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Abstract. A decision maker acquires and processes information about an uncer-

tain state of nature by an inquiry, which is a procedure prescribing a sequence of

questions to be asked before a decision is reached. The decision maker bears a cog-

nitive cost proportional to the length of inquiry. We characterize optimal inquiries

and uncover two behavioural implications: attention span reduction (the decision

maker favours shorter inquiries as cognitive cost rises by focusing on a subset of

decisions and assigns them different priorities) and confirmation bias (the decision

maker seeks evidence through inquiry to confirm her prior guess of which decisions

are optimal).
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1. Introduction

Inquiry is one of the most frequent and important modes of information processing

in our daily life. Examples are abundant. A doctor visit usually consists of a series

of questions from reception to actual consultation of the patient’s conditions. A

crime investigation typically consists of a series of questions and processing their

answers. Inquiry about product characteristics and payment schemes is an important

aspect of shopping experiences. In all these examples, information to be gathered can

be potentially overwhelming, whereas cognitive resources available to process it are

limited and precious. In this paper, we propose a theory of optimal inquiry to process

information that takes costly cognition seriously, with novel behavioral implications

on attention span and confirmation bias.

We formalize an inquiry as the decision maker’s strategy of asking questions about

the relevant state of nature. It starts with an initial question and a contingent plan

that decides which question to ask depending on the answers to the previous ones. As

in the standard Bayesian paradigm, the answers to the inquiry hence determine the

information set that guides the decision maker’s final decision. Unlike the standard

framework, however, our framework explicitly postulates a cognitive cost associated

with the length of the inquiry.

Our framework provides an explicit and intuitive procedure for information process-

ing. It has the same backbone motivation as what gave rise to the rational-inattention

literature (surveyed in Maćkowiak et al., 2023). The main departure of our approach

from this literature is that we focus on the dynamic process of inquiry with an endoge-

nous choice of the optimal procedure. This allows us to obtain behavioral implications

that are of dynamic nature, such as an endogenous preference for a shorter attention

span and a prioritization of certain salient decisions before considering others.

Moreover, our cost of inquiry is directly associated with the cognitive activity of

the decision maker, namely, the acts of asking questions and processing their answers,

and thus it is independent of the decision maker’s beliefs. For example, the cost

of performing a blood-sugar test and processing its result (in terms of physical or

cognitive resources) is independent of the patient’s medical history. In contrast, in

the standard rational inattention model, the cost is a function of the decision maker’s
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prior beliefs, which can be unrealistic is certain applications and has a conceptual

problem if applied to game situations (Denti et al., 2022).

Our main result is a characterization of optimal inquiry. To obtain this result, we

overcome a technical challenge: our set of possible inquiries is an infinite set, with

some of its elements (the inquiry tree) discrete and others (the information partition)

continuous. This is a nonstandard problem that does not admit the standard first-

order approach. Instead, we reformulate the task of finding an optimal inquiry as a

simple finite optimization problem. Our characterization relies on the following two

principles for optimality of an inquiry.

First, we show that an optimal inquiry is dynamically consistent in the following

sense. Consider a decision maker who processes information according to an inquiry,

and suppose that she has asked a few questions but not yet ready for a final deci-

sion. At this point, she could stop and reconsider her inquiry strategy, taking all the

information she already acquired so far as given. Dynamic consistency requires it be

optimal to stick to the original plan. We prove this property for any optimal inquiry

in our framework.

Second, we use two well-known results from the information theory—the Kraft

inequality (Kraft, 1949) and the Huffman coding (Huffman, 1952)—to characterize

the set of payoff-relevant outcomes that can be implemented by an optimal inquiry.

Any such outcome consists of two parts—form and content. The form includes a

consideration set, which is a subset of feasible decisions that can be implemented in

that outcome, and a length profile, which specifies how many questions are asked to

reach each decision in the consideration set. The content consists of an information

partition, which describes the posterior information about the state upon reaching

each decision in the consideration set. We show that the form determines the content:

given the optimal consideration set and the length profile, the boundaries of the

optimal information partition are determined by simple indifference conditions.

However, the content is also informative about the form: given the information

partition, the optimal length profile is determined by the Huffman coding. This also

implies a negative correlation between the ex ante likelihood of choosing a decision

and the inquiry length that leads to that decision. That is, more likely decisions are

prioritized and considered before other decisions. To determine the optimal form,
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optimal inquiry trades off the accuracy of information processed, expressed as the

finesse of the resulting information partition, against the cognitive resources needed to

achieve it, measured by the number of questions to be asked. We draw two behavioural

implications from this trade-off.

First we consider implications related to the form of optimal inquiry, and define

attention span as the expected number of questions the DM asks before reaching a

decision. We show that the DM optimally reduces her attention span as the cognitive

cost rises. This is achieved either by dropping some decision out of the consideration

set, or by prioritising some decisions over others, or both. At the extreme, when the

cost is very low, all feasible options are considered, and it takes as many questions

as needed to distinguish them all. On the other hand, when the cost is very high, no

information is processed, and the decision is chosen according to the prior belief.

Second, we consider implications to the content of the optimal inquiry. We show

that optimal inquiry always exhibits confirmation bias, in the following sense. The

decision maker optimally seeks information to confirm her prevalent hypothesis of

which decisions are optimal. This formalizes the informal definition of confirmation

bias in psychology such as Nickerson (1998): “It refers usually to unwitting selectivity

in the acquisition and use of evidence.” We uncover an economic mechanism for the

confirmation bias to occur optimally. Because of the cognitive cost, the decision

maker is willing to make suboptimal choices that are associated with fewer questions.

At the same time, ex ante more likely choices are optimally prioritized with fewer

questions to confirm them. These two forces together lead to the confirmation bias

endogenously.

Finally, we use our model to study two phenomena, misdiagnosis in primary health

care and wrongful convictions in criminal investigation, where the literature has ar-

gued that cognitive factors are important for biases in the inquiries with dire conse-

quences. Through the lens of our model, we show that the pressure to end inquiry

early can lead to a biased process. In the case of health care, we show features such as

“premature diagnosis” and “search satisficing” can be explained by our confirmation

bias. In the case of criminal justice, we show that a “tunnel vision” that leads to

higher rate of wrongful conviction can be linked to higher cognitive cost.
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Related Literature. This paper makes a conceptual and methodological contribution

to three strands of literature.

The first strand includes papers that formulate and study decision making with cog-

nitive limitations. A prominent approach in this literature is the rational inattention

approach, initiated by Sims (2003). It treats limited cognition as costly information

acquisition. The cost of acquiring information is postulated as an ex-ante cost func-

tion, typically modelled as entropy reduction relative to the prior belief, as in Matějka

and McKay (2015) and Jung et al. (2019). Morris and Strack (2019) introduce an

alternative ex-ante cost function motivated by the classic sequential sampling prob-

lem of Wald (1945). Bloedel and Zhong (2021) provide general conditions for ex-ante

cost functions to arise from dynamic models of information acquisition, and Pomatto

et al. (2023) characterize ex-ante cost functions that satisfy several economically in-

terpretable axioms.

Unlike this literature, we focus on a concrete but intuitive dynamic model where

the cost of information is directly associated with asking questions. The dynamic

nature of the process and the sequencing of questions matters and has behavioral

implications. Moreover, our dynamic consistency result shows the decision-maker’s

commitment to an information acquisition strategy—which is a typical assumption

in the above literature—has no power in our setting.

Cognitive limitations of a decision maker have also been modeled without reducing

them to an ex-ante cost function. Wilson (2014), following the approach of Cover and

Thomas (2006), formulates the decision-making process as a finite automaton. The

main result in Wilson (2014) is a dynamic-consistency type of result called multi-self

consistency. The cognitive constraint is modelled via an exogenously given number

of memory states that capture the decision-maker’s memory capacity. In contrast,

we prove the dynamic consistency in the conventional sense and endogenize the size

of the optimal inquiry via a cognitive cost. Cremer et al. (2007) propose a model

of organizational language using codes, with the main trade-off between the use of

broader codes, which are easier to process, and the precision of such codes. While

our model shares a similar trade-off, our model of inquiry is dynamic in nature with

implications on the timing of information processing.
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The second strand of literature includes papers that studies behavioural biases with

cognitive frictions. These papers range from axiomatic to constrained optimization

approaches. For consideration set, the former include Masatlioglu et al. (2012) and

Manzini and Mariotti (2014) and the latter includes Caplin et al. (2019). While our

approach is closer to the latter, we connect the two approaches by showing that our

optimal inquiry satisfies certain desirable axioms, such as dynamic consistency and

the attention-filter property of Masatlioglu et al. (2012).

The third strand rationalizes confirmation bias. The wisdom from the literature

is that frictions in information processing tend to cause the decision-maker to favour

signals that confirm the prior belief. Wilson’s (2014) model generates this form of

confirmation bias based on limited memory. However, in her model the decision-maker

does not seek evidence but passively processes it. In contrast, our decision-maker

actively seeks evidence to confirm her more likely options. Jehiel and Steiner (2020)

obtain confirmation bias in a model where the decision maker chooses whether or

not to continue to receive more signals, but can only remember the last one received.

Confirmation bias here means that the agent is more likely to stop when seeing a

signal in favour of the prior.

In the rational-inattention literature, Steiner et al. (2017) obtain a “status quo

bias” in a dynamic rational-inattention model where the decision-maker tend to stick

to prior decisions. Nimark and Sundaresan (2019) also obtain a “confirmation effect,”

meaning that the decision-maker adopts signal structures in favour of the prior belief.

All these papers argue that certain implications from the proposed models can be

interpreted as confirmation bias, and emphasize the importance of the prior belief. In

contrast, we define confirmation bias formally as the decision-maker seeking evidence

to confirm ex ante most likely guesses about which decision is optimal, a definition

that is based not on priors but on observable choices.

2. The model

2.1. Primitives. A decision-maker (DM) needs to process information about an un-

certain state of nature before taking an action. The DM’s utility u(a, x) depends on
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her action, a ∈ A, and an uncertain state, x ∈ X.1 The set of actions A is finite and

contains at least two actions. The set of states X is a convex subset of RL, L ∈ N.

State x is distributed according to a probability distribution G that is absolutely

continuous and has full support on X. We will use notation P[·] and E[·] to denote

the probability and expectation under G, respectively.

We say that action a dominates another action a′ if u(a, x) ≥ u(a′, x) for all x ∈ X
and strictly so for some x ∈ X. Throughout the paper, we assume:

(A1) For all a ∈ A, u(a, x) is continuous in x, and E[u(a, x)] is finite.

(A2) For all a, a′ ∈ A, a does not dominate a′.

(A3) For all a′, a′′ ∈ A and any constant c ∈ R, the set {x ∈ X :u(a′, x)−u(a′′, x) =

c} has empty interior.

Assumption (A1) is needed for the DM’s optimization problem to be well defined.

Assumption (A2) is introduced to simplify exposition and it precludes existence of

dominated actions. Assumption (A3) is a generalization of the condition of “thin”

indifference curves between each pair of actions. It means that the utility curves of

any two actions are almost never parallel to each other. Many usual utility functions

satisfy this assumption. For example, (A3) is satisfied for the following two classes of

utility functions.

(U1) The Lancaster model of product characteristics: X ⊂ RL and, for each a ∈ A,

there is (αa, βa) ∈ R× RL such that u(a, x) = βa · x+ αa.

(U2) A tracking problem: A ⊂ RL and X ⊂ RL, and u(a, x) is the negative distance

between a and x, that is, u(a, x) = −||a−x||p+αa, where || · ||p is the Lp-norm

on RL and αa ∈ R for each a ∈ A.

There are two special cases of (U1) that we will use for illustrations. The first

case has L = 1 and hence the utilities depend only on a one-dimensional state. The

second case has A = {a1, ..., aL} and u(x, al) = xl for l = 1, ..., L, where the values

xl are distributed independently. This is the case where the DM chooses between L

independently valued options.

1Variable x can be interpreted as a profile of observables or signals with quantitative information

about the true underlying state of nature (which may be ultimately unobservable) that the DM can

ask questions about.
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2.2. Inquiries. When confronted with a state x, the DM does not observe x directly.

Instead, she relies on a series of questions to process information about x. Formally,

we consider an inquiry as a series of true/false questions formulated as propositions.

A proposition is a statement about x in the form “x ∈ Y ” that can be true or false.

Denote the collections of Borel subsets of X by B(X), and let us identify a proposition

with a set Y ∈ B(X). We say that the proposition is true if x ∈ Y and it is false if

x 6∈ Y .

An inquiry Q = 〈N, T, σ, χ, d〉 is a finite binary tree. Non-terminal nodes of the

tree are associated with propositions, and terminal nodes are associated with actions.

Specifically:

• a finite set N of nodes contains a root no and a nonempty set T of terminal

nodes (note that the tree may consist of a single terminal node, i.e., N = T =

{no});
• each non-terminal node n ∈ N − T is followed by exactly two edges labelled

true and false;

• successor function σ for the tree assigns to each non-terminal node n ∈ N −T
and each edge e = {true, false} a child σ(n, e) ∈ N of node n following edge e;

• proposition mapping χ assigns to each non-terminal node n ∈ N −T a propo-

sition χ(n) ∈ B(X);

• decision rule d assigns to each terminal node t ∈ T an action dt ∈ A.

We denote the set of all possible inquiries given the set of states X by QX .

Given a state of nature x ∈ X, an inquiry Q = 〈N, T, σ, χ, d〉 begins with the

proposition χ(no) at the root of the inquiry tree, and it ends whenever a terminal

node is reached. It proceeds by following the inquiry tree. At a non-terminal node

n ∈ N − T , the inquiry asks whether it is true that x ∈ χ(n). If true, then the

inquiry proceeds to the node σ(n, true); otherwise, the inquiry proceeds to the node

σ(n, false). When a terminal node t ∈ T is reached, the DM takes action dt.

2.3. Information. The inquiry transforms a quantitative statement, say, “x ≥ r”,

into a qualitative one, say, “yes” or “no”, eventually leading to a qualitative recom-

mendation of which action to choose. The underlying assumption is that the DM

cannot directly digest quantitative information. Knowing that his blood sugar level

is 6 mmol/L means little to a medical lay person, but knowing that it is below the
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level that would be labelled as “normal” is very useful as it suggests a decision of not

going to the GP. Indeed, our theory is aimed at the optimal thresholds for what it

means by “normal” (do nothing), “concerning” (see the doctor soon), or “emergency”

(call an ambulance).

Formally, the inquiry categorizes states of nature into subsets through a series of

questions. When arriving any (terminal or non-terminal) node n ∈ N , the DM’s

information about the state is summarized by a subset of states, denoted by In(Q).

That is, given the answers to the questions in the previous nodes, the DM can infer

that the true state belongs to In(Q), recursively defined as follows. Clearly, at the

root, all states are possible, and hence Ino(Q) = X. Given a non-terminal node

n ∈ N −T , let ntrue and nfalse be the successors of n after “true” and “false” answers

to the proposition χ(n), respectively. Then we define

Intrue(Q) = In(Q) ∩ χ(n) and Infalse(Q) = In(Q) ∩
(
X − χ(n)

)
. (1)

Now, for each x ∈ X, the DM will reach some terminal node t at the end of the

inquiry. Thus, the set It(Q) consists of all states under which terminal node t is

reached, and we call it a category of states induced by Q. Note that the collection of

categories {It(Q) : t ∈ T} forms a partition of X. It is the information partition at

the end of the inquiry.

As zero probability events do not matter for payoffs, we adopt and use throughout

the paper a measure based notion of partition that disregards sets of measure zero

under G. Specifically:

Definition 2.1. A collection of disjoined sets {X1, X2, ..., XK} is a partition of X if

P(Xk) > 0 for each k, and
∑

k P(Xk) = P(X) = 1.

Note that a partition according to the above definition does not have to be ex-

haustive; it is sufficient for the partition to cover a measure-one set. We adopt this

definition to avoid discussions about measure-zero sets that have no rendering on the

DM’s expected payoffs.

2.4. Payoffs. We assume that asking questions is costly. Let the DM’s cognitive cost

of any single question be λ > 0. Given an inquiry Q, let `t(Q) be the length of the

path from no to t in the tree, that is, `t(Q) is the number of questions asked to reach
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terminal node t. Then, the ex-post cost of inquiry at terminal node t is equal to

λ`t(Q).

We can now formulate the DM’s optimization problem. Given an inquiry Q and a

state x, if the inquiry reaches the terminal node t for the given x, the DM’s ex-post

payoff net of the cognitive cost is

u(dt, x)− λ`t(Q).

Because each terminal node t ∈ T is reached whenever the state x is in It(Q), the

DM’s ex ante expected utility from inquiry Q is

W (Q;λ) =
∑
t∈T

∫
x∈It(Q)

(
u(dt, x)− λ`t(Q)

)
G(dx). (2)

We are interested in the optimal inquiry that solves

max
Q∈QX

W (Q;λ). (3)

The maximization problem (3) resembles the problem studied in the rational inat-

tention literature (e.g., Matějka and McKay 2015, Jung et al. 2019, and Caplin et al.

2019). But this resemblance is more in formality than in substance. While from

information theory the average length of investigation defined here is closely related

to entropy and the rational-inattention approach is motivated by measuring cognitive

cost as number of questions, the standard approach measures the cost of information

in terms of entropy reduction relative to the prior belief. In contrast, in our model

the primitive cost does not depend on the prior—it is simply the asking (and the

implied act of processing the answer) itself is costly. Moreover, in contrast to the

usual setup in which the model is silent about the corresponding procedure that the

DM uses to arrive at her decision, in our model there is an explicit connection be-

tween the solution to (3) and the procedure used. In particular, we may say that the

realized process is simpler for a decision if fewer questions are needed to arrive at

that decision, that is, ` is smaller.

2.5. Example. We illustrate our setting and, later, the results by the following ex-

ample. The example is based on the case study in Croskerry et al. (2013), which

illustrates how cognitive factors affect misdiagnosis in healthcare. A detailed descrip-

tion and the implications from our theory to misdiagnosis will be given are Section

6.1. This example is based on the following stylized situation of a doctor visit. A
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x

0 1θ 1− θ

u(a1, x) u(a3, x)

u(a2, x)
0

θ

Figure 1. The doctor’s utility from actions aR, aL, and aI .

patient comes to a family doctor about a common symptom but may in fact have a

rare condition that requires further investigations to avoid serious health implications.

The severity of the issue is summarized by a state x ∈ [0, 1]. The doctor has three

possible actions: to send the patient home to rest (labeled as action a1), to prescribe

the usual medication for the common symptom (labeled as action a2), or to refer the

patient for further investigation (labeled as action a3). Depending on the severity of

the issue, x, the doctor’s gross payoffs from these actions are given by the quadratic

loss relative to the respective ideal states 0, 1/2, and 1:

U(a1, x) = −x2, U(a2, x) = (1
4
− θ)− (1

2
− x)2, U(a3, x) = −(1− x)2,

where θ ∈ (0, 1/2) is a parameter capturing the importance of the extreme actions a1

and a3 relative to the middle action a2. In other words, a1 would be ideal for rather

healthy patients, i.e., patients with small x’s, a2 for x’s around the middle, and a3

for severe conditions. For convenience, fix a default action, say, a2, and consider the

utility u(x, a) from each action a ∈ {a1, a2, a3} as compared to the default action,

u(x, a) = U(x, a)− U(x, a2). Thus,

u(a1, x) = θ − x, u(a2, x) = 0, u(a3, x) = θ − (1− x),

as shown in Figure 1.

The doctor is initially uninformed about x. Note that the doctor does not need to

discover x precisely, she only needs to find out enough to choose a treatment. To learn

about x, the doctor asks several yes/no questions according to an inquiry that starts

with an initial question, specifies follow-up questions depending on earlier answers,
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Is x > 1/2?

a3

true

a1

false

Is x < θ?

a1

true

Is x > 1− θ?

a3

true

a2

false

false

Is x > θ/2?

Is x > 1− θ?

a3

true

Is x < θ?

a1

true

a2

false

false

true

a1

false

A. B. C.

Figure 2. Examples of inquiries

and prescribes actions. Each question is formulated as a proposition “x ∈ Y ” with

Y ⊂ [0, 1], which can be true or false. Examples of inquiries are shown in Figure 2.

A cost λ of a question is interpreted as the opportunity cost of time and cognitive

effort spent on a patient that could have been spent to diagnose and treat other

patients. Indeed, in Croskerry et al. (2013) this cognitive cost is regarded as an

important factor that affects the doctor’s investigation and the resulting decision.

If the doctor reaches a decision a after asking ` questions, the resulting payoff is

thus u(a, x) − λ`a. For example, in the inquiry B (Figure 2), the cost is λ if a1 is

reached, and it is 2λ if either a2 or a3 are reached. The doctor would like to choose

an inquiry that maximizes her expected utility net of the cost of inquiry, given his

prior knowledge, modelled as a prior distribution over x.

As a benchmark, suppose that there is no cost of asking questions, λ = 0. Then,

as apparent from Figure 1, it is optimal to choose a1 when x is below θ, to choose

a2 when x is between θ and 1− θ, and to choose a3 when x is above 1− θ. Inquires

B and C (Figure 2) both achieve this outcome. However, when questions are costly,

λ > 0, the two inquiries differ significantly in terms of the cognitive cost: when action

a1 is taken, it takes only one question in inquiry B but it may take three in inquiry

C; when action a2 is taken, it takes two questions in B but three in C. Moreover,

once we take the cognitive cost into account, the doctor may find it optimal to trade

off some accuracy of information about x to reduce the cost of inquiry; in other

words, the optimal information partition would be endogenously determined by the
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cognitive cost. As we shall see later, because of these considerations inquiries B and

C in Figure 2 are neither equivalent to each other nor optimal.

3. Optimal Inquiries

We first establish two principles of optimality of inquiries. We show that optimal

inquiry is dynamically consistent. We also show that an inquiry can be summarized

by its payoff-relevant outcome, and we then characterize the outcomes of optimal

inquiries. Based on these principles, we will express the task of finding an optimal

inquiry as a simple finite optimization problem, and analyze the properties of its

solution.

3.1. Dynamic Consistency. We show that it makes no difference whether the DM

commits to an optimal inquiry ex ante or she is free to update her strategy at any

interim stage, and hence, the inquiry is not only ex ante, but also sequentially optimal.

We use the following notion of dynamic consistency. Let Q = 〈N, T, σ, χ, d〉 ∈ QX
be an inquiry. Consider a node n ∈ N . At that node, the DM infers that the state is

in In(Q). Observe that every possible play after reaching n is itself an inquiry, whose

initial set of states is In(Q). Let us refer to it as a sub-inquiry at node n ∈ N . The

set of all possible sub-inquiries at n given information In(Q) is QIn(Q). Denote by Qn

the specific sub-inquiry at n that prescribes to play according to the original inquiry

Q.

Suppose that the DM initially follows inquiry Q but, upon reaching node n, she

reevaluates her strategy: whether to follow the original plan Qn or to deviate to an-

other sub-inquiry Q̂ ∈ QIn(Q). Let Wn(Q̂;λ) be the DM’s expected payoff conditional

on reaching node n if she chooses sub-inquiry Q̂ upon arrival to n. We say that the

original inquiry Q is dynamically consistent if no deviation is beneficial at any node.

Definition 3.1. An inquiry Q = 〈N, T, σ, χ, d〉 is dynamically consistent if, for each

node n ∈ N ,

Wn(Qn;λ) = max
Q̂∈QIn(Q)

Wn(Q̂;λ). (4)

Note that dynamic consistency implies that the DM behaves in a sequentially op-

timal way at each terminal node as well. Specifically, the DM chooses an action that

maximizes her expected payoff given the information at that node. That is, if Q is
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dynamically consistent, then, for each terminal node t ∈ T , the action dt must be a

solution of

max
a∈A

∫
x∈It(Q)

u(a, x)G(dx|It(Q)). (5)

We have the following theorem.

Theorem 3.1. Every optimal inquiry is dynamically consistent.

The theorem is proved by the typical argument for dynamic consistency. At any

node n, the proof shows the following: if there is a sub-inquiry that is superior to

the original one, then one can modify the original inquiry by plugging in the superior

sub-inquiry after node n and obtain a strictly higher ex ante payoff. Crucial to this

argument, however, is the fact that at any node n, the cognitive cost paid for the

questions asked to arrive at n is sunk because of the additive-cost structure.2

Theorem 3.1 demonstrates the procedural rationality of the optimal inquiry, a

property that cannot be discussed without the explicit formulation of the decision-

making process. Moreover, as we shall see later, although the optimal inquiry features

certain “biases” from the perspective of a model without the cognitive cost, these

biases are not driven by inconsistent behavior between different stages of the decision

process, they are an inevitable part of the optimal response to the cognitive cost.

3.2. Outcomes. Here we show that it suffices to describe an optimal inquiry by its

payoff-relevant outcome. The outcome consists of two parts: the form and the con-

tent. The form consists of a consideration set—which is a subset of decisions that can

be implemented in that outcome—and a length profile—which specifies how many

questions are asked to reach each decision in the consideration set. The content

consists of a collection of categories that forms an information partition, which de-

scribes the posterior information about the state upon reaching each decision in the

consideration set.

We begin by observing that if an inquiry is optimal, then every node must be

reached with positive probability. Indeed, if there was a node n that is only reached

with probability zero, then, in some predecessor node n′, the proposition χ(n′) or its

2For example, in the model where the ex-ante cost of inquiry is proportional to the longest path

in the tree, at any interim node n the cost is not sunk, and, thus, dynamic consistency may not

hold.
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complement would have had measure zero, so the associated costly question would

have been redundant.

Lemma 3.1. If an inquiry Q = 〈N, T, σ, χ, d〉 is optimal, then every node n ∈ N is

reached with positive probability.

Next, we observe that an optimal inquiry cannot induce the same action in two or

more terminal nodes. Indeed, if it was the case, there would have been no need to

distinguish between these terminal nodes, so the number of costly questions in the

inquiry could be reduced. For example, in inquiry C (Figure 2), action a1 is chosen

after a single question when x ∈ [0, θ/2] and after three questions when x ∈ (θ/2, θ).

Let us merge these conditions into a single proposition, x < θ. Asking whether x < θ

first, and choosing a1 if true, and otherwise asking the remaining question, whether

x > 1 − θ, leads us to inquiry B. Inquiry B chooses each action on the same subset

of states as inquiry C, but asks fewer questions. This observation leads us to the

following property of optimal inquiry.

Lemma 3.2. If an inquiry Q = 〈N, T, σ, χ, d〉 is optimal, then dt 6= dt′ for all pairs

of distinct terminal nodes t, t′ ∈ T .

An immediate implication of Lemma 3.2 is that each terminal node corresponds to

a unique action in A. In what follows, we will identify terminal nodes with actions

they induce. Specifically, let D(Q) be the set of actions induced in inquiry Q. We will

refer to D(Q) as the consideration set, and to actions in D(Q) as decisions. The set

D(Q) can be a proper subset of A, with the interpretation that the DM will process

information in a way that would lead her only to consider a strict subset of all feasible

actions. For each decision a ∈ D(Q), let `a(Q) denote the length of inquiry leading

to the terminal node where a is chosen, and let Ia(Q) denote the information set

or the category induced by Q in that terminal node. Let `(Q) = {`a(Q)}a∈A and

I(Q) = {Ia(Q)}a∈A. We will refer to the triple (D(Q), `(Q), I(Q)) as the outcome

profile induced by Q, and hence (D(Q), `(Q)) describes the form of the inquiry Q and

I(Q) describes the content. Note that the form of an inquiry is discrete in nature

while the content is continuous.

Note that actions in A−D(Q) are never chosen; for every action a ∈ A−D(Q) we

use the notation `a(Q) = ∅ and Ia(Q) = ∅. Since under the inquiry Q, a decision a
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with a shorter inquiry length grasps the DM’s attention first before another a′ with

a longer length, we may say that the DM prioritizes a decision a over another a′ if

`a(Q) < `a′(Q).

For illustration, consider inquiries in Figure 2:

Inquiry A’s outcome: D = {a1, a3}, ` = (1,∅, 1), I = {[0, 1/2],∅, (1/2, 1]}.
Inquiry B’s outcome: D = {a1, a2, a3}, ` = (1, 2, 2), I = {[0, θ), [θ, 1− θ], (1− θ, 1]}.

Inquiry C has the same action a1 in two different terminal nodes, and thus cannot

be represented this way. Moreover, by Lemma 3.2, inquiry C cannot be optimal. In

fact, this example also shows that the subtlety needed for the proof of Lemma 3.2.

Indeed, the two terminal nodes for which the same action, in this case a1, is taken,

occurs at different branches of the inquiry tree. Thus, to show that the inquiry C

is suboptimal, we construct another inquiry (namely, inquiry B) which leads to the

same information partition but with the categories for the two terminal nodes with

action a1 combined into one single category, and with all the inquiry shorter than the

corresponding ones in inquiry C.

This construction is based on a more general principle that leads to the following

characterization of inquiry outcomes. Let D ⊆ A, let ` = (`a)a∈A ∈ (N ∪ {∅})|A|

be a length profile, and let I be a partition of X. Denote by Z the set of such

triples (D, `, I). We say that an outcome profile (D, `, I) ∈ Z is implementable if

there exists an inquiry Q ∈ QX that induces this outcome profile, that is, (D, `, I) =

(D(Q), `(Q), I(Q)). The following lemma characterizes implementable outcomes.

Lemma 3.3. An outcome profile (D, `, I) ∈ Z is implementable if and only if∑
d∈D

2−`d = 1. (6)

Equality (6) follows from the Kraft inequality in information theory that charac-

terizes the path lengths of binary trees. Here we have equality instead of inequal-

ity because in our inquiry trees each non-terminal node has precisely two outgoing

branches.

Lemma 3.3 implies that the set of feasible outcomes only depends on the form

of an inquiry, that is, the consideration set D and the length profile `, but it does

not depend on the content, that is, the information partition. In other words, the
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lemma shows that for any given form (D, `) that satisfies (6) and any given content I

with |D| non-empty categories, we can construct an inquiry with the corresponding

outcome. However, as we shall see later, not every information partition is optimal,

and that the form and the content are interdependent.

To illustrate this lemma, let us return to our example in Section 2.5. There are only

three actions in the example. Thus, only three length profiles for D = {a1, a2, a3}
satisfy equality (6), namely, ` = (1, 2, 2) (see inquiry B in Figure 2), ` = (2, 1, 2), and

` = (2, 2, 1). If we increase the number of actions to four, so D = {a1, a2, a3, a4},
then there will be 13 length profiles that satisfy (6), namely, the uniform profile,

(2, 2, 2, 2), and 12 distinct permutations of the extreme profile (1, 2, 3, 3). This set

of length profiles increases exponentially with the size of D. However, later on we

develop optimal conditions with which we can identify a smaller candidate set.

Lemmas 3.1–3.2 lead us to a key observation. An outcome (D, `, I) captures all we

need to know to evaluate the DM’s expected payoff of an inquiry that leads to that

outcome. Indeed, suppose that two different inquiries Q and Q′ implement the same

outcome (D, `, I). Then, by (2), we have

W (Q;λ) = W (Q′;λ) =
∑
d∈D

∫
x∈Id

(
u(d, x)− λ`d

)
G(dx). (7)

Moreover, Lemma 3.3 implies that for any outcome (D, `, I) that satisfies (6) there

exists an inquiry with that outcome.

Thus, without loss of generality, an inquiry can be equivalently represented by its

outcome (D, `, I). An outcome of an optimal inquiry will be called optimal outcome.

3.3. Optimal Inquiries. We have shown an inquiry can be summarized by its out-

come (D, `, I). Moreover, Lemma 3.3 shows that the information partition I does

not affect whether or not an outcome profile if implementable. This characterization

allows us to solve the optimal inquiry problem in two stages. We first fix an arbitrary

form (D, `) that satisfies (6), and solve for the optimal content I = I∗(D, `). Then,

we maximize over all possible forms of (D, `)’s.

In the first stage, taking (D, `) as given, we find an information partition I∗(D, `)

that maximizes the DM’s expected utility. Specifically, let I∗(D, `) = {I∗d(D, `)}d∈A,
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x

0 1θ + λ 1− θ

u(a1, x)− λ
u(a3, x)− 2λ

u(a2, x)− 2λ
−2λ

θ − λ

Figure 3. Determination of I∗ from ` = (1, 2, 2)

where

I∗d(D, `) =


{
x ∈ X : u(d, x)− λ`d > maxa∈D−{d} u(a, x)− λ`a

}
, d ∈ D,

∅, d ∈ A−D.
(8)

That is, for each decision d that can be chosen, so d ∈ D, I∗d(D, `) is the set of states

where action d is the unique best-response action among all actions in D when the

DM takes into account the cost of inquiry associated with each action. Note that

I∗(D, `) is a partition of X according to Definition 2.1, because, by assumption (A3),

the set
(
X −

⋃
d∈D I

∗
d(D, `)

)
has measure zero.

We have the following lemma.

Lemma 3.4. If (D, `, I) is an optimal outcome, then I is identical to I∗(D, `) up to

a measure zero set.

The key observation to understand this lemma is that I∗(D, `) is the optimal infor-

mation partition given the form, (D, `), as the DM chooses the unique best-response

action for each state x ∈ X, except for a measure zero of states. Indeed, given (D, `),

the “effective” utility for the DM by choosing action d is now u(d, x) − λ`d, when

taking the cognitive cost into account.

Lemma 3.4 is essential to solving the optimal inquiry. As mentioned earlier, the

outcomes of an inquiry include both a continuous element I and discrete element

(D, `). Lemma 3.4 shows that of the optimal content I is determined by the form

(D, `) through I∗(D, `). It also generates candidate optimal inquiries effectively. For
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example, it immediately implies that Inquiry B in Figure 2 is suboptimal. Indeed,

Inquiry B has the partition

Ia1 = [0, θ), Ia2 = [θ, 1− θ], Ia3 = (1− θ, 1],

as shown in Figure 1. But, given the length profile is ` = (1, 2, 2) with the associated

cost λ of each question, the DM can do strictly better by using the partition

I∗a1
= (0, θ + λ), I∗a2

= (θ + λ, 1− θ), I∗a3
= (1− θ, 1), (9)

as shown in Figure 3. Indeed, on the interval (θ, θ + λ), the DM optimally chooses

decision a1, even though a2 would have been a better decision absent cognitive cost.

This is because a1 needs one less question to ask and, thus, saves λ, while u(x, a2)−
u(x, a1) < λ for any state x in that interval.

As a consequence of Lemma 3.4, the maximization problem (3) can now be reduced

to the choice of the form, (D, `). Let F∗ be the set of all forms (D, `) with D ⊆ A and

` satisfying (6). The DM chooses a form (D, `) ∈ F∗, and the outcome is determined

by (D, `, I∗(D, `)). By Lemmas 3.2–3.4, we obtain the following characterization of

optimal inquiries.

Theorem 3.2. An inquiry Q is a solution of (3) if and only if the pair (D(Q), `(Q))

is a solution of

max
(D,`)∈F∗

∑
d∈D

∫
x∈I∗d (D,`)

(
u(d, x)− λ`d

)
G(dx). (10)

Because F∗ is a finite set, and the expected utility is bounded for each d ∈ D by

assumption (A1), we establish the existence of optimal inquiry.

Corollary 3.1. An optimal inquiry exists.

Another straightforward implication of Theorem 3.2 is that the optimal inquiry

satisfies a minimal rationality property: the independence of irrelevant alternatives

principle. This property is also known in the literature as “attention filter” (Masatli-

oglu et al., 2012). It is defined as follows. Suppose that DM’s consideration set D

is a strict subset of A. Then, the attention filter property requires that, for any a

smaller action set A′ ⊂ A that contains D, the optimal consideration set is still D.

This property holds under optimal inquiry.
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separate {{Id2 , Id4}, Id1} from Id3

separate {Id2 , Id4} from Id1

separate Id2 from Id4

Id2 Id4

Id1

Id3 separate {Id2 , Id4} from {Id1 , Id3}

separate Id2 from Id4

Id1 Id4

separate Id1 from Id3

Id1 Id3

(a) ` = (2, 3, 1, 3) (b) ` = (2, 2, 2, 2)

Figure 4. Huffman coding with |D| = 4 and P(Id3) > P(Id1) >

P(Id2) > P(Id4)

Corollary 3.2. If (D, `, I) is an optimal outcome for action set A, then it is also an

optimal outcome for each action set A′ such that D ⊆ A′ ( A.

Although F∗ is a finite set, as mentioned earlier, it can be a relatively large set.

However, there is an additional optimality condition that helps determine the optimal

length profile more efficiently, and it also helps characterize its behaviour. Indeed,

while Lemma 3.4 characterizes the optimal categories for a given length profile, one

can also look for optimality conditions for the length profile for given categories.

Specifically, given a partition {Id}d∈D, the optimal ` must minimize the average length

with respect to the distribution such that `d occurring with probability P(Id) and

subject to the constraint (6). This is a well-known problem in information theory, and

the solution is described by the algorithm called Huffman coding. Here we show how

the algorithm works for |D| = 4. The generalization to arbitrary D is straightforward.

We refer to, e.g., Thomas and Cover (2006), Section 5.6, for formal details.

Consider D = {d1, d2, d3, d4} with the following probability ranking of the decisions:

P(Id3) > P(Id1) > P(Id2) > P(Id4). (11)

Specifically, let

P(Id1) = 0.25, P(Id2) = 0.2, P(Id3) = 0.4, P(Id4) = 0.15.

In stage t = 0, let us define p0
d = P(Id) for each d ∈ D, and order the decisions

according to their probabilities: p0
d3

= 0.4 > p0
d1

= 0.25 > p0
d2

= 0.2 > p0
d4

= 0.15.
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We then merge the last two, {d2, d4}, and treat the pair as a single decision whose

probability is p1
{d2,d4} = 0.2 + 0.15 = 0.35. The other decisions and their probabilities

stay the same: p1
d1

= p0
d1

and p1
d3

= p0
d3

. In stage t = 1, we reorder the decisions of

stage t = 0 according to their probabilities: p1
{d3} = 0.4 > p1

{d2,d4} = 0.35 > p1
{d1} =

0.25. We then merge the last two, {{d2, d4}, {d1}}, and treat the set as a single

decision with probability p2
{{d2,d4},{d1}} = 0.35 + 0.25 = 0.6. In stage t = 2, again, we

reorder the decisions of stage t = 1: p2
{{d2,d4},{d1}} = 0.6 > p2

{d3} = 0.4. We then merge

the remaining decisions to obtain {{{d2, d4}, {d1}}, {d3}}. Finally, we construct the

inquiry tree by unraveling the nested set {{{d2, d4}, {d1}}, {d3}} from the top layer

down, as shown in Figure 4(a). The length profile for this tree is ` = (2, 3, 1, 3).

If we consider the same initial probability ranking of the decisions (11) but different

probabilities,

P(Id1) = 0.25, P(Id2) = 0.2, P(Id3) = 0.37, P(Id4) = 0.18,

then the Huffman coding procedure yields a different inquiry tree, with length profile

` = (2, 2, 2, 2), as shown in Figure 4(b). In fact, as follows from the next proposition,

` = (2, 3, 1, 3) and ` = (2, 2, 2, 2) are the only length profiles that can be obtained

given the probability ranking (11).

We now show that for any candidate consideration set D, the optimal length profile

` is determined by the partition I. Moreover, decisions that take longer to reach are

less likely to be chosen.

Proposition 3.1. If (D, `, I) is an optimal outcome, then:

(a) ` is obtained from the Huffman coding w.r.t. the distribution {P(Id)}d∈D;

(b) for all d, d′ ∈ D, if P(Id) > P(Id′), then `d ≤ `d′.

Proposition 3.1 (b) highlights a negative correlation between the ex ante probability

of a decision and the inquiry length to reach that decision. It allows us to simplify the

solution of problem (10), but reducing the set of candidate outcomes (D, `, I∗(D, `)).

Indeed, as illustrated by the above example with D = {d1, d2, d3, d4} and probability

ranking of decisions (11), out of 13 feasible length profiles that satisfy (6), only two

are consistent with (11), namely, ` = (2, 3, 1, 3) and ` = (2, 2, 2, 2).

Proposition 3.1(a) is particularly useful to determine optimal ` for λ small. Indeed,

for λ sufficiently small, the optimal length profile is determined by the information
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I∗a1
I∗a3

I∗a2

0 1

x̄0
1

0.35

x̄0
2 = x̄2

0.65

x̄1

0.35 + λ 0 0.036 0.1

D = {a1, a2, a3}

` = (1, 2, 2)

D = {a1, a3}

` = (1,∅, 1)

D = {a2}

` = (∅, 0,∅)

λ

(a) Optimal information partitions (b) Optimal (D, `) as λ increases

Figure 5. Optimal inquiry for θ = 0.35 as λ increases

partition I0 = {I0
a}a∈A that is optimal under standard Bayesian analysis with zero

cost, λ = 0. Specifically, when the DM learns the state x for free, she simply chooses

the best action for each x ∈ X. That is, for each a ∈ A,

I0
a =

{
x ∈ X : u(x, d) > max

a′∈A−{a}
u(x, a′)

}
.

As λ increases, the information partition is continuously adjusted according to I∗(D, `)

given by (8). However, as long as λ is small enough, the optimal consideration set re-

mains D = A, and the optimal length profile remains the same as the one determined

by the Huffman coding for λ = 0.

For illustration, we return to the example in Section 2.5 with A = {a1, a2, a3} and

utility functions given by Figure 1, and the parameter θ = 0.35. When λ = 0, we

have D = A and P(I0
a1

) = P(I0
a3

) = 0.35 and P(I0
a3

) = 0.3. The optimal information

partition for λ = 0 is shown in Figure 5(a), where x̄0
1 and x̄0

2 denote the thresholds

between the partition elements. Using the Huffman coding, we obtain length profiles

(1, 2, 2) and, by symmetry, (2, 2, 1). Let us fix ` = (2, 2, 1).

When λ ∈ (0, 0.036), the same (D, `) remain optimal, but optimal information

partition I∗(D, `) is adjusted to take into account the cost, namely, it is given by

(9). The optimal information partition for such λ is shown in Figure 5(a), where x̄1

and x̄2 denote the thresholds between the partition elements. It can be seen that

the category I∗a1
where a1 is chosen expands as λ increases. This expansion reflects

the general principle to resolve the key trade-off in our setting. On the one hand,

the DM likes the categories to match with the benchmark partition I0 to achieve

higher utilities. On the other hand, the DM likes to have shorter inquiry lengths in

expected terms. As λ increases, the latter becomes more important, and the DM

optimally adjusts her categories to shorten the average inquiry length. Indeed, as I∗a1
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(a) λ < 0.01 and ` = (1, 2, 2) (b) λ > 0.01 and ` = (2, 1, 2)

Figure 6. Optimal information partitions for D = {a1, a2, a3} and θ = 0.335.

is associated with length 1 and others with length 2, expanding I∗a1
leads to shorter

expected inquiry length.

For λ higher we have a similar effect but at the extensive margin by changing

the consideration set. That is, for λ ∈ (0.036, 0.1), the optimal D becomes {a1, a3},
and a2 is no longer considered. As a result, at λ = 0.036, the category I∗a1

expands

discontinuously, from (0, 0.35 +λ) to (0, 0.5), with a discrete jump of average inquiry

length to a lower level, because of the change of the optimal consideration set.

Lastly, for λ > 0.1, it is optimal for the DM not to ask any questions, and simply

choose the ex-ante optimal decision a2. Figure 5(b) shows how the optimal pair (D, `)

changes as λ increases.

Curiously, there can also be changes to optimal information partition due to changes

in the optimal length profile alone, while the consideration set remains the same. To

illustrate this, consider the same example, but now with θ = 0.335. In this case, for

λ < 0.043, optimal D = A. As before, for λ very small, an optimal length profile

is (1, 2, 2), and the optimal information partition is shown in Figure 6(a). However,

in this case for λ > 0.01, the optimal length profile changes to (2, 1, 2), and the

optimal information partition becomes as shown in Figure 6(b). This curious switch

illustrates the aforementioned principle that the DM likes to shorten average inquiry

as the cognitive cost rises. Indeed, as λ increases, the expected inquiry length of the

length profile (2, 1, 2) with the associated category I∗ decreases faster than that of

(1, 2, 2), because with (2, 1, 2) the expansion of I∗a2
happens on both sides while with

(1, 2, 2) on one side. As a result, the increasing importance of shorter inquiry length

prompts the DM to switch to (2, 1, 2) for λ’s sufficiently high.

These two examples show that, as the cognitive cost rises, the DM respond by

either expand the category with the shortest inquiry length (as in the left panel of

Figure 5), or by dropping some decisions out of consideration altogether (as in the
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left panel of Figure 5 for higher λ’s). Note that, consistent with Proposition 3.1, in

the former case the expanded category is also the one with higher probability, and

hence this expansion leads to lower average inquiry length, so as the latter case. In

the next section we discuss this effect more generally.

4. Attention Span

Our model of inquiry can be interpreted as an attention strategy, whereby the DM

focuses on various decisions during her inquiry process. With this interpretation, a

natural question is then how cognitive cost affects the DM’s attention span, defined as

how long she would concentrate on the task of gathering information before making

a decision. Formally, we measure attention span in our framework as the expected

inquiry length given by

¯̀(D, `, I) =
∑
d∈D

`dP(Id). (12)

Importantly for our purpose, it captures whether there is a lot of probability weight

on a few decisions with short inquiry length, or whether this weight is more spread

out among many decisions. A smaller ¯̀(D, `, I) means a shorter attention span.

In the extreme, the DM has no attention span at all when she chooses a single

decision without asking any questions, in which case we have ¯̀(D, `, I) = 0. The

opposite extreme occurs when the lengths are all equal and the probabilities spread

out. Given an outcome (D, `, I), we say that the length profile ` is uniform if it

assigns the same length to all decisions in D, so `d = `d′ for all d, d′ ∈ D. In other

words, the inquiry outcome is uniform if the same number of questions is asked for all

states of nature. Note that this can only happen if |D| = 2k for some k ∈ {0, 1, ...}.
Since under |D| = 2k it is always feasible to set all lengths equal to k, k is also an

upper bound for the expected inquiry length for an optimal inquiry. In other words,

in any optimal inquiry with |D| = 2k, we have ¯̀(D, `, I) ≤ k, and this upper bound

is achieved if and only if the length profile is uniform.

Our key result in this section is that, under optimal inquiry, a higher cognitive cost

shortens the DM’s attention span. Specifically, we show that the expected inquiry

length decreases with λ, and strictly so when the optimal inquiry is non-uniform.

Since the expected length may not be differentiable w.r.t. λ, we use the following

notion of strict monotonicity. A function is strictly increasing (decreasing) locally
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at λ if there exists an interval [λ1, λ2] with λ1 < λ2 and λ ∈ [λ1, λ2] such that the

function is strictly increasing (decreasing) on [λ1, λ2].

Theorem 4.1. Given λ, let (Dλ, `λ, Iλ) be an optimal outcome. The average inquiry

length ¯̀(Dλ, `λ, Iλ) is decreasing in λ. Moreover, it is strictly decreasing locally at λ

whenever `λ is not uniform.

Theorem 4.1 shows that higher cognitive cost always shortens the attention span,

and strictly so as long as the optimal inquiry length is not uniform. The intuition for

Theorem 4.1 is based on the following trade-off that the optimal inquiry resolves. On

the one hand, to achieve a high (expected) utility from actions, it needs to minimize

the mismatch between its category for the action and the set of states for which the

action is ex post optimal; on the other hand, it needs to minimize the expected length

of inquiry. As the cognitive cost increases, the latter motive becomes more important,

and optimal inquiry shifts probabilities toward categories with shorter inquiries at the

expense of more mismatches.

This preference for shorter inquiries generates a “bias” if we compare the informa-

tion partition thus generated to the ones that would be used by a Bayesian DM under

zero cognitive cost. We call this effect confirmation bias. The bias is endogenously

determined by the cost and the utility function. As shown in Figure 6, in case of

λ < 0.01 the bias favors action a1 by expanding the set of states where a1 is chosen

(at the detriment of a2), but for λ > 0.01 it favors action a2 (at the detriment of both

a1 and a3).

As mentioned earlier, this bias is generated by the motive to decrease the expected

inquiry length, and this can be achieved by adjusting the inquiry either through the

form or through the content. The content affects the intensive margin, and the DM

can increase the probability of choosing decisions with shorter inquiry length. The

form affects the extensive margin, and the DM can simply drop certain actions from

the consideration set and in this way the overall inquiry length may be reduced. The

former factor is addressed in detail in the next section. In the next subsection, we

analyze the latter, namely how optimal consideration set is determined.

4.1. Optimal Consideration Sets. In our setting, a consideration set can be re-

garded as a set of actions that the DM deems “cognitively viable”, and any action
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outside this set is simply ignored in the decision-making process, even though it might

be ex post optimal. One important factor that determines which actions are viable

is the underlying preferences. Specifically, it is useful to distinguish two actions only

if they produce sufficiently different payoffs in different states of nature. In contrast,

if two actions are similar, it will not be worthwhile to differentiate them. Formally,

let δ(a′, a′′) measure how close actions a′ and a′′ are in the payoff space:

δ(a′, a′′) = sup
x∈X
|u(a′, x)− u(a′′, x)|.

The following result shows that a consideration set will optimally drop one of the two

similar actions.

Proposition 4.1. If actions a and a′ are such that δ(a′, a′′) < λ, then at most one

of them will be in the optimal consideration set.

Next, we show that when the cognitive cost is small enough, then all actions are

optimally considered, and when the cognitive cost is large enough, then the DM asks

no questions and chooses the same action in all states of nature.

Proposition 4.2. There exist two thresholds λ2 > λ1 > 0 such that for all λ < λ1,

the optimal consideration set is Dλ = A; and for all λ > λ2, the optimal consideration

set is a singleton, |Dλ| = 1, and ¯̀(Zλ) = 0.

It is tempting to generalize Proposition 4.2 by conjecturing that, as λ increases, the

optimal consideration set monotonically shrinks in the set inclusion order. However,

this is not true in general. To illustrate this, consider the example in Section 2.5 with

A = {a1, a2, a3}, parameter θ ∈ (0, 1/2) that captures the preference for extreme

actions a1 and a3 relative to middle action a2, and utilities given by Figure 1.

Figure 7 shows how the optimal consideration set depends on the cost λ and the

preference parameter θ. We point out three features of the optimal inquiry that may

be of interest. First, the optimal consideration sets can be disjoint: for a fixed λ

that is relatively high (say, for λ = 0.1), as θ increases, the optimal D changes from

{a2} to {a1, a3}. In words, preferences can affect the “cognitive viability” faced by

the DM, which can change in a discontinuous way. Second, the optimal consideration

sets can change by multiple actions at a time: for a fixed θ that is relatively low (say,

for θ = 0.2), as λ increases, the optimal D changes from {a1, a2, a3} to {a2}. Thus,
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Figure 7. Optimal consideration sets

for two DM’s with exactly the same preference, a small difference of cognitive cost

can make one DM to consider all actions while making the other to consider only

one. Third, an option can be phased out and then phased back in. For a given θ

that is close to 1/3, say, for θ = 0.335, the optimal consideration set changes from

{a1, a2, a3} to {a1, a3} to {a2}, so action a2 is dropped, but then reintroduced.

4.2. Example with Independent Values. In the above example where the state

is of one-dimensional, there is no natural sense of how to rank the actions under

assumption (A2). However, there is a natural ranking in environments where the

values of the actions are independently distributed. Here we study how this ranking

affects the optimal consideration set.

Consider the model where X = RL and A = {a1, ..., aL}, with

u(al, x) = xl for all l = 1, ..., L. (13)

Assume that the values x1, ..., xL are independently distributed. Specifically, each xl

has a distribution Gl, and G(x) = ΠL
l=1Gl(xl). We have the following result.

Proposition 4.3. Suppose that G1 �FOSD G2 �FOSD · · · �FOSD GL. Then there

exists K ∈ {1, ..., L} such that D = {a1, ..., aK} is the optimal consideration set.

According to Proposition 4.3, when the actions are ranked by the first-order sto-

chastic dominance, an action can be in the optimal consideration set only if all the

higher-ranked actions are in there. Moreover, if an action al is not in the consider-

ation set, the DM will ask no questions about its value (xl), nor about values of all
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Figure 8. Optimal consideration set and length profile

the lower-ranked actions. That is, the DM will only spend cognitive resources on the

dimensions that she deems most likely to be optimal from the ex ante perspective.

To illustrate Proposition 4.3, consider the following example. Let L = 4 and

A = {a1, a2, a3, a4}, and the utility is given by (13). Let τ ∈ [0, 0.15] be a parameter.

Suppose that the values x1 and x2 are each uniformly distributed on [0, 1], while x3

and x4 are each uniformly distributed on [−τ, 1 − τ ]. Clearly, x1 and x2 first-order

stochastically dominate x3 and x4.

Figure 8 shows the optimal consideration sets and length profiles (up to the sym-

metry between a1 and a2 and between a3 and a4) for different values of τ and λ. Note

that when |D| = 1 and |D| = 2 are optimal (the white and the red areas, respec-

tively), the expected values do not vary with τ , and hence the boundary between the

white and the red areas is a horizontal line. The area where |D| = 3 is optimal (the

green area) appears only if τ < 0.07, and the corresponding optimal length profile is

(1, 2, 2). In all those areas, as λ increases, the adjustment comes from the extensive

margin, where the number of actions considered decreases from 3 to 2, to 1. This may

be regarded as focused consideration: the DM only asks questions about the first two

or three values and decides based on this evidence, but ignores any potential evidence

from other dimensions (e.g., x4).
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In contrast, in the area where |D| = 4 is optimal (the blue area), there is a shift

in the length profile. For small τ (to the left of the dotted line), the optimal length

profile is the uniform one, (2, 2, 2, 2), as the probabilities of each action being the

optimal one are not too different from one another. However, for large τ (to the right

of the dotted line), the optimal length profile will switch from the uniform one to the

extreme one, (1, 2, 3, 3).

Thus, although the optimal inquiry does not adjust the consideration set D as

λ increases, it does change the inquiry strategy discontinuously: for higher λ’s, the

action a1 has the shortest length, and that set of states where a1 is chosen will expand

with λ. The latter may be interpreted as a confirmation bias in terms of the content

of the inquiry: among those actions the DM is willing to consider, she is happy to

expand the evidence to admit a certain action as acceptable (in this case, a1), which

would be her most likely action ex ante. In the next section we show that this is a

prevalent feature of the optimal inquiry.

5. Confirmation Bias

We have seen from the previous section that, under optimal inquiry, the DM often

prioritizes some actions by asking questions that lead to these decisions first, and

turning to other actions only if the initial answers are negative. Moreover, some ac-

tions may not be considered at all. This may be interpreted as a form of confirmation

bias in the extensive margin, as the DM searches for evidence to support higher-

priority actions, and does not attempt to find evidence in support of actions outside

the chosen consideration set. This is mainly related to the form of the inquiry.

In this section, we turn to confirmation bias in terms of the content, taking the form

of the inquiry as given. We will show that, given the form, (D, `), the DM optimally

expands the categories associated with the more likely actions, relative to the zero

cognitive-cost benchmark. This can be interpreted as the DM searching for evidence

to confirm the desirability of the actions in D that are most likely to be optimal.

To define confirmation bias, let us consider the zero-cost case as a benchmark, and

compare the set of states under which the most likely actions are taken under the

optimal inquiry with and without the cognitive cost. To do so, we first rank the

actions according to their likelihood under the optimal inquiry. For a fix λ > 0, let

(D, `, I) be an optimal outcome under cost λ, and let K = |D|. We order the actions
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in D according to how likely they are chosen under optimal inquiry, so D = {dk}Kk=1,

such that

P(Id1) ≥ P(Id2) ≥ ... ≥ P(IdK ),

with a tie-breaking rule P(Idk) = P(Idk+1
) =⇒ `dk ≤ `dk+1

.
(14)

For each k = 1, ..., K−1, let Dk = {d1, ..., dk} be the subset of k most likely actions in

D. Let Eλ
k be the event that some action in Dk is preferred to all actions in D−Dk,

when the cost λ is taken into account:

Eλ
k =

{
x ∈ X : max

k′=1,...,k
u(dk′ , x)− λ`dk′ > max

m=k+1,...,K
u(dm, x)− λ`dm

}
, (15)

It can be easily seen that Eλ
k coincides with

⋃
d∈Dk

I∗d(D, `) except, possibly, on a

measure zero set. In words, conditional on event Eλ
k , the optimal inquiry almost

surely leads to an action in Dk. Similarly, let E0
k be the event of choosing one of the

actions from Dk in the zero-cost benchmark.

Definition 5.1. An inquiry Q with outcome (D, `, I) has confirmation bias if for

every order {dk}Kk=1 that satisfies (14),

E0
k ⊆ Eλ

k for all k = 1, 2, ..., K − 1. (16)

It has strict confirmation bias if (16) holds, and there exists k ∈ {1, ..., K − 1} such

that

Eλ
k − E0

k has a non-empty interior. (17)

In words, the DM has confirmation bias when affected by the cognitive cost if, for

each k = 1, ..., K − 1, she confirms to k most likely actions: she chooses one of these

actions on a larger set of states, as compared to what she would have done without

cognitive cost. The difference Eλ
k − E0

k is the set of states where an error relative

to the zero-cost benchmark occurs. In any state that belongs to Eλ
k − E0

k , the DM

is biased, as she chooses an action that is suboptimal from the perspective of the

Bayesian DM who knows the state.

This definition formalizes the notion of confirmation bias usually adopted in psy-

chology. According to Nickerson (1998), “it refers usually to unwitting selectivity

in the acquisition and use of evidence,” which he believes is also the definition used

by general psychologists. Our definition has the advantage of formally defining both
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confirming sets and biases: the actions the DM confirms to are the most likely ones

in her optimal strategy, and the errors are defined against the zero-cost benchmark.

Theorem 5.1. Every optimal inquiry has confirmation bias. Moreover, an optimal

inquiry has strict confirmation bias if and only if its length profile is not uniform.

An immediate implication of Theorem 5.1 is that the probability distribution over

actions over D = {dk}Kk=1 induced by the optimal inquiry first order stochastically

dominates that induced by the zero-cost benchmark:

P(Eλ
k ) ≥ P(E0

k), for each k = 1, ..., K − 1, (18)

and the inequality is strict for some k if the confirmation bias is strict.

Theorem 5.1 shows that the optimal inquiry always features confirmation bias, and

it has strict confirmation bias when its length profile is not uniform. From Proposition

3.1(b) we know that the most likely actions are associated with shorter inquiry lengths.

At the same time, given the optimal length profile, the optimal information partition

given by (8) has the feature that decisions associated with shorter inquiry lengths

will be chosen on a larger set of states relative to the no-cost benchmark. These two

factors reinforce each other and give rise to the confirmation bias in our setting.

We have define confirmation bias as a comparison against the benchmark case

without the cognitive cost. Now we show that, this bias grows as the cognitive cost

increases, in the sense that likelihood of choosing one of k ex ante most likely actions

under optimal inquiry only increases as λ goes up.

Definition 5.2. Confirmation bias is locally increasing at λ if P(Eλ
k ) is locally in-

creasing at λ for each k = 1, ..., K − 1. Moreover, confirmation bias is locally strictly

increasing in λ if P(Eλ
k ) is locally strictly increasing in λ for some k.

We have the following result.

Proposition 5.1. The confirmation bias is locally increasing in λ. Moreover, it is

strictly increasing locally at λ if and only if the optimal length profile at λ is not

uniform.

Proposition 5.1 shows that as the cognitive cost rises, the DM would optimally

make more “errors” and is biased more toward the most likely actions. This result is
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Figure 9. Optimal consideration set and length profile under i.i.d.

exponential distribution

closely related to Theorem 4.1, which states that the DM has more “focus” on most

likely actions. Naturally, as the cognitive cost rises, the DM prefers to shorten the

inquiry length, and Proposition 5.1 shows that the way to optimally achieve that is

by decreasing the accuracy of her categories in favour of most likely actions, which

are also actions associated with the shortest inquiry lengths.

This endogenous emergence of confirmation bias in our model gives novel impli-

cations to behaviour as a result of cognitive limitations. Here we give an example

that illustrates this novelty and the difference from the literature on rational inat-

tention. Matějka and McKay (2015) show that symmetric actions will be treated

symmetrically in the rational inattention model. In contrast, in our model the DM

may optimally treat symmetric actions asymmetrically to save the cognitive cost.

Consider the model of independent values, as in Section 4.2, with A = {a1, a2, a3, a4},
X = R4

+, and each xl has exponential distribution Gl(xl) = 1− e−xl . Figure 9 depicts

the optimal consideration set and the optimal length profile as a function of λ, up

to the symmetry between the actions. As apparent from the figure, once λ increases

above 0.516 so it becomes too costly to differentiate all actions and treat them equally,

the DM prioritizes an arbitrary action (in this case, a1) and increases the set of states

where this action is chosen, eventually choosing this action alone as λ increases above

0.543. This implies endogenous bias: the DM is biased towards a1 because it is ex

ante more likely under optimal inquiry, but it is ex ante more likely because the DM

is biased towards it, even though this choice may be suboptimal ex post.

6. Case studies

We offer two case studies that illustrate the potential applications of our model.

There are two important social institutions where information processing primarily

takes the form of explicit inquiries: doctor visits and criminal investigations. In

recent years, research has indicated that misdiagnosis and wrongful convictions, both
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Figure 10. Optimal doctor inquiry tree (left) and optimal categories (right)

of which impact the life of the people affected significantly, are in fact closely linked

to cognitive factors in the inquiries.

6.1. Medical Misdiagnosis. Singh et al. (2017) argue that “...diagnosis in primary

care (i.e., first-contact, accessible, continued, comprehensive and coordinated care)

represents a high-risk area for errors. PCPs typically face high patient volumes and

make decisions amid uncertainty.” They claim that the amount of errors is significant:

“...a recent study estimated that about 5% of US adult patients experience diagnostic

errors (defined as missed opportunities to make a correct or timely diagnosis) [...]

every year.” They point out that diagnostic reasoning is an important factor: “Several

experimental studies have highlighted reasoning biases, in relation to both hypothesis

generation and information interpretation in PCP’s.” Croskerry et al. (2013) discuss

the mode of diagnostic reasoning (which they call “type 2”), which is the more typical

one and is subject to “biases”: “Our systematic errors are termed biases and there

are many of them–biases over a hundred cognitive and approximately one dozen or

so affective biases (ways in which our feelings influence our judgment).”

Croskerry et al. (2013) also describe a case study, in which a patient complained

about constipation but actually was suffering from Cauda Equina Syndrome. This

situation may be examined using our one-dimensional example with three actions:

send the patient home to rest, prescribe a laxative, or refer for an extensive inves-

tigation. The value of each action depends on the true condition (the state x) of

the patient. Suppose that the utility function is as in Figure 1 (interpreting a1 as

“rest”, a2 as “laxative”, and a3 as “extensive investigation”), the state x is uniformly

distributed, and θ < 1/3, so that “laxative” is the most likely correct action ex ante.

For a moderate value of λ, the optimal inquiry would assign the category associated

with prescribing laxative with inquiry length of one. That is, the doctor should
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prioritize to enquire about whether or not it is best just to prescribe laxative. We

depict the optimal inquiry tree and the optimal categories in Figure 10, where x̄1

and x̄2 are thresholds between the categories under optimal inquiry, and x̄0
1 and x̄0

2

are thresholds under zero-cost benchmark. Theorem 5.1 predicts that the doctor

would prescribe laxative on a larger set of states (the interval [x̄1, x̄2]), as compared

to the benchmark where the state of the patient can be discovered at zero cost (the

interval [x̄0
1, x̄

0
2]). Thus, in the intervals of states (x̄1, x̄

0
1) and (x̄0

2, x̄2)), the doctor

makes an error. This is consistent with the argument in Croskerry et al. (2013) that

the error is due to the following: “The principle biases for the physician who saw

him in the clinic were framing, search satisficing and premature diagnostic closure.”

In our model, framing and search satisficing can be explained by the confirmation

bias we identified. Indeed, as in our model, e.g., for x ∈ (x̄0
2, x̄2), the doctor could

have continued the investigation and potentially reached the conclusion that a more

extensive investigation is needed, but stopped prematurely and prescribed a laxative.

An advantage of our model is that we can define “bias” rigorously. In this example,

when the doctor prescribes “laxative” instead of “extensive investigation” for x ∈
(x̄B2 , x̄2), we may call it an “error” and claim that the process is “biased”. However,

it is the process that is biased but not the decision per se. Moreover, relative to other

models of imperfect information processing, our model is able to make prediction

about the inquiry process, in this case, about the “premature diagnosis,” and link

that to the behavioural biases endogenously.

6.2. Wrongful Conviction. Gould and Leo (2010) review the literature on the ex-

tent and factors leading into wrongful convictions and believe that it is the process

and factors affecting the process that are important. In their words, “...it is better to

understand the sources of wrongful convictions not so much as dichotomous causes

– a witness correctly or incorrectly identified the defendant and the identification

directly led the jury to convict – but as contributing factors in a path analysis that

might have been broken at some point before conviction.” Among the leading fac-

tors the article identifies, we are interested in “tunnel vision”, which is described in

Gould and Leo (2010) as “the more law enforcement practitioners become convinced

of a conclusion – in this case, a suspect’s guilt – the less likely they are to consider

alternative scenarios that conflict with this conclusion.”
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Figure 11. Optimal categories for the policy inquiry

We illustrate this tunnel vision with the following example. Suppose that there

are two suspects, A and B, and one of them is surely guilty. Given all the possible

observables the police can investigate, suppose that state x ∈ [0, 1] represents the

posterior belief that A is guilty. There are three actions: charge A, B, or neither,

denoted by aA, aB, and a∅, respectively. Suppose that the police obtains utility θA

if they charge A when A is guilty, θB if charge B when B is guilty, −1 if a wrong

suspect (either A or B) is charged, and 0 if neither. Thus,

u(aA, x) = θAx+ (−1)(1− x), u(aB, x) = θB(1− x) + (−1)x, u(a∅, x) = 0.

Assume that x is distributed according to the uniform distribution, and that 1 >

θA > θB ≥ 0.52, so that ex ante the most likely suspect is A, and no action is

dominated. We depict the optimal categories in Figure 11, where x̄1 and x̄2 are

thresholds between the categories under optimal inquiry, and x̄0
1 and x̄0

2 are thresholds

under zero-cost benchmark. As indicated in the figure, a positive λ leads to an

expansion of the category for charging A, which was the primary suspect. In other

words, the confirmation bias leads the police to lower the threshold of evidence needed

to charge suspect A relative to the benchmark case without such cost. Specifically,

on the interval of states (x̄2, x̄
0
2), the police makes an error by charging A when they

should have let them go. Moreover, this interval expands with λ. This may be an

explanation of the tunnel vision: the police under pressure to end the investigation

optimally focuses on the prime suspect and is willing to charge the prime suspect

even with relatively weak evidence.

Furthermore, if the cognitive cost were to rise even higher, the police would have

found it optimal to drop the no-charge option out of the consideration set altogether.

Thus, if we define “type-I” error as the situation where the police does not charge

anyone, and “type-II” error as the situation where police charges the wrong suspect,

then the optimal inquiry is always biased toward the type-II error. That is, it always
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has higher type-II error than the no-cost benchmark. This may be an explanation of

the tunnel vision: the police under pressure to end the investigation optimally focuses

on fewer options that what they would have considered with no such pressure.

Appendix A. Proofs

A.1. Proof of Theorem 3.1. To prove Theorem 3.1, we use the results presented

in Sections 3.2 and 3.3.

Let Q∗ = 〈N, T, σ, χ, d〉 be an optimal inquiry, and let Z∗ = (D∗, `∗, I∗) be the

outcome implemented by Q∗. By Lemma 3.2, D∗ = T . By Lemma 3.4, for each

d ∈ D∗, category I∗d is given by (8). To simplify notation, let Xn = In(Q∗) for each

n ∈ N . By Lemma 3.1,

P(Xn) > 0 for all n ∈ N . (19)

Fix a node n ∈ N . Let Tn ⊂ T be the set of terminal nodes that can be reached

from n under Q∗. Note that if n is terminal (that is, if n ∈ T ), then Tn = {n}.
Let `n(Q∗) be the length of the path from no to n. Let Q∗n be the sub-inquiry at n

induced by the optimal inquiry Q∗. Conditional on reaching n, the DM’s expected

payoff from a sub-inquiry Q̂ = 〈N̂ , T̂ , σ̂, χ̂, d̂〉 ∈ QXn is given by

Wn(Q̂;λ) =
1

P(Xn)

∑
t∈T̂

∫
x∈It(Q̂)

u(d̂t, x)− λ`t(Q̂)

G(dx|Xn), (20)

where {It(Q̂)}t∈T̂ is a partition of Xn induced by Q̂, and `t(Q̂) is the length of inquiry

beginning from node n and terminating at node t ∈ T̂ . Recall that Q∗n is the sub-

inquiry at n that prescribes to follow the optimal inquiry Q∗, so the DM’s expected

payoff from Q∗ conditional on reaching n is given by (20) with Q̂ = Q∗n.

Let us prove (4). Clearly, Wn(Q∗n;λ) ≤ maxQ̂∈QXn
Wn(Q̂;λ). Suppose by contra-

diction that this inequality is strict. That is, there is a deviation Q̂ ∈ QXn) in node

n such that Wn(Q∗n;λ) < Wn(Q̂;λ), or equivalently, by (20),

∑
t∈Tn

(∫
x∈It(Q∗n)

u(dt, x)− λ`t(Q∗n)

)
G(dx|Xn)

<
∑
t∈T̂

(∫
x∈It(Q̂)

u(d̂t, x)− λ`t(Q̂)

)
G(dx|Xn). (21)
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Let T̃ = (T − Tn) ∪ T̂ , and construct an outcome Z̃ = (Ĩt, ˜̀
t, d̃t)t∈T̃ as follows:

(Ĩt, ˜̀
t, d̃t) =

(It(Q
∗), `t(Q

∗), dt), for each t ∈ T − Tn,

(It(Q̂), `n(Q∗) + `t(Q̂), d̂t), for each t ∈ T̂ .

By construction, Z̃ is an implementable outcome by an inquiry in QX . Namely,

inquiry Q̃ that implements Z̃ is obtained from Q∗ by replacing the branch that follows

node n with Q̂. Then, we have

W (Q̃;λ)−W (Q∗;λ) = P(Xn)
(
Wn(Q̂;λ)−Wn(Q∗n;λ)

)
= P(Xn)

∑
t∈T̂

(∫
x∈It(Q̂)

u(dt, x)− λ(`n(Q∗) + `t(Q̂))

)
G(dx|Xn)

−
∑
t∈Tn

(∫
x∈It(Q∗n)

u(d∗t , x)− λ`t(Q∗)
)
G(dx|Xn)

]
> 0.

The first equality is by definition of W and that Q̃ and Q∗ differ only in the branch at

node n. The second equality is by definition of Wn and the fact that the total length

of path from no to t under Q̃ is the sum of the length from no to n under Q∗ and the

length from n to t under Q̂. The inequality is by (19) and (20). Thus, we reached a

contradiction to the assumption that Q∗ is optimal. �

A.2. Proof of Lemma 3.1. Let Q be an optimal inquiry. By contradiction, let

n′ ∈ N be a node that is reached with probability zero, but all the predecessors are

reached with positive probability. Let n be the immediate predecessor of n′, and let

n′′ be the second successor of n. Consider now a new inquiry Q̂ obtained by modifying

Q as follows. The question at node n and the entire branch following n′ are removed.

Instead, upon reaching node n, the inquiry Q̂ will follow the branch of Q starting

from the node n′′. Clearly, every terminal node t ∈ T that is reached with positive

probability under Q is reached with the same probability under Q̂, and the DM’s

expected payoff conditional on reaching any such node is unchanged. But the length

of inquiry for the terminal nodes in the branch that starts from n′′ is shorter under

Q̂. This contradicts the optimality of Q. �

A.3. Proof of Lemma 3.2. To prove Lemma 3.2, we use the following three claims.
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Claim A.1. Let (N, T, σ) be a binary tree with a set of nodes N , a set of terminal

nodes T ⊂ N , and a successor function σ. For each t ∈ T , let `t be the length of the

path from the root to t. Then
∑

t∈T 2−`t = 1.

Proof. This claim directly follows from Theorem 5.2.1. in Cover and Thomas (2006)

and its proof. As in that proof, one can convert an instantaneous code into a binary

so that the lengths of paths to the terminal nodes correspond exactly to the codeword

lengths. We have an equality here instead of inequality because in our inquiry tree

every non-terminal node branches down to two further nodes. �

Claim A.2. Let K ≥ 1. If ` = (`1, ..., `K+1) ∈ NK+1 satisfies
∑K+1

k=1 2−`k = 1, then

there exists `′ = (`′1, ..., `
′
K) ∈ NK such that `′k ≤ `k for all k = 1, ..., K, `′k0

< `k0 for

some k0 ∈ {1, ..., K}, and
∑K

k=1 2−`
′
k = 1.

Proof. Without loss of generality assume that `1 ≤ · · · ≤ `K+1. It follows that

`K = `K+1; for otherwise the terminal node corresponding to `K+1 must be the only

successor of its predecessor. Let `′k = `k for k = 1, ..., K − 1 and let `′K = `K − 1.

Thus,

K∑
k=1

2−`
′
k =

K−1∑
k=1

2−`k + 2−`
′
K =

K−1∑
k=1

2−`k + 2−`K+1 =
K+1∑
k=1

2−`k = 1,

where the second last inequality follows from the fact that `K = `K+1. �

Claim A.3. Let I = {Ik}Kk=1 be a partition of X into K elements, let D = {d1, ..., dK} ⊂
A, and let ` = (`1, ..., `K) ∈ NK be a length profile such that

K∑
k=1

2−`k = 1. (22)

Then, there exists an inquiry Q = 〈N, T, σ, χ, d〉 with a set T = {t1, ..., tK} of terminal

nodes such that

Itk(Q) = Ik and `tk(Q) = `k for all k = 1, ..., K. (23)

Proof. By Theorem 5.2.1. in Cover and Thomas (2006) (with the argument as in the

proof of Claim A.1 that translate instantaneous codes into binary trees), (22) implies

that there exists a finite binary tree with a set of nodes N and a successor relation
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over N , with K terminal nodes labeled t1, ..., tK , such that, for each k = 1, ..., K, the

length of the path from the root to each terminal node tk is exactly `k.

We now construct an inquiry Q = 〈N, T, σ, χ, d〉 that satisfies (23). Let N be

as above, and let T = {t1, ..., tK}. For each nonterminal node n ∈ N − T , let us

associate two edges leading out of n with true and false, and define the map σ so that

σ(n, true) = ntrue if n  ntrue along the edge labelled true and σ(n, false) = nfalse

if n nfalse along the edge labelled false. Let decision rule d be given by the choice

of dk in terminal node tk for each k = 1, ..., K.

It remains to construct a proposition mapping χ that yields the partition I in the

terminal nodes. First, we associate each node in N with a set, In(Q), as follows. For

each k = 1, ..., K, let Itk(Q) = Ik. Then, by backward induction, for each nonterminal

node n ∈ N−T , let In(Q) = Iσ(n,true)(Q)∪Iσ(n,false)(Q). This implies that Ino(Q) = X

at the root no, since {Ik}Kk=1 is a partition.

Finally, define a proposition map χ as follows. For each nonterminal node n ∈ N −
T , let χ(n) = Iσ(n,true)(Q). By induction from the root of the tree, it is straightforward

to verify that χ satisfies (1), so, for each n ∈ N , In(Q) is indeed the information set

induced by Q at node n. �

We now prove Lemma 3.2. Let Q = 〈N, T, σ, χ, d〉 be an optimal inquiry. Suppose,

by contradiction, that dt′ = dt′′ for some t′, t′′ ∈ T with t′ 6= t′′. Let K = |T | − 1, and

let us label the terminal nodes consecutively, T = {t1, ..., tK , tK+1}, such that tK = t′

and tK+1 = t′′.

Now we construct an alternative inquiry, Q′ = (N ′, T ′, σ′, χ′, d′), with |T ′| = K

terminal nodes that leads to a strictly higher expected value to the DM. Let

I ′k = Itk(Q) for each k = 1, ..., K − 1, and I ′K = ItK (Q) ∪ ItK+1
(Q), (24)

and let

d′k = dtk for each t = 1, ..., K.

Now, by Claim A.1, we have
∑K+1

k=1 2−`tk (Q) = 1. By Claim A.2, there exists `′ ∈ NK

such that

`tk(Q) ≤ `′k for all k = 1, ..., K, `tk(Q) < `′k for some k ∈ {1, ..., K}, (25)

and
∑K

k=1 2−`
′
k(Q) = 1. By Claim A.3 applied to I ′ = {I ′k}Kk=1, `′ = (`′1, ..., `

′
K), and

d′ = (d′1, ..., d
′
K), there exists an inquiry Q′ = 〈N ′, T ′, σ′, χ′, d′〉 with T ′ = {t1, ..., tK}
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such that

I ′tk(Q′) = I ′k and `′tk(Q′) = `′k for all k = 1, ..., K. (26)

Thus, we obtain

W (Q′;λ) =
K∑
k=1

∫
Itk (Q′)

(u(d′k, x)− λ`′tk(Q′))G(dx) =
K∑
k=1

∫
I′k

(u(d′k, x)− λ`′k)G(dx)

>

K+1∑
k=1

∫
Itk (Q)

(u(dtk , x)− λ`tk(Q))G(dx) = W (Q;λ),

where the first and last equalities are by (2), the second equality is by (26), and the

inequality is by (24), (25), and that, by Lemma 3.1, all the terminal nodes in T are

reached with positive probability under Q. �

A.4. Proof of Lemma 3.3.

Necessity. Suppose that an outcome profile (D, `, I) is implementable by an inquiry

Q = 〈T,N, σ, χ, d〉. Let (D, `, I) = (T, `(Q), I(Q)). By Lemma 3.2, D ⊂ A, and, by

Claim A.1, (D, `) satisfies (6).

Sufficiency. Immediate by Claim A.3. �

A.5. Proof of Lemma 3.4. Let (D, `) be given. For any partition I = {Id : d ∈ D},
let

W (I;D, `) =
∑
d∈D

∫
Id

[u(d, x)− λ`d]G(dx).

Now, by (8), for any I and any d ∈ D, if x ∈ I∗d(D, `) ∩ Id′ with d 6= d′ then

[u(d, x)− λ`d] > [u(d′, x)− λ`d′ ].

Thus, since P(X − ∪d∈DI∗d) = 0 by (A3) and the fact that G has full support,

W (I∗;D, `)−W (I;D, `)

=
∑
d,d′∈D

∫
I∗d∩Id′

{[u(d, x)− λ`d]− [u(d′, x)− λ`d′ ]}G(dx)

−
∑
d∈D

∫
Id∩(X−∪d∈DI∗d )

[u(d, x)− λ`d]G(dx)

=
∑

d 6=d′∈D

∫
I∗d∩Id′

{[u(d, x)− λ`d]− [u(d′, x)− λ`d′ ]}G(dx) ≥ 0,
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and the inequality is strict if P(I∗d ∩ Id′) > 0 for some d 6= d′. This proves the

result. �

A.6. Proof of Theorem 3.2. By Lemma 3.4, if (D, `, I) is the outcome of an optimal

inquiry, then W (I;D, `) = W (I∗;D, `). To be optimal, it then must solve (10).

A.7. Proof of Proposition 3.1. (a) If (D, `) solves (10), given the partition, the

length profile must deliver the lowest average length and hence must be given by

Huffman coding.

(b) Let Z = (D, `, I) be the outcome of an optimal inquiry. First we show that if

`d < `d′ , then P(Id) ≥ P(Id′). Suppose, by contradiction, that P(Id) < P(Id′). Now,

let `′d = `d′ and `′d′ = `d, and keep other outcomes unchanged. Note that the new

outcome still satisfies (6) and hence can be induced by some inquiry. But now

[P(Id)`
′
d + P(Id′)`

′
d′ ]− [P(Id)`d + P(Id′)`d′ ] = [P(Id)`d′ + P(Id′)`d]− [P(Id)`d + P(Id′)`d′ ]

= −[P(Id′)− P(Id)](`d′ − `d) < 0.

Thus, the new inquiry decreases the average length but keeps the utilities unchanged.

This is a profitable deviation and a contradiction to the optimality of the original

inquiry. �

A.8. Proof of Theorem 4.1. Let λ1 < λ2. For each j = 1, 2, Let Qλj be an optimal

inquiry for j = 1, 2, and let Zλj = (Dj, `j, Ij) be the associated outcome. Denote

ū(Zλj) =
∑
d∈Dj

∫
x∈Ijd

u(d, x)G(dx), j = 1, 2.

By (7) and (12), we have W (Qλj ;λj) = ū(Zλj) − λ¯̀(Zλj). By the optimality of Zλj

given λj, for each j = 1, 2, we have

ū(Zλ1)− λ1
¯̀(Zλ1) ≥ ū(Zλ2)− λ1

¯̀(Zλ2) and ū(Zλ2)− λ2
¯̀(Zλ2) ≥ ū(Zλ1)− λ2

¯̀(Zλ1).

Combining these inequalities yields

λ1

(
¯̀(Zλ1)− ¯̀(Zλ2)

)
≤ ū(Zλ1)− ū(Zλ2) ≤ λ2

(
¯̀(Zλ1)− ¯̀(Zλ2)

)
.

Thus, ¯̀(Zλ1) ≥ ¯̀(Zλ2) whenever λ1 < λ2.

Next, let (D, `) be a solution of problem (10) under λ > 0 such that ` is not

uniform. Because (D, `) is finite, there exists an interval [λ′, λ′′] that contains λ
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(possibly, λ = λ′ or λ = λ′′) such that (D, `) is a solution of problem (10) for each

cost in [λ′, λ′′]. Consider arbitrary λ1, λ2 ∈ [λ′, λ′′] with λ1 < λ2. Let E
λj
k be given by

(15). Observe that for each j = 1, 2 we have

P(E
λj
k ) = P

(
k⋃

k′=1

I∗dk′ (D, `;λj)

)
=

k∑
k′=1

P(I∗dk′ (D, `;λj).

Thus, by Lemma A.1 (see Section A.11 below), for each k = 1, ..., K − 1 we obtain

k∑
k′=1

P(I∗dk′ (D, `;λ2)) ≥
K∑
k=1

P(I∗dk(D, `;λ1)), (27)

with strict inequality for some k. In other words, given (D, `), the probability dis-

tribution over actions in D = {dk}Kk=1 under λ2 first-order stochastically dominates

that under λ1. Thus, by (12), we obtain

¯̀(Zλ2) =

|D|∑
k=1

`dkP(I∗dk(D, `;λ2)) <

|D|∑
k=1

`dkP(I∗dk(D, `;λ1)) = ¯̀(Zλ1).

Thus, we have shown that ¯̀(Zλ) is strictly increasing on [λ′, λ′′]. �

A.9. Proof of Proposition 4.1. Let (D, `, I) be the outcome of an optimal inquiry

Q. Suppose that δ(a′, a′′) < λ for some a′, a′′ ∈ A. Suppose by contradiction that

a′, a′′ ∈ D. There are two cases.

Case 1. Suppose that `a′ 6= `a′′ . W.l.o.g., let `a′ < `a′′ . By Lemma 3.4 and

assumption (A3), a′ ∈ D implies that the set

Ia′ = {x ∈ X : u(a′, x) > u(a, x)− λ(`a′ − `a) for all a ∈ D − {a′}} (28)

has nonempty interior. Therefore, because a′′ ∈ D, we must have

u(a′, x) > u(a′′, x)− λ(`a′ − `a′′) ≥ u(a′′, x) + λ for each x ∈ Ia′ ,

where the first inequality is by (28), and the second inequality is because `a′ < `a′′

and both `a′ and `a′′ are integers. This contradicts the assumption that δ(a′, a′′) < λ.

Case 2. Suppose that `a′ = `a′′ . Consider an inquiry Q̂ with the outcome (D̂, ˆ̀, Î)

given by D̂ = D − {a′′}, ˆ̀
a′ = `a′ − 1, ˆ̀

a = `a for all a ∈ D − {a′}, Îa′ = Ia′ ∪ Ia′′ ,
and Îa = Ia for all a ∈ D−{a′}. In words, Q̂ is the same as Q except that Q̂ merges

actions a′ and a′′ and removes the question that distinguishes these actions. Because

`a′ = `a′′ = ˆ̀
a′ + 1, (29)
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we obtain 2−`a′ + 2−`a′′ = 2−
ˆ̀
a′ . Since

∑
d∈D 2−`d = 1, we obtain that

∑
d∈D̂

2−
ˆ̀
d =

 ∑
d∈D̂−{a′}

2−
ˆ̀
d

+ 2−
ˆ̀
a′ =

 ∑
d∈D−{a′,a′′}

2−`d

+ 2−`a′ + 2−`a′′ = 1.

Thus, by Lemma 3.3, there exists an inquiry Q̂ constructed as above. As Q and Q̂

differ only for x ∈ Ia′ ∪ Ia′′ , we obtain

W (Q̂;λ)−W (Q;λ) =

∫
Ia′

(
(u(a′, x)− λˆ̀

a′)− (u(a′, x)− λ`a′)
)
G(dx)

+

∫
Ia′′

(
(u(a′, x)− λˆ̀

a′)− (u(a′′, x)− λ`a′′)
)
G(dx)

=

∫
Ia′

λG(dx) +

∫
x∈Ia′′

(
u(a′, x)− u(a′′, x) + λ

)
G(dx)

> 0,

where the first equality is by (7), the second equality is by (29), and the inequality

is because δ(a′, a′′) < λ and Ia′ ∪ Ia′′ has nonempty interior. We thus obtain a

contradiction to the optimality of Q. �

A.10. Proof of Proposition 4.2. Let λ2 = supx∈X(maxa∈A u(a, x)−mina∈A u(a, x)).

Then, for all λ ≥ λ2, the utility gain from distinguishing any actions is smaller than

the cost, so the optimal consideration set D is a singleton.

Next, by Theorem 3.2 and assumptions (A1) and (A3), there exists a nonempty set

F0 ⊂ F∗ of pairs (D, `) that are optimal for a small enough cost. Specifically, for each

(D, `) ∈ F0, there exists a small enough λ(D,`) > 0 such that (D, `) solves problem

(10) for all λ ∈ [0, λ(D,`)]. Let λ1 = min(D,`)∈F0 λ(D,`). Observe that by (A2) and (A3)

and the assumption of full support on X, if λ = 0, then each action a ∈ A is optimal

on a positive-measure subset of X. Hence, the unique optimal consideration set for

λ = 0 is D = A. It follows that (D, `) ∈ F0 implies D = A. Thus, A is the unique

optimal consideration set for all λ ∈ [0, λ1]. �

A.11. Proof of Theorem 5.1. Before proving Theorem 5.1, we state a lemma.

Lemma A.1. Let (D, `) ∈ F∗, and let K = |D|. W.l.o.g, let actions in D be ordered

according to their lengths of inquiry, so D = {dk}Kk=1, such that

`d1 ≤ `d2 ≤ ... ≤ `dK̄ . (30)
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For each λ1, λ2 ∈ R+ with λ1 < λ2,

Eλ1
k ⊆ Eλ2

k for all k = 1, 2, ..., K − 1. (31)

Moreover, if ` is not uniform, then there exists k ∈ {1, ..., K − 1} such that the set

Eλ2
k − E

λ1
k has a non-empty interior. (32)

Proof. First, we prove (31). Let k ∈ {1, ..., K − 1}. Suppose by contradiction that

there exists x ∈ Eλ1
k such that x 6∈ Eλ2

k . By (15), x ∈ Eλ1
k and x 6∈ Eλ2

k imply that

there exist k∗ ≤ k < m∗ such that

u(dk∗ , x)− λ1`dk∗ = max
k′=1,...,k

u(dk′ , x)− λ1`dk′ > u(dm∗ , x)− λ1`dm∗ , (33)

u(dk∗ , x)− λ2`dk∗ ≤ max
m=k+1,...,K

u(dm, x)− λ2`dm = u(dm∗ , x)− λ2`dm∗ . (34)

Combining (33) and (34), we obtain

λ2(`dm∗ − `dk∗ ) ≤ u(dm∗ , x)− u(dk∗ , x) < λ1(`dm∗ − `dk∗ ),

which is impossible, since λ2 > λ1 ≥ 0, and `dm∗ ≥ `dk∗ by (30). We reached a

contradiction.

Next, suppose that ` is not uniform. Then there exists k∗ ∈ {1, ..., K − 1} such

that

`d1 = ... = `dk∗ < `dk∗+1
≤ ... ≤ `dK . (35)

We prove (32) for k = k∗. Define

w̄ = max
k=1,...,k∗

u(dk, x) and wλ(x) =

(
max

m=k∗+1,...,K
u(dm, x)− λ`dm

)
− (w̄ − λ`dk∗ ).

Observe that

wλ2(x) < wλ1(x) for all x ∈ X and all λ1 < λ2. (36)

This is because for any given x ∈ X there exists m∗ > k∗ such that

wλ2(x) = u(dm∗ , x)− λ2`dm∗ + λ2`dk∗ − w̄ < u(dm∗ , x)− λ1`dm∗ + λ1`dk∗ − w̄ ≤ wλ1(x),

where the strict inequality is by λ1 < λ2 and `k∗ < `m∗ .

Next, by (15) and (35), we have

x ∈ Eλ
k∗ ⇐⇒ wλ(x) < 0. (37)
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Fix λ1 < λ2. By assumptions (A2)–(A3), the sets Eλ1
k∗ and X − Eλ2

k∗ have nonempty

interiors. Let

y ∈ Int(Eλ1
k∗ ) and z ∈ Int(X − Eλ2

k∗ ).

By (36) and (37), we have

wλ1(y) < 0 < wλ2(z) < wλ1(z).

Let

x∗ = α∗y + (1− α∗)z, where α∗ = sup {α ∈ [0, 1] : wλ1(αy + (1− α)z) ≤ 0} .

Since X is convex, and points y and z are in Int(X), x∗ is an interior point of X. Since

wλ1(x) is continuous in x by assumption (A1), we have wλ1(x∗) = 0. Moreover, by

(36), there exists ε > 0 such that wλ2(x∗) = ε > 0. Let Ox∗ be the open neighborhood

of x∗ given by

Ox∗ = {x ∈ X : |wλ1(x)− wλ1(x∗)| < ε}.

By the continuity of wλ1(x), Ox∗ is an open nonempty set. Recall that by assumption

(A3), (X −Eλ1
k∗ ) has nonempty interior. Since the set Ox∗ ∩ (X −Eλ1

k∗ ) contains x∗, it

has nonempty interior. Finally, since Ox∗ ∩ (X − Eλ1
k∗ ) ⊂ Eλ2

k∗ − E
λ1
k∗ , we obtain (32)

for k = k∗. �

We now prove Theorem 5.1. Let λ > 0 and let (D, `, I) be an outcome of an optimal

inquiry. Observe that D = {dk}Kk=1 satisfies (14) if and only if it satisfies (30). Then,

the statement of the theorem is immediate by Definition 5.1 and Lemma A.1 with

λ1 = 0 and λ2 = λ. �

A.12. Proof of Proposition 5.1. To prove the proposition, we apply Lemma A.1.

Let λ > 0 and let (D, `) be a solution of problem (10) under λ. Because (D, `) is

finite, there exists an interval [λ′, λ′′] that contains λ (possibly, λ = λ′ or λ = λ′′)

such that (D, `) is a solution of problem (10) for each cost in [λ′, λ′′]. Consider

arbitrary λ1, λ2 ∈ [λ′, λ′′] with λ1 < λ2. By Lemma A.1, it is immediate that, for each

k = 1, ..., K − 1,

P(Eλ2
k ) ≥ P(Eλ1

k ). (38)

Moreover, if ` is not uniform, inequality (38) is strict for some k. We thus obtain that

confirmation bias is locally increasing, and strictly so whenever ` is not uniform. �
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