)
≥ v2

(
k, (sA, sB)

)
.
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We then define the SCC F ε as the following extension of F δ: for each (sA, sB) ∈ T̂1,

F ε(sA, sB) = F δ(sA, sB) ∪ {f ε
1 (sA, sB)}.

We now have the following result:

Proposition 1. There exists ε̄ > 0 such that the SCC F ε satisfies setwise dominance for

all ε ∈ (0, ε̄].

Proof. For any ā ∈ Ā and (sA, sB) ∈ T̂1, let u1

(
ā, (sA, sB)

)
denote agent 1’s utility when

the outcome ā is implemented at profile (sA, sB). Now, pick any (sA, sB), (s
′
A, s

′
B) ∈

T̂1. By the definition of F δ(s
′
A, s

′
B), agent 1’s monetary transfer is bounded above by

δx̄ in any outcome ā ∈ F δ(s
′
A, s

′
B). Since f(sA, sB) chooses agent 1’s best alterna-

tive at profile (sA, sB) and allocates the maximum monetary transfer of x̄ to agent 1,

we have u1

(
f(sA, sB), (sA, sB)

)
> u1

(
ā, (sA, sB)

)
+ (1 − δ)x̄/2, for all ā ∈ F δ(s

′
A, s

′
B).

Then, since agent 1’s utility function is continuous and f ε
1 (sA, sB) converges to f(sA, sB)

as ε → 0, there exists a positive number ε
(
(sA, sB), (s

′
A, s

′
B)
)
such that, for all ε ∈

(0, ε
(
(sA, sB), (s

′
A, s

′
B)
)
],

u1

(
f ε
1 (sA, sB), (sA, sB)

)
> u1

(
ā, (sA, sB)

)
,∀ā ∈ F δ(s

′

A, s
′

B). (8)

Let ε̄ ≡ min(sA,sB),(s
′
A,s

′
B)∈T̂1

ε
(
(sA, sB), (s

′
A, s

′
B)
)
> 0, which is well-defined because the

type space T̂1 is finite. Fix ε ∈ (0, ε̄]. We now argue that the SCC F ε satisfies setwise

dominance.

Since agent 2’s type plays no role in the example, it is sufficient to show that the

SCF f ε
1 ∈ HF ε is setwise dominant for agent 1. Fix (sA, sB), (s

′
A, s

′
B) ∈ T̂1 and f ∈ HF ε .

By construction, f(s
′
A, s

′
B) ∈ F ε(s

′
A, s

′
B) implies that either f(s

′
A, s

′
B) = f ε

1 (s
′
A, s

′
B) or

f(s
′
A, s

′
B) ∈ F δ(s

′
A, s

′
B).

Consider the case when f(s
′
A, s

′
B) = f ε

1 (s
′
A, s

′
B). Then

u1

(
f ε
1 (sA, sB), (sA, sB)

)
= (1− ε)

(
v1
(
κ̄∗
1(sA, sB), (sA, sB)

)
+ x̄

)
+

ε

2

∑
k∈{A,B}

αk1s
2
k

2
.

In contrast,

u1

(
f ε
1 (s

′

A, s
′

B), (sA, sB)
)
= (1−ε)

(
v1
(
κ̄∗
1(s

′

A, s
′

B), (sA, sB)
)
+x̄

)
+
ε

2

∑
k∈{A,B}

(
s
′

kαk1sk −
αk1(s

′

k)
2

2

)
.

By the definition of κ̄∗
1, we have v1

(
κ̄∗
1(sA, sB), (sA, sB)

)
≥ v1

(
κ̄∗
1(s

′
A, s

′
B), (sA, sB)

)
. More-
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over, for each k ∈ {A,B}, the expression s
′

kαk1sk − αk1(s
′

k)
2/2 is uniquely maximized at

s
′

k = sk, with the maximum value equal to αk1s
2
k/2. Hence, in this case,

u1

(
f ε
1 (sA, sB), (sA, sB)

)
≥ u1

(
f ε
1 (s

′

A, s
′

B), (sA, sB)
)
= u1

(
f(s

′

A, s
′

B), (sA, sB)
)
,

with a strict inequality if (s
′
A, s

′
B) ̸= (sA, sB). We can use (8) to obtain the same conclusion

in the other case, viz., f(s
′
A, s

′
B) ∈ F δ(s

′
A, s

′
B). This completes the argument.

It follows from our Theorem 2, that for all ε ≤ ε̄, the SCC F ε is implementable

in interim rationalizable strategies by a mechanism that satisfies the weak BRP. This

example exhibits a stark contrast with Jehiel and Moldovanu’s (2001) impossibility result

showing that no efficient SCFs are implementable in Bayesian equilibrium. To reiterate

our main theme, we overturn this negative result by exploiting the flexibility induced by

the correspondence as opposed to single-valued functions and by adopting rationalizability

rather than Bayesian equilibrium as the model of behavior in strategic settings. ⋄

Example 6. Next, we revisit Example 1 once again. The SCC F in that example satisfies

setwise independent dominance, as argued in Example 2. But notice that F is not convex-

valued. Thus, Theorem 3 does not apply here. Nevertheless, we now show that F is

implementable in rationalizable strategies using a finite mechanism, which is trivially

compact and satisfies the BRP. Hence, convex-valuedness of the SCC is not necessary

for implementation in rationalizable strategies using compact mechanisms with the BRP.

Consider the following mechanism Γ = ((Mi)i∈I , g), where Mi = {m1
i ,m

2
i , . . . ,m

K+1
i } for

each i = 1, 2 and the deterministic outcome function g(·) is given in the table below:

g(m) Agent 2

m1
2 m2

2 m3
2 m4

2 · · · mK−1
2 mK

2 mK+1
2

m1
1 a1 a1 aK−2 aK−3 · · · a2 aK−1 aK−1

m2
1 a2 a1 a1 aK−2 · · · a3 aK−1 aK−1

m3
1 a3 a2 a1 a1 · · · a4 aK−1 aK−1

Agent 1 m4
1 a4 a3 a2 a1 · · · a5 aK−1 aK−1

...
...

...
...

...
. . .

...
...

...

mK−1
1 a1 aK−2 aK−3 aK−4 · · · a1 aK−1 aK−1

mK
1 aK−1 aK−1 aK−1 aK−1 · · · aK−1 aK aK−1

mK+1
1 a1 a1 aK−2 aK−3 · · · a2 aK−1 aK

Assume that we choose qα sufficiently close to one. This means that agent 1 believes
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with sufficiently high probability that the state is α. Then, no message of agent 1 in

the mechanism Γ is eliminated. We elaborate on this argument further: for each k ∈
{1, . . . , K + 1}, mk

1 is a best response to the belief that agent 2 chooses mk
2 for sure.

Recall that agent 2 is informed of the state. In state α, no message of agent 2 in the

mechanism Γ is eliminated. Specifically, we argue as follows: for each k ∈ {1, . . . , K− 2},
mk

2 can be a best response to the belief that agent 1 chooses mk+1
1 for sure. In addition,

mK−1
2 can be a best response to the belief that agent 1 chooses m1

1 for sure; and for

k ∈ {K,K + 1}, mk
2 is a best response to the belief that agent 1 chooses mk

1 for sure.

Consider now state β. In that state, message mK
2 strictly dominates all messages

m1
2, . . . ,m

K−1
2 . Thus, in state β, agent 2 eliminates all messages m1

2, . . . ,m
K−1
2 in the first

round of deletion of never best responses. But for k ∈ {K,K + 1}, mk
2 is a best response

to the belief that agent 1 chooses mk
1 for sure.

Furthermore, since qα is high enough, agent 1 is unable to eliminate any message even

after agent 2’s first round of elimination (all messages except mK
2 and mK+1

2 in state β).29

It follows that no further eliminations can occur.

The preceding arguments show that SΓ
1 = M1, S

Γ
2 (tα) = M2, and SΓ

2 (tβ) = {mK
2 ,m

K+1
2 }.

Notice that if agent 1 plays the rationalizable message mK+1
1 , then any outcome in A can

be obtained in state α by an appropriate choice of rationalizable message by type tα of

agent 2 and any outcome in ak ∈ {aK−1, aK} can be obtained in state β if type tβ of

agent 2 plays the rationalizable message mk+1
2 . Moreover, as SΓ

2 (tβ) = {mK
2 ,m

K+1
2 }, it is

impossible to rationalize any outcome other than either aK−1 or aK in state β. Therefore,

while the SCC violates BIC – and a severe violation if K is large –, it easily follows that

the mechanism Γ implements the SCC F in interim rationalizable strategies. ⋄

8 Concluding Remarks

We conclude the paper with several remarks on extensions of our results.

Robust Implementation: A mechanism robustly implements the SCC in interim ra-

tionalizable strategies if the implementation succeeds for all type spaces (T̃i, πi)i∈I that

are consistent with the given payoff environment
(
A, {Ti, ui}i∈I

)
. In general, the ICR

strategies depend on the interim beliefs (πi)i∈I held by the agents. Robust implementa-

tion requires that, regardless of those interim beliefs, the set of SCFs achieved as interim

29Specifically, suppose qα ≥
(
u1(aK) − u1(aK−1)

)
/
(
u1(aK) + u1(a1) − 2u1(aK−1)

)
. Notice that the

expression on the right-hand side of the inequality is greater than 0.5 but less than 1. Then, for each
k ∈ {1, . . . ,K + 1}, mk

1 is a best response to the belief that agent 2 chooses mk
2 in state α and mK

2 in
state β.
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rationalizable outcomes coincides with the SCS generated by the SCC. Since the proofs

of Theorems 2 and 3 do not rely on the agents’ interim beliefs, it is easy to see that our

sufficiency results satisfy the requirements of robust implementation.30

Implementation in ε-ICR: For any ε > 0, the ε-interim correlated rationalizability

(ε-ICR) correspondence, defined as the largest fixed point of the operator that iteratively

eliminates never ε-best responses, is a weaker solution concept than ICR (Dekel et al.,

2006).31 We can strengthen Theorems 2 and 3 to obtain implementation in ε-ICR under

the same conditions. Indeed, since we have a finite set of types and the setwise (inde-

pendent) dominance condition requires strict incentives for truth-telling, the mechanisms

proposed to prove those results also achieve ε-ICR implementation for small values of ε.

Infinite Type Spaces: We are able to extend some of the results to infinite type spaces,

namely, a class of compact metric spaces. Specifically, we can show that a weaker version

of setwise IC is necessary for interim rationalizable implementation, where now the SCF

f ∈ HF providing the incentives to type ti of agent i to be truthful can vary with the type

of agent i. When there are only two agents (n = 2), the sufficiency result in Theorem

3 holds for all type spaces that are compact metric spaces. That sufficiency result also

extends to the case of n ≥ 3 under the assumption that HF ′ is compact and metrizable.

However, we are unable to prove the sufficiency result in Theorem 2 when the type space

is a compact metric space. The difficulty lies in showing that the mechanism constructed

to prove the theorem satisfies weak BRP. With finite types, an agent i can implement

her dominant SCF fi by announcing a real number that is less than 1 but greater than

the real numbers announced by the other agents. But if there are an infinite number of

types of the other agents, then it is possible that there exists some δ < 1 such that [δ, 1]

is in the support of the distribution of real numbers announced by the other agents. In

that case, agent i can keep increasing her chance of implementing fi by increasing her

number announcement but never want to announce 1 because of the discontinuity in the

mechanism.

30In contrast to the permissive conditions in our sufficiency results, robust implementation in ratio-
nalizable strategies of single-valued rules imposes strong ex-post incentive compatibility constraints; see
Bergemann and Morris (2009, 2011), Ollár and Penta (2017), and Kunimoto and Saran (2020).

31The ε-best response operator bε : S → S is defined similarly to the best response operator b in Section
3 except that bεi (S)[ti] includes all messages that are ε best responses, i.e., messages with expected payoffs
within ε of the best response.
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Appendix

We now provide the proofs of the results omitted from the main body of the paper.

Proof of Theorem 3 for the case of n = 2: Since F
′
satisfies setwise independent

dominance, for each i ∈ I, there exists fi ∈ HF ′ such that fi dominates all other SCFs in

HF ′ for agent i and is independent of the types of j ̸= i. The mechanism we propose below

utilizes the collection of such SCFs {fi}i∈I . Consider the mechanism Γ = ((Mi)i∈I , g),

where Mi = Ti ×HF ′ × {0, 1, 2} with a typical element mi = (m1
i ,m

2
i ,m

3
i ), for all i ∈ I,

and the outcome function g is defined as follows: for all m ∈ M ,

Rule 1: If m2
i = f and m3

i < 2, for all i ∈ I, then g(m) = f(m1).

Rule 2: If m2
1 ̸= m2

2 and m3
i < 2, for all i ∈ I, then

g(m)
m3

2

0 1

m3
1

0 f1(m
1) f2(m

1)

1 f2(m
1) f1(m

1)

Rule 3: In all other cases, there exists an i ∈ I such that m3
i = 2. Then the outcome is

determined as follows: Let Im ≡ {i ∈ I : m3
i = 2}.

g(m) =
1

|Im|
∑
i∈Im

fi(m
1).

We endow {0, 1, 2} with the discrete topology. Then, since Ti is finite, and hence

compact for all i ∈ I, and since HF ′ is compact, it follows that the mechanism Γ is

compact. The rest of the argument proceeds in five steps.

Step 1: The mechanism Γ is measurable.

Proof of Step 1: Pick any measurable subset E ⊆ ∆(A). We show that g−1(E) =

{m ∈ M : g(m) ∈ E} is a measurable subset of M . To do so, we partition g−1(E) into

the following finite number of subsets of M :

Let M1 denote the set of all m ∈ M such that m induces Rule 1 and the outcome g(m)

is in E. Recall from the proof of Theorem 2 that we introduced H̄ =
⋃

f∈H
F
′ {f

n} ⊆ Hn
F ′

and fn is a typical element of H̄. Also recall the function K : T × H̄ → ∆(A), which was

defined as follows: K(t, fn) = f(t), for all (t, fn) ∈ T × H̄. Finally, recall that K is a

Carathéodory function that is jointly measurable.
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Now, pick any m ∈ M1. Since m induces Rule 1, it follows that m2 ∈ H̄, m3 = {0, 1}n,
and g(m) = K(m1,m2). Hence,

M1 = K−1(E)× {0, 1}n.

Since K is jointly measurable, K−1(E) is a measurable subset of T × H̄, which in turn is

a measurable subset of T ×Hn
F ′ . Hence, M1 is a measurable subset of M .

Let M2.1 denote the set of all m ∈ M such that m induces Rule 2, m3
1 = m3

2, and the

outcome g(m) = f1(m
1) is in E. Since m induces Rule 2, we must have m2 ∈ Hn

F ′\H̄.

Moreover, m3
1 = m3

2 means that the profile m3 ∈ {(0, 0), (1, 1)}. Finally, since g(m) =

f1(m
1), the profile m1 is in f−1

1 (E). Hence,

M2.1 = f−1
1 (E)×

(
Hn

F ′\H̄
)
× {(0, 0), (1, 1)}.

Since f1 is measurable, f−1
1 (E) is a measurable subset of T . Moreover, Hn

F ′\H̄ is a

measurable subset of Hn
F ′ because H̄ is closed, and hence, a measurable subset of Hn

F ′ .

Hence, M2.1 is a measurable subset of M .

Let M2.2 denote the set of all m ∈ M such that m induces Rule 2, m3
1 ̸= m3

2, and the

outcome g(m) = f2(m
1) is in E. Since m induces Rule 2, we must have m2 ∈ Hn

F ′\H̄.

Moreover, m3
1 ̸= m3

2 means that the profile m3 ∈ {(0, 1), (1, 0)}. Finally, since g(m) =

f2(m
1), the profile m1 is in f−1

2 (E). Hence,

M2.2 = f−1
2 (E)×

(
Hn

F ′\H̄
)
× {(0, 1), (1, 0)}.

Since f2 is measurable, f−1
2 (E) is a measurable subset of T . Moreover, as already argued,

Hn
F ′ \ H̄ is a measurable subset of Hn

F ′ . Hence, M2.2 is a measurable subset of M .

Pick any i ∈ I and let M i,3 denote the set of message profiles m ∈ M such that m

induces Rule 3, Im = {i}, and the outcome g(m) = fi(m
1) is in E. Pick any m ∈ M i,3.

The profile m3 must be such that m3
j < 2, for j ̸= i, and m3

i = 2. The profile m2 is

unrestricted in the definition of Rule 3; hence, m2 ∈ Hn
F ′ . Finally, as g(m) = fi(m

1) ∈ E,

the profile m1 is in f−1
i (E). Thus, if i = 1, then M1,3 = f−1

1 (E) ×Hn
F ′ × {(2, 0), (2, 1)},

whereas if i = 2, then M2,3 = f−1
2 (E)×Hn

F ′ ×{(0, 2), (1, 2)}. Clearly, M i,3 is a measurable

subset of M , for all i ∈ I.

Let M3 denote the set of message profiles m ∈ M such that m induces Rule 3, Im = I,

and the outcome g(m) = (1/2)f1(m
1)+ (1/2)f2(m

1) ≡ fI(m
1) is in E. Pick any m ∈ M3.

The profile m3 must be such that m3
i = 2, for all i ∈ I. The profile m2 is unrestricted in
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the definition of Rule 3; hence, m2 ∈ Hn
F ′ . Finally, as g(m) = fI(m

1) ∈ E, the profile m1

is in f−1
I (E). Thus, M3 = f−1

I (E) ×Hn
F ′ × {(2, 2)}. Clearly, M3 is a measurable subset

of M .

Thus, g−1(E) = M1 ∪M2.1 ∪M2.2 ∪
⋃

i∈I M
i,3 ∪M3. Since g−1(E) is a finite union of

measurable sets, it is a measurable subset of M . ■

Step 2: Define the message correspondence profile S as follows: For all i ∈ I,

Si(ti) = {ti} ×HF ′ × {0, 1},∀ti ∈ Ti.

Then, S ≤ SΓ.

Proof of Step 2: It is sufficient to argue that S ≤ b(S). First, consider agent 1 of

type t1 ∈ T1. Pick any f
′ ∈ HF ′ and z ∈ {0, 1}. We prove that (t1, f

′
, z) ∈ b1(S).

Let σ2 : T2 → M2 be such that σ2(t2) = (t2, f1, z), for all t2 ∈ T2. Then consider

the probability measure λ1 ∈ ∆(T2 × M2) corresponding to the belief of agent 1 that

the type t2 is distributed according to π1(t2) and the agent 2 plays according to the

strategy σ2. Since σ2 is measurable, G(σ2) is a measurable subset of T2 × M2. By

definition, margT2
λ1 = π1(t2) and λ1

(
G(σ2)

)
= 1. Since G(σ2) ⊆ G(S2), it follows that

λ1

(
G(S2)

)
= 1.

Now, given the belief λ1, if agent 1 of type t1 reports (t1, f
′
, z), then either Rule 1

(when f
′
= f1) or Rule 2 (when f

′ ̸= f1) is applied at any (t2,m2) in the support of λ1

and the outcome is f1(t1, t2). (This is trivial when Rule 1 is applied; whereas, it follows

from the definition of Rule 2 because both agents are reporting the same integer z < 2.)

Thus, the expected payoff of agent 1 of type t1 when she reports (t1, f
′
, z) is U1(f1|t1).

Suppose agent 1 of type t1 deviates to somem1 = (t
′
1, f

′′
, z1) ∈ M1. On the one hand, if

f
′′
= f1, then either Rule 1 (when z1 < 2) or Rule 3 (when z1 = 2) is applied at any (t2,m2)

in the support of λ1 and the outcome is f1(t
′
1, t2). (This is trivial when Rule 1 is applied;

whereas, it follows from the definition of Rule 3 because agent 2 is reporting z < 2 whereas

agent 1 is reporting z1 = 2.) Hence, the expected payoff of agent 1 of type t1 equals

U1(f1; t
′
1|t1). By setwise independent dominance, we have U1(f1|t1) ≥ U1(f1; t

′
1|t1). On the

other hand, if f
′′ ̸= f1, then either Rule 2 (when z1 < 2) or Rule 3 (when z1 = 2) is applied

at any (t2,m2) in the support of λ1 and the outcome is either f1(t
′
1, t2) or f2(t

′
1, t2). (Notice

that since agent 2 is reporting z < 2, whenever Rule 3 is applied, the outcome is f1(t
′
1, t2).)

By setwise independent dominance, u1

(
f1(t1, t2), (t1, t2)

)
≥ u1

(
fj(t

′
1, t2), (t1, t2)

)
, for all

j ∈ I. Thus, even in this case, U1(f1|t1) is greater than or equal to the expected payoff

of agent 1 of type t1 when she deviates to (t
′
1, f

′′
, z1). Hence, agent 1 of type t1 cannot

improve by any deviation. Thus, (t1, f
′
, z) ∈ b1(S).
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Next, consider agent 2 of type t2 ∈ T2. Pick any f
′ ∈ HF ′ and z ∈ {0, 1}. We want

to prove that (t2, f
′
, z) ∈ b2(S). Let σ1 : T1 → M1 be such that σ1(t1) = (t1, f2, |z − 1|),

for all t1 ∈ T1. We can now essentially make the same argument for agent 2 as the one

we made for agent 1 to show that (t2, f
′
, z) ∈ b2(S).■

Step 3: (t
′
i, f, zi) ∈ SΓ

i (ti) ⇒ t
′
i = ti.

Proof of Step 3: Suppose not, i.e., there exists mi ≡ (t
′
i, f, zi) ∈ SΓ

i (ti) such that

t
′
i ̸= ti. Then there must exist a belief λi ∈ ∆(T−i × M−i) such that λi

(
G(SΓ

−i)
)
= 1,

margT−i
λi = πi(ti), and

mi ∈ arg max
m

′′
i ∈Mi

∫
T−i×M−i

ui

(
g(m

′′

i ,m−i), (ti, t−i)
)
dλi. (9)

Suppose that instead of mi, agent i of type ti were to report m
′
i = (ti, fi, z

′
i), where

z
′
i = 2. For agent j ̸= i, pick any (tj,mj) in the support of λi. Let us denote mj =

(t
′
j,m

2
j , zj).

First, suppose (mi,mj) induces Rule 1. Then it must be that m2
j = f , zj < 2,

and zi < 2. Hence, the outcome is f(t
′
i, t

′
j). Since z

′
i = 2, (m

′
i,mj) induces Rule 3,

and since zj < 2, the outcome is fi(ti, t
′
j). By setwise independent dominance, we have

ui

(
fi(ti, t

′
j), (ti, tj)

)
> ui

(
f(t

′
i, t

′
j), (ti, tj)

)
.

Second, suppose (mi,mj) induces Rule 2. Thenm2
j ̸= f , zj < 2, and zi < 2. Depending

on the values of zi and zj, the outcome g(mi,mj) is either fi(t
′
i, t

′
j) or fj(t

′
i, t

′
j). Rule 3

is induced by (m
′
i,mj) because z

′
i = 2. Then, as per Rule 3, g(m

′
i,mj) = fi(ti, t

′
j). By

setwise independent dominance, we have ui

(
fi(ti, t

′
j), (ti, tj)

)
> ui

(
g(mi,mj), (ti, tj)

)
.

Finally, suppose (mi,mj) induces Rule 3. There are three possibilities to consider:

1. zi = 2 and zj < 2. Then I(mi,mj) = {i}, and hence, g(mi,mj) = fi(t
′
i, t

′
j). Then,

(m
′
i,mj) also induces Rule 3 because z

′
i = 2. Since zj < 2, we have I(m′

i,mj)
=

{i}. Hence, g(m
′
i,mj) = fi(ti, t

′
j). By setwise independent dominance, we have

ui

(
fi(ti, t

′
j), (ti, tj)

)
> ui

(
fi(t

′
i, t

′
j), (ti, tj)

)
.

2. zi < 2 and zj = 2. Then I(mi,mj) = {j}, and hence, g(mi,mj) = fj(t
′
i, t

′
j). By setwise

independent dominance, we have ui

(
fi(ti, t

′
j), (ti, tj)

)
> ui

(
fj(t

′
i, t

′
j), (ti, tj)

)
. Hence,

ui

(
fi(ti, t

′

j), (ti, tj)
)
> ui

(
g(mi,mj), (ti, tj)

)
. (10)

Then, (m
′
i,mj) also induces Rule 3 because z

′
i = zj = 2. Since z

′
i = zj = 2, we have
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I(m′
i,mj)

= {i, j}. Hence,

g(m
′

i,mj) =
1

2
fi(ti, t

′

j) +
1

2
fj(ti, t

′

j).

Since fj is independent of agent i’s type, we have ui

(
fj(ti, t

′
j), (ti, tj)

)
= ui

(
fj(t

′
i, t

′
j), (ti, tj)

)
.

Hence,

ui

(
g(m

′

i,mj), (ti, tj)
)
=

1

2

(
ui

(
fi(ti, t

′

j), (ti, tj)
)
+ ui

(
fj(ti, t

′

j), (ti, tj)
))

=
1

2

(
ui

(
fi(ti, t

′

j), (ti, tj)
)
+ ui

(
fj(t

′

i, t
′

j), (ti, tj)
))

=
1

2

(
ui

(
fi(ti, t

′

j), (ti, tj)
)
+ ui

(
g(mi,mj), (ti, tj)

))
> ui

(
g(mi,mj), (ti, tj)

)
(∵ (10)).

3. zi = zj = 2. Then I(mi,mj) = {i, j}, and hence,

g(mi,mj) =
1

2

(
fi(t

′

i, t
′

j) + fj(t
′

i, t
′

j)
)
.

Then, (m
′
i,mj) again induces Rule 3 because z

′
i = zj = 2. We also have I(m′

i,mj)
=

{i, j}. Hence,
g(m

′

i,mj) =
1

2

(
fi(ti, t

′

j) + fj(ti, t
′

j)
)
.

Since fj is independent of agent i’s type, we have ui

(
fj(ti, t

′
j), (ti, tj)

)
= ui

(
fj(t

′
i, t

′
j), (ti, tj)

)
.

Also, we have ui

(
fi(ti, t

′
j), (ti, tj)

)
> ui

(
fi(t

′
i, t

′
j), (ti, tj)

)
because of setwise indepen-

dent dominance. Hence,

ui

(
g(m

′

i,mj), (ti, tj)
)
=

1

2

(
ui

(
fi(ti, t

′

j), (ti, tj)
)
+ ui

(
fj(ti, t

′

j), (ti, tj)
))

>
1

2

(
ui

(
fi(t

′

i, t
′

j), (ti, tj)
)
+ ui

(
fj(ti, t

′

j), (ti, tj)
))

=
1

2

(
ui

(
fi(t

′

i, t
′

j), (ti, tj)
)
+ ui

(
fj(t

′

i, t
′

j), (ti, tj)
))

= ui

(
g(mi,mj), (ti, tj)

)
.

It follows from the above arguments that ui

(
g(m

′
i,mj), (ti, tj)

)
> ui

(
g(mi,mj), (ti, tj)

)
,

for all (tj,mj) in the support of λi. However, this contradicts the hypothesis that mi is a

best response against λi, expressed in (9). ■

Step 4: The mechanism Γ satisfies the BRP.
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Proof of Step 4: Pick any i ∈ I, ti ∈ Ti, and λi ∈ ∆(Tj ×Mj) such that margTj
λj =

πi(ti). In Step 3, we have in fact shown that for type ti, reporting (ti, fi, 2) is strictly better

than reporting any (t
′
i, f, zi) such that t

′
i ̸= ti in every ex-post realization of (tj,mj) ∈

Tj×Mj. The same arguments can be repeated to show that for type ti, reporting (ti, fi, 2)

is weakly better than reporting any (ti, f, zi) in every ex-post realization of (tj,mj) ∈
Tj×Mj. Thus, (ti, fi, 2) is a best response for type ti against any λi such that margTj

λi =

πi(ti). ■

Step 5: The mechanism Γ implements F in interim rationalizable strategies.

Proof of Step 5: Pick any f ∈ HF ′ . Let σ be a strategy profile such that σi(ti) =

(ti, f, 0), for all i ∈ I. Then, we have σ ∈ Σ(SΓ) so that g(σ(t)) = f(t), for all t ∈ T .

This verifies the first requirement of implementation.

Next, pick any σ ∈ Σ(SΓ). Consider any t ∈ T and the corresponding message profile

σ(t) =
(
σ1(t), σ2(t), σ3(t)

)
. It follows from Step 3 that σ1(t) = t, for all t ∈ T . By

the construction of the mechanism, if either Rule 1 or 2 is applied at σ(t), then the

outcome g(σ(t)) = f(σ1(t)) = f(t), for some f ∈ HF ′ ; whereas if Rule 3 is applied at

σ(t), then the outcome g(σ(t)) is either equal to fi(σ
1(t)) = fi(t), for some i ∈ I, or

(1/2)f1(σ
1(t)) + (1/2)f2(σ

1(t)) = (1/2)f1(t) + (1/2)f2(t). Hence, in all cases, g(σ(t)) ∈
F

′
(t), where the inclusion in F

′
is due to the assumption that F

′
is convex-valued. So,

g ◦ σ is a selection of F
′
, i.e., g ◦ σ ∈ HF ′ . This verifies the second requirement of

implementation. ■

Steps 1 through 5 complete the proof of the theorem.

Proof of Lemma 2: By construction, the SCFs f̄ ε
b and f̃ ε

s that are defined by perturbing

the SCFs f̄ and f̃ , respectively, are elements of HF ε .

We begin with the buyer. Consider the SCF f̄ ε
b . Pick any vb, v

′

b ∈ Tb, vs ∈ Ts, and

f ∈ HF ε . There are four cases to consider.

Case 1: min{vb, v
′

b} ≥ vs

Then, we have

ub

(
f̄ ε
b (vb, vs), vb

)
= (1− ε)(vb − vs) + ε(v2b − v2b/2) = (1− ε)(vb − vs) + εv2b/2.

In contrast, there are two possibilities for f(v
′

b, vs):

• If f(v
′

b, vs) = (1− ε)f
′
(v

′

b, vs) + εf̂(v
′

b, vs), for some f
′ ∈ HF , then

ub

(
f(v

′

b, vs), vb
)
= (1−ε)(vb−z)+ε

(
v

′

bvb−(v
′

b)
2/2

)
≤ (1−ε)(vb−vs)+ε

(
v

′

bvb−(v
′

b)
2/2

)
,
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where the weak inequality follows because z ≥ vs. Now, since v
′

bvb − (v
′

b)
2/2 is

uniquely maximized at v
′

b = vb, we conclude that ub

(
f̄ ε
b (vb, vs), vb

)
≥ ub

(
f(v

′

b, vs), vb
)

with a strict inequality if v
′

b ̸= vb.

• If f(v
′

b, vs) = (1− ε)f
′
(v

′

b, vs) + εf̌(v
′

b, vs), for some f
′ ∈ HF , then

ub

(
f(v

′

b, vs), vb
)
= (1− ε)(vb − z) + ε

(
(1− vs)vb − (1− v2s/2)

)
≤ (1− ε)(vb − vs) + ε

(
(1− vs)vb − (1− v2s/2)

)
(∵ z ≥ vs)

< (1− ε)(vb − vs) + εv2b/2,

where the last strict inequality follows because, if vb = 1 and vs = 0, we have

(1− vs)vb − (1− v2s/2) = 0 < 1/2 = v2b/2

while, if either vb ̸= 1 or vs ̸= 0, we have

(1− vs)vb − (1− v2s/2) < 1− (1− v2s/2) = v2s/2 ≤ v2b/2.

Thus, (1−vs)vb−(1−v2s/2) < v2b/2, for all vb and vs. We conclude that ub

(
f̄ ε
b (vb, vs), vb

)
>

ub

(
f(v

′

b, vs), vb
)
.

Case 2: vb ≥ vs > v
′

b

In this case, we have ub

(
f̄ ε
b (vb, vs), vb

)
= (1 − ε)(vb − vs) + εv2b/2. In contrast, there

are two possibilities for f(v
′

b, vs):

• If f(v
′

b, vs) = (1− ε)f
′
(v

′

b, vs) + εf̂(v
′

b, vs), for some f
′ ∈ HF , then

ub

(
f(v

′

b, vs), vb
)
= ε

(
v

′

bvb − (v
′

b)
2/2

)
< εv2b/2. (∵ v

′

b ̸= vb)

So, we conclude that ub

(
f̄ ε
b (vb, vs), vb

)
> ub

(
f(v

′

b, vs), vb
)
.

• If f(v
′

b, vs) = (1− ε)f
′
(v

′

b, vs) + εf̌(v
′

b, vs), for some f
′ ∈ HF , then

ub

(
f(v

′

b, vs), vb
)
= ε

(
(1− vs)vb − (1− v2s/2)

)
< εv2b/2,

where the strict inequality follows, as already argued in Case 1. We again conclude

that ub

(
f̄ ε
b (vb, vs), vb

)
> ub

(
f(v

′

b, vs), vb
)
.

Case 3: v
′

b ≥ vs > vb
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In this case, we have ub

(
f̄ ε
b (vb, vs), vb

)
= εv2b/2. In contrast, there are two possibilities

for f(v
′

b, vs):

• If f(v
′

b, vs) = (1− ε)f
′
(v

′

b, vs) + εf̂(v
′

b, vs), for some f
′ ∈ HF , then

ub

(
f(v

′

b, vs), vb
)

= (1− ε)(vb − z) + ε
(
v

′

bvb − (v
′

b)
2/2

)
≤ (1− ε)(vb − vs) + ε

(
v

′

bvb − (v
′

b)
2/2

)
(∵ z ≥ vs)

< εv2b/2 (∵ vs > vb and v
′

b ̸= vb).

So, we conclude that ub

(
f̄ ε
b (vb, vs), vb

)
> ub

(
f(v

′

b, vs), vb
)
.

• If f(v
′

b, vs) = (1− ε)f
′
(v

′

b, vs) + εf̌(v
′

b, vs), for some f
′ ∈ HF , then

ub

(
f(v

′

b, vs), vb
)
= (1− ε)(vb − z) + ε

(
(1− vs)vb − (1− v2s/2)

)
≤ (1− ε)(vb − vs) + ε

(
(1− vs)vb − (1− v2s/2)

)
(∵ z ≥ vs)

< (1− ε)(vb − vs) + εv2b/2 (as already argued in Case 1)

< εv2b/2 (∵ vs > vb).

We again conclude that ub

(
f̄ ε
b (vb, vs), vb

)
> ub

(
f(v

′

b, vs), vb
)
.

Case 4: vs > max{vb, v
′

b}

In this case, we have ub

(
f̄ ε
b (vb, vs), vb

)
= εv2b/2. In contrast, there are two possibilities

for f(v
′

b, vs):

• If f(v
′

b, vs) = (1− ε)f
′
(v

′

b, vs) + εf̂(v
′

b, vs), for some f
′ ∈ HF , then

ub

(
f(v

′

b, vs), vb
)
= ε

(
v

′

bvb − (v
′

b)
2/2

)
≤ εv2b/2,

with a strict inequality whenever v
′

b ̸= vb. So, we conclude that ub

(
f̄ ε
b (vb, vs), vb

)
≥

ub

(
f(v

′

b, vs), vb
)
with a strict inequality whenever v

′

b ̸= vb.

• If f(v
′

b, vs) = (1− ε)f
′
(v

′

b, vs) + εf̌(v
′

b, vs), then

ub

(
f(v

′

b, vs), vb
)
= ε

(
(1− vs)vb − (1− v2s/2)

)
< εv2b/2,

as already argued in Case 1. We conclude that ub

(
f̄ ε
b (vb, vs), vb

)
> ub

(
f(v

′

b, vs), vb
)
.

Now, consider the seller and the SCF f̃ ε
s . Pick any vs, v

′
s ∈ Ts, vb ∈ Tb, and f ∈ HF ε .

There are four cases to consider.
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Case I: vb ≥ max{vs, v
′
s}

In this case, we have

us

(
f̃ ε
s (vb, vs), vs

)
= (1− ε)(vb − vs) + ε

(
1− v2s/2− (1− vs)vs

)
= (1− ε)(vb − vs) + ε

(
1− vs + v2s/2

)
.

In contrast, there are two possibilities for f(vb, v
′
s):

• If f(vb, v
′
s) = (1− ε)f

′
(vb, v

′
s) + εf̂(vb, v

′
s), for some f

′ ∈ HF , then

us

(
f(vb, v

′

s), vs
)
= (1− ε)(z − vs) + ε

(
v2b/2− vbvs

)
≤ (1− ε)(vb − vs) + ε

(
v2b/2− vbvs

)
(∵ z ≤ vb)

< (1− ε)(vb − vs) + ε
(
1− vs + v2s/2

)
,

where the last strict inequality follows because, for all values of vb and vs, we have

v2b/2− vbvs =
1

2
(vb − vs)

2 − 1

2
v2s

<
1

2
(vb − vs)

2 +
1

2

≤ 1

2
(1− vs)

2 +
1

2
= (1− vs) + v2s/2.

Hence, we conclude that us

(
f̃ ε
s (vb, vs), vs

)
> us

(
f(vb, v

′
s), vs

)
.

• If f(vb, v
′
s) = (1− ε)f

′
(vb, v

′
s) + εf̌(vb, v

′
s), for some f

′ ∈ HF , then

us

(
f(vb, v

′

s), vs
)
= (1− ε)(z − vs) + ε

(
1− (v

′

s)
2/2− (1− v

′

s)vs
)

≤ (1− ε)(vb − vs) + ε
(
1− vs + v

′

svs − (v
′

s)
2/2

)
(∵ z ≤ vb)

≤ (1− ε)(vb − vs) + ε
(
1− vs + v2s/2

)
,

where the last inequality is strict if v
′
s ̸= vs because v

′
svs − (v

′
s)

2/2 is uniquely

maximized at v
′
s = vs. We conclude that us

(
f̃ ε
s (vb, vs), vs

)
≥ us

(
f(vb, v

′
s), vs

)
with a

strict inequality if v
′
s ̸= vs.

Case II: v
′
s > vb ≥ vs

In this case, we have us

(
f̃ ε
s (vb, vs), vs

)
= (1−ε)(vb−vs)+ε

(
1−vs+v2s/2

)
. In contrast,

there are two possibilities for f(vb, v
′
s):
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• If f(vb, v
′
s) = (1− ε)f

′
(vb, v

′
s) + εf̂(vb, v

′
s), for some f

′ ∈ HF , then

us

(
f(vb, v

′

s), vs
)
= ε

(
v2b/2− vbvs

)
< ε

(
1− vs + v2s/2

)
,

as already argued in Case I. So, we conclude that us

(
f̃ ε
s (vb, vs), vs

)
> us

(
f(vb, v

′
s), vs

)
.

• If f(vb, v
′
s) = (1− ε)f

′
(vb, v

′
s) + εf̌(vb, v

′
s), for some f

′ ∈ HF , then

us

(
f(vb, v

′

s), vs
)
= ε

(
1− (v

′

s)
2/2− (1− v

′

s)vs
)
< ε

(
1− vs + v2s/2

)
where the strict inequality follows because v

′
s ̸= vs. We again conclude that us

(
f̃ ε
s (vb, vs), vs

)
>

us

(
f(vb, v

′
s), vs

)
.

Case III: vs > vb ≥ v
′
s

In this case, we have us

(
f̃ ε
s (vb, vs), vs

)
= ε

(
1 − vs + v2s/2

)
. In contrast, there are two

possibilities for f(vb, v
′
s):

• If f(vb, v
′
s) = (1− ε)f

′
(vb, v

′
s) + εf̂(vb, v

′
s), for some f

′ ∈ HF , then

us

(
f(vb, v

′

s), vs
)
= (1− ε)(z − vs) + ε

(
v2b/2− vbvs

)
≤ (1− ε)(vb − vs) + ε

(
v2b/2− vbvs

)
(∵ z ≤ vb)

< (1− ε)(vb − vs) + ε
(
1− vs + v2s/2

)
(as already argued in Case I)

< ε
(
1− vs + v2s/2

)
(∵ vs > vb).

So, we conclude that us

(
f̃ ε
s (vb, vs), vs

)
> us

(
f(vb, v

′
s), vs

)
.

• If f(vb, v
′
s) = (1− ε)f

′
(vb, v

′
s) + εf̌(vb, v

′
s), for some f

′ ∈ HF , then

us

(
f(vb, v

′

s), vs
)
= (1− ε)(z − vs) + ε

(
1− (v

′

s)
2/2− (1− v

′

s)vs
)

< (1− ε)(vb − vs) + ε
(
1− vs + v2s/2

)
(∵ z ≤ vb and v

′
s ̸= vs)

< ε
(
1− vs + v2s/2

)
(∵ vs > vb).

We again conclude that us

(
f̃ ε
s (vb, vs), vs

)
> us

(
f(vb, v

′
s), vs

)
.

Case IV: min{vs, v
′
s} > vb

In this case, we have us

(
f̃ ε
s (vb, vs), vs

)
= ε

(
1 − vs + v2s/2

)
. In contrast, there are two

possibilities for f(vb, v
′
s):
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• If f(vb, v
′
s) = (1− ε)f

′
(vb, v

′
s) + εf̂(vb, v

′
s), for some f

′ ∈ HF , then

us

(
f(vb, v

′

s), vs
)
= ε

(
v2b/2− vbvs

)
< ε

(
1− vs + v2s/2

)
,

where the strict inequality follows, as already argued in Case I. So, we conclude that

us

(
f̃ ε
s (vb, vs), vs

)
> us

(
f(vb, v

′
s), vs

)
.

• If f(vb, v
′
s) = (1− ε)f

′
(vb, v

′
s) + εf̌(vb, v

′
s), for some f

′ ∈ HF , then

us

(
f(vb, v

′

s), vs
)
= ε

(
1− (v

′

s)
2/2− (1− v

′

s)vs
)
≤ ε

(
1− vs + v2s/2

)
with a strict inequality whenever v

′
s ̸= vs. We conclude that us

(
f̃ ε
s (vb, vs), vs

)
≥

us

(
f(vb, v

′
s), vs

)
with a strict inequality if v

′
s ̸= vs.

This completes the proof of the lemma.
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