
Opacity, Signaling, and Bail-ins∗

Kentaro Asai†

Kyoto University

asai.kentaro.8z@kyoto-u.ac.jp

Bruce Grundy‡

Australian National University

Bruce.Grundy@anu.edu.au

Ryuichiro Izumi§

Wesleyan University

rizumi@wesleyan.edu

March 23, 2025

Abstract

Should banks be transparent when a bail-in occurs? Banks that have experienced
losses may bail-in creditors to optimally allocate resources between early and late with-
drawers. However, if banks have private information about their losses, then bail-ins
may signal asset quality. In the absence of signaling, banks can sell assets at a pooled
price, effectively insuring creditors against asset risks. However, when bail-ins signal
quality, banks may delay bail-ins and sell assets at higher prices, but this incentive to
delay can trigger inefficient bank runs. To avoid such runs, banks should choose to
be either fully transparent or entirely opaque so that their asset quality is not private
information.

Keywords: Bank Runs, Swing Pricing, Bail-ins, Signaling, Asymmetric Information,
Opacity
JEL Classification: E44, G21, G23, G28, D82, D84, D86

∗We thank Luis Araujo, Jaewon Choi, Ron Giammarino, Chao Gu, John Kuong, Yuliyan Mitkov, confer-
ence participants at the 2022 American Economic Association Meetings and the 2022 Summer Workshop on
Money, Banking, Payments, and Finance, and seminar participants at University of Sydney, Hitotsubashi
University, and Eastern Connecticut State University for helpful comments. All errors are our own.

†Yoshida-Honmachi Sakyo-Ku Kyoto Japan
‡26C Kingsley Street Acton ACT 2601, Australia
§238 Church Street, Middletown, CT, 06457, U.S.A.

1



1 Introduction

The financial crisis of 2007-08 led to a series of policy reforms aimed at increasing the

stability and efficiency of the banking system. The outflows from fixed-income funds during

the COVID-19 pandemic and the 2023 bank runs by the (ex-ante) uninsured depositors at

Silicon Valley Bank (SVB) have underscored the importance of finalizing and implementing

these reforms. These reforms focus on two main areas: Implementing measures such as

bail-ins to preserve the resources of distressed intermediaries and enhancing transparency

in the banking system. A timely adjustment of debt repayments through swing pricing can

remove the cause of runs that arise when the price at which funds can be withdrawn does

not properly reflect the value of the assets realized as established in Diamond and Dybvig

(1983).1 However, implementing bail-ins may depend on the information structure: If the

loss is publicly known, bail-ins would be straightforward to implement. If though the loss

remains unknown, bail-ins would be delayed until the information becomes available. If

the loss is known only by the bank, banks may strategically decide whether to initiate a

bail-in because it could reveal the loss. Depending on the information structure, bail-ins

may, therefore, change bank operations during financial turmoil. This possibility can affect

banks’ desired level of asset opacity. This interaction leads to the policy question: Should

the banking system be transparent or opaque in the presence of bail-ins?

Bail-ins create nontrivial interactions between asset valuation and withdrawal behavior,

and their interaction depends on the information structure. Bail-ins are expected to help

banks survive financial turmoil including that induced by bank runs. While bail-ins reduce

banks’ liabilities by preserving resources within distressed banks, they may also affect the

1See, for example, Jin, Kacperczyk, Kahraman, and Suntheim (2021), Kashyap, Kohn, and Wessel (2021),
Keister and Mitkov (2021), Schmidt, Timmermann, and Wermers (2016), and Voellmy (2021).
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valuation of banks’ assets. For example, consider the case where banks have private informa-

tion about losses.2 Then, bail-ins may reveal the extent of the losses to the financial market,

thus decreasing the price at which banks can liquidate assets. This signaling effect can cause

banks to distort repayments, which will influence withdrawal behavior. To formalize such

interactions, we propose a unified model of asset valuation and withdrawal behavior. We

study a version of the Diamond and Dybvig (1983) model in which banks sell their risky

assets to a financial market in order to repay short-term liabilities in line with Allen and

Gale (1998). We consider a complete space for deposit contracts in this environment: Each

of the banks sees withdrawal demand, and then chooses a repayment schedule. The bank

can thereby adjust repayments in accordance with withdrawal demand and asset quality,

which we interpret as a bail-in. In repaying early withdrawal, the bank sells risky assets in

the financial market at a price that reflects what investors know. We, therefore, study the

interactions between asset valuation and withdrawal behavior in three different information

regimes: (i) both banks and investors know the asset return (Transparency), (ii) neither

banks nor investors know the asset return (Opacity), and (iii) only the banks know the asset

return (Lemonisity).

In both the Transparency and Opacity regimes, the equilibrium allocation of resources

maximizes depositor welfare, consistent with the prior literature. Under Transparency, bank

runs do not arise in equilibrium because banks immediately bail-in their depositors: Each

of the banks chooses early repayment contingent on its realized asset return and withdrawal

demand. Under Opacity, banks cannot bail-in losses from their assets until their asset

qualities are revealed, which creates both a benefit and a cost to selling assets in the short

2The collapse of SVB provides a prime exemplar of a situation where the financial market was unaware of
the unrealized losses on SVB’s held-to-maturity (HTM) bonds because current accounting rules allow HTM
securities to be reported at their original acquisition cost rather than at fair value.
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term: On the one hand, selling assets early is costly because they are discounted. On the

other hand, the bank’s assets will trade in the financial market based on their expected

returns while the long-term repayments depend on their realized returns, which provides

depositors with insurance against asset risks. A run occurs only if the benefit from such

insurance provision exceeds the cost from early liquidation.

A contribution of this paper is the analysis of the interaction between investors and de-

positors given bail-ins and Lemonisity. Because investors remain uninformed about asset

quality under Lemonisity, the bank’s actions may affect investors’ beliefs about asset qual-

ity. The bank may then strategically choose a higher repayment schedule to induce a higher

asset price. Such higher repayment schedule may increase depositors’ incentives to run. To

investigate this possibility, we augment our benchmark model by including the signaling

effect of a repayment schedule in the spirit of Leland and Pyle (1977). When uninformed

investors do not view the repayment schedule as a signal of asset quality, banks can sell

their assets at a pooled price and provide depositors with two types of insurance: One is

against asset risks as in Opacity, and the other is against liquidity shocks as in the stan-

dard Diamond-Dybvig model. The resultant allocation between early and late withdrawers

maximizes depositor welfare. However, when the investors assess asset quality through a

bank’s repayment schedule, there exists a separating equilibrium. In such a situation, there

is an increased gap between the early repayments of good and bad banks, and this signaling

behavior undermines banks’ ability to provide insurance against asset risks. Inefficient bank

runs may occur as distorted short-term repayments attract some patient depositors to with-

draw early, leading to excessive early liquidation. This result highlights that bad banks have

an incentive to strategically mimic the actions of good banks and delay bail-ins in order to

induce a higher asset price and good banks will respond by raising short-term repayments.
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This effect is to undermine the insurance provision and distort the allocation between early

and late withdrawers.3

Our additional contribution is the novel rationale behind a bank’s choice to be either

transparent or opaque. We show that, in the absence of investor valuations reflecting the

signal implicit in a bail-in, information asymmetry in the asset market yields the best al-

location of resources among the three information regimes, yet the worst allocation once

such valuations are present. This result indicates that, while a bail-in itself can be a useful

resolution scheme, the signaling role of bail-ins may prompt banks to delay bail-ins to sell

their assets at a higher price. Anticipating the resulting allocative distortion, banks may

choose to be completely transparent or opaque to avoid the costly signaling associated with

bail-ins.

Literature: This paper contributes to two rapidly growing strands of the literature

on financial stability. The first focuses on opacity in the banking system. Faria-e Castro,

Martinez, and Philippon (2017) show that opacity creates an adverse selection in asset mar-

kets but prevents depositors from knowing negative information about banks. Monnet and

Quintin (2017) show how opacity helps the liquidity of a bank asset in secondary markets.

We also consider how opacity shapes asset prices by introducing the potential signaling role

of banks’ repayments. By doing so, we study risk-sharing benefits in different information

regimes. In the literature, Kaplan (2006) and Dang, Gorton, Holmstrom, and Ordonez (2017)

emphasize the risk-sharing benefits of opacity in the spirit of Hirshleifer (1971). We decom-

pose such risk-sharing effects into risk-sharing on asset returns and on liquidity shocks. In

particular, we compare the optimal allocation of resources under Opacity, where depositors

3The analysis of a bank’s optimization problem conditional on market beliefs given the announced repay-
ment schedule extends the literature on signaling in corporate finance. See Leland and Pyle (1977), Ross
(1977), Bhattacharya (1980), John and Williams (1985), Myers and Majluf (1984), Miller and Rock (1985),
Brennan and Kraus (1987), Constantinides and Grundy (1989), and Fulghieri, Garcia, and Hackbarth (2020).
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benefit from the insurance against asset risks, and under Lemonisity, where they benefit from

the insurance against both asset and liquidity risks. This comparison allows us to separate

the contribution of each type of insurance to depositor welfare.

We consider not only asset valuation but also the withdrawal behavior of depositors in

studying opacity and bail-ins. Jacklin and Bhattacharya (1988), Chen and Hasan (2006), and

Faria-e Castro et al. (2017) study fundamental bank runs triggered by revealing information.

In contrast, Izumi (2021) studies self-fulfilling bank runs caused by opacity in a version of

the Diamond and Dybvig model. Our paper studies both fundamental and self-fulfilling

bank runs in a similar framework, but in our paper, we allow banks to form a complete

deposit contract and to have private information on asset returns. Some study the role of

information in determining the probability of runs in a global game (Bouvard, Chaigneau,

and Motta (2015), Ahnert and Nelson (2016), and Parlatore (2015)). Others study the risk-

taking behavior under opacity in discussing financial stability (Cordella and Yeyati (1998),

Hyytinen and Takalo (2002), and Moreno and Takalo (2016), Jungherr (2018)).

The second strand focuses on bail-ins. While this strand is rapidly growing and policy

debates on bail-ins have been extensive, only a handful of papers formalize bail-ins in study-

ing their effectiveness. Bolton and Oehmke (2019) study how regulators should coordinate

in bailing in global banks. Walther and White (2020) analyze the (non) commitment of

policymakers to bail-in depositors. Bernard, Capponi, and Stiglitz (2022) and Colliard and

Gromb (2018) model negotiations between regulators and banks in allocating losses. While

these papers study how regulators decide to bail-in depositors, Keister and Mitkov (2021)

study how banks themselves decide to bail-in depositors and show such action is delayed

if they anticipate bail-outs. Our paper also studies how banks themselves decide to bail-in

depositors, but we consider the signaling channel of repayment actions by introducing infor-
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mation asymmetry in a financial market. In our paper, bail-ins reduce liabilities but may

affect the valuation of banks’ assets, which depends on the information structure. In this

way, we shed light on a new but important incentive mechanism regarding bail-ins.4

2 Model

Our analysis is based on a version of Diamond and Dybvig (1983) with flexible banking

contracts and a financial market as in Allen and Gale (1998). We introduce uncertainty

to investment returns, and the value of the investment in a financial market depends on

the information available in the market. We use this framework to consider three types

of information structure individually. This section describes the model environment that

includes agents, preferences, and technologies.

2.1 Environment

There are three periods, labeled τ = 0, 1, 2, and a continuum of depositors of measure one

indexed by i ∈ [0, 1]. There exist several banks. Each depositor has a preference given by

u(c1 + ωic2) =
(c1 + ωic2)

1−γ

1− γ
, (1)

where cτ is consumption in period τ and the coefficient of relative risk aversion γ is assumed

to be greater than 1 as in Diamond and Dybvig (1983). The preference type of depositor

i, expressed by ωi, is a bi-nominal random variable with support Ω = {0, 1}. If ωi = 0,

depositor i is impatient and only cares about consumption in τ = 1, while if ωi = 1, she is

4Capponi, Glasserman, and Weber (2020) develop a model of the feedback between mutual fund outflows
and asset illiquidity. Whereas they consider a situation where a shock to a fund’s net asset value is publicly
known, our paper investigates a setting where the shock may be unknown to investors.
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patient and values consumption in both τ = 1 and τ = 2. Each depositor is chosen to be

impatient with a known probability π ∈ (0, 1), and the fraction of impatient depositors is

equal to π. The realized preference type is privately known by the depositor in τ = 1. Each

depositor is endowed with one unit of the good in τ = 0.

There is a single, constant-returns-to-scale technology for transforming the endowment

into consumption in τ = 2. Goods invested in τ = 0 mature in τ = 2 and yield a random

return Rz, where z ∈ {b, g} and 0 < Rb < Rg. We let qz ∈ (0, 1) denote the probability of

the return Rz such that qb + qg = 1. State z realizes in τ = 1.

The investment can be sold as an asset in τ = 1 in a competitive financial market. There

are a large number of wealthy risk-neutral investors who may purchase it in the market.

Each investor has a large endowment in τ = 1 and consumes in τ = 2. The endowment

is large enough that their positions are never constrained. They discount asset value by

β ∈ (0, 1).5 This assumption reflects that when an asset is sold, the buyer cannot control

the asset as efficiently as the seller (Williamson, 1988). Under this setting, early liquidation,

caused by a bank run, for example, does real damage to the economy. Investors update their

beliefs about the distribution of Rz using Bayes’ rule based on the information set I, which

represents what investors know when buying assets. They then anticipate the probability of

state z′ realizing is B[z = z′|I], where
∑

z′∈{g,b} B[z = z′|I] = 1. This setup implies that the

asset of a bank is valued at price p where

p = β(B[z = g|I]Rg + B[z = b|I]Rb). (2)

This investment technology is operated by each bank, where depositors pool and invest

5Introducing risk-neutral investors is a common way to make the model tractable. See, for example, Allen
and Gale (1998) and Izumi (2021).
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resources and can withdraw either in τ = 1 or τ = 2. This intermediation technology can

be interpreted as a financial intermediary or bank. As in Diamond and Dybvig (1983),

depositors have incentives to pool their funds to insure themselves against liquidity risk. For

the sake of simplicity, our analysis begins with the situation where endowments are already

deposited at the bank in each location.

The amount of repayments depends on the withdrawal demand. Once a depositor learns

her type, she decides whether she withdraws in τ = 1 or waits until τ = 2. While the bank

cannot identify the type of each depositor, the bank can observe the withdrawal decisions

of depositors before any withdrawal begins, and adjust the repayments. The bank is, thus,

offering a flexible depositor contract, and the contract space is complete, unlike the sequential

service as in Wallace (1988). Depositors are isolated from each other in τ = 1 and τ = 2,

and they cannot trade with each other. Recall that depositors do not diversify across banks

and each depositor holds a single bank account.

2.2 Decentralized economy

In a decentralized environment, a bank behaves competitively and acts to maximize the

expected utility of its depositors. Banks are ex-ante identical: Each bank receives deposits

and makes investments in τ = 0. When Rz is realized in τ = 1, there will be a measure qg

of banks whose investment yields Rg in τ = 2 (good banks) and a measure qb = (1 − qg) of

banks whose investment yields Rb in τ = 2 (bad banks). The realization of Rz may affect

the bank’s repayments, and the actual payoffs received by depositors are determined in a

non-cooperative simultaneous-move game played by depositors at each bank in τ = 1. To

elaborate the game played by depositors at each bank, in the next sections we address depos-

itors’ withdrawal strategies, the bank’s repayment schedule, how these two pieces determine
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the expected utility of a depositor, and the efficiency of a bank run caused by the game.

2.2.1 Withdrawal strategy

Conditional on her type, depositor i chooses a withdrawal strategy in τ = 1, without knowing

the realization of Rz. Let yi denote the withdrawal strategy for depositor i such as

yi : Ω 7→ {0, 1}, (3)

where yi(ωi) = 1 corresponds to withdrawal in τ = 1 and yi(ωi) = 0 corresponds to with-

drawal in τ = 2. Let ρ denote a measure of depositors withdrawing in τ = 1 such that

ρ =

ˆ 1

0

yi(ωi)di. (4)

2.2.2 Repayment schedule

The bank makes repayments conditional on ρ and z. It gives the same level of consumption

to all depositors who withdraw in the same period since depositors are risk-averse. Let cτ,z(ρ)

denote the repayment made by the bank to each depositor who withdraws in period τ given

ρ and z. We define the repayment schedule as the mapping from the spaces of ρ and z to

the repayments in τ = 1 and 2:

c : [0, 1]× {b, g} 7→ R2
+. (5)

Given the asset price p in τ = 1, each bank chooses the repayment schedule c to satisfy

the feasibility constraint. Each bank finances the repayments at τ = 1 by liquidating some

amount of assets b and the repayments at τ = 2 by using its remaining resources (1− b)Rz.
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The repayment schedule is hence feasible when there is some b such that ρc1,z(ρ) ≤ bp and

(1− ρ)c2,z(ρ) ≤ (1− b)Rz. The two conditions imply the resource constraint becomes

ρ
c1,z(ρ)

p
+ (1− ρ)

c2,z(ρ)

Rz

≤ 1,∀z. (6)

The repayment schedule c characterizes the operation of the bank and determines the

payoffs of depositors.

2.2.3 Expected payoffs

The strategies of depositors y determine the level of consumption that each depositor receives

in every possible case. Let vi(c, y) denote the expected utility of depositor i in τ = 0 as a

function of depositors’ withdrawal strategies y and the bank’s repayment schedule c:

vi(c, y) = E[u(yi(ωi)c1,z(ρ) + ωi(1− yi(ωi))c2,z(ρ))], (7)

where the expectation E is over ωi and z. The bank is operated to maximize the expected

utility of depositors (depositor welfare):

U(c, y) =

ˆ 1

0

vi(c, y)di. (8)

2.2.4 Bank runs

When a positive measure of patient depositors withdraw in τ = 1, there is said to be a

bank run. A run involves the costly liquidation of immature assets. As discussed later,

early liquidation may be efficient or inefficient, depending on the information structure. We

therefore categorize runs by whether early liquidation caused by a run is efficient or inefficient.
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Under an efficient (inefficient) bank run, further increasing depositor welfare is impossible

(possible) by altering withdrawal behavior without changing the repayment schedule. An

inefficient run occurs when a run is driven by self-fulfilling beliefs as in Diamond and Dybvig

(1983).

2.3 Timeline

The sequence of events is summarized in Figure 1. In τ = 0, depositors place their en-

dowments in the bank in each location, the parameter value that governs the distribution

of information regimes (θ) is determined, and the period ends.6 In τ = 1, the information

regime (s) is firstly realized. Next, a depositor learns her preference type. Upon learning the

information regime and her type, each depositor chooses a withdrawal strategy. Depositors

know the bank’s repayment schedule and the withdrawal demand, but they do not know the

realization of the asset return. The bank observes the measure of depositors who demand to

withdraw in τ = 1, and decides the levels of repayments. When the bank decides the levels

of repayments, it may or may not know Rz, which will be realized before early liquidation

starts. Investors may or may not know Rz as well. In repaying depositors in τ = 1, the

bank sells assets in the financial market. These assets are valued by investors based on their

expected payoffs given investors’ information. In τ = 2, the investment matures, and the

bank repays the remaining depositors.

2.4 Discussion

Our environment is distinct from the literature in that we allow a complete contract space

for bank deposits. Diamond and Dybvig (1983) study the environment where the bank

6The distribution of information regimes is set out and explained in Section 5.
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Figure 1: Timeline of the events

sets a repayment schedule before a depositor chooses a withdrawal strategy. Ennis and

Keister (2009) explore the environment where the bank sets a repayment schedule at the

same time when a depositor chooses an action. Neither approach allows the bank to adjust

its repayment after knowing withdrawal strategies chosen by depositors. We allow the bank

to choose its repayment level after knowing the withdrawal demand. This setting captures

the features of swing pricing and liquidity fees introduced in the recent fixed income funds

reforms.

3 The Constrained Efficient Allocation

We introduce a constrained benevolent planner who allocates resources to maximize depositor

welfare subject to physical constraints: The planner cannot transfer goods among banks and

is subject to the market constraint. The planner knows the preference type of depositors,

and can force depositors to follow withdrawal decisions the planner recommended and take

over bank operations through the planner’s choice of a repayment schedule. The asset price

in τ = 1 reflects investors’ information. The constrained optimal allocation of resources will,

therefore, depend on the information structure, as the information structure affects the asset
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price.

Whereas the banks in the decentralized economy and the planner share the same objective

function, the planner is different from the banks in two dimensions. First, only the planner

can force depositors to follow withdrawal behavior the planner recommended. Second, only

the planner can prohibit investors from assessing the repayment schedule when investors

attempt to learn whether a bank is good or bad.

We will below characterize the constrained optimal allocation of resources for each in-

formation regime. Our goal is to establish the benchmark against which to evaluate the

equilibrium in a decentralized economy in which depositors choose their withdrawal strate-

gies and uninformed investors infer the asset return of the bank through the assessment of

the bank’s repayment schedule. In particular, we solve the problem of the planner that max-

imizes depositor welfare as given by (8) by choosing depositors’ withdrawal actions y and the

bank’s repayment schedule c subject to the feasibility constraint given by (6). We determine

the benchmark under each of three information regimes. The first regime is that the planner

and investors know the realization of Rz in τ = 1 (Transparency); the second structure is

that neither the planner nor investors know the realization of Rz in τ = 1 (Opacity); the

third structure is that the planner knows the realization of Rz in τ = 1, but investors do not

(Lemonisity). In each case, depositors do not observe the realization of Rz, although they

know the information regime.

Without going into the details, it is easy to see that the planner always chooses the

withdrawal actions so that ρ ∈ [π, 1]. The planner directs impatient depositors to withdraw

in τ = 1 since impatient depositors do not value consumption in τ = 2. However, the number

of patient depositors who should withdraw in τ = 1 is not a trivial question. The planner

chooses how many patient depositors to withdraw in τ = 1 instead of τ = 2, which pins
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down the value of ρ. Because depositors are risk-averse, the planner provides the same level

of consumption to any withdrawer in τ = 1 based on ρ, and the τ = 2 repayment will be

the standard pro-rata division of remaining resources. We thus have an alternative way of

expressing depositor welfare as a function of c and ρ, V (c, ρ), defined by

V (c, ρ) = E[ρu(c1,z(ρ)) + (1− ρ)u(c2,z(ρ))].

For purposes of exposition, we solve the planner’s problem in two steps. First, the planner

maximizes V (c, ρ) for each ρ by choosing the bank’s repayment schedule c. Specifically, the

planner solves: ∀ρ ∈ [π, 1], maxc V (c, ρ) subject to the constraints. If the planner knows the

realization of the asset return, the planner is only subject to the feasibility constraint (6).

Otherwise, the planner is also constrained to select a value for c1,z(ρ) that does not vary

with z. Second, the planner maximizes V (c, ρ) under the optimized repayment schedule

by choosing ρ. Then, the solution of the planner’s problem comprises the optimal level of

withdrawal in τ = 1 and the optimal repayment schedule. The next sections discuss the

planner’s problem in the information regimes of Transparency, Opacity, and Lemonisity,

respectively.

3.1 Transparency

We first study the Transparency regime where both the planner and investors know the

realization of Rz in τ = 1. The asset price is therefore driven to p = βRz.

We denote the solution of the planner’s problem by (ρt, ct), where the superscript t means

the Transparency regime. Let ρt represent the measure of depositors who are chosen by the

planner to withdraw in τ = 1, and then ct expresses the optimal repayment schedule. For
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each ρ and z, we denote the optimal level of repayment in τ = 1 by ct1,z(ρ) and the level of

subsequent repayment in τ = 2 by ct2,z(ρ).

3.2 Opacity

The second regime we study is Opacity, where neither the planner nor investors know the

realization of Rz in τ = 1. The planner, thus, repays the same amount in τ = 1 regardless

of state z, which implies

c1,g(ρ) = c1,b(ρ). (9)

The planner, therefore, maximizes depositor welfare V (c, ρ) subject to the constraint (9) in

addition to the feasibility constraint (6). Since investors do not know the realization of Rz

and each of the banks sells the same amount of assets without causing positive or adverse

selection in the distribution of assets traded in the market in τ = 1, the price of an asset is

uniform across banks and satisfies p = βE[Rz].

We denote the solution of the planner’s problem by (ρo, co), where the superscript o

represents the Opacity regime. Let ρo represent the measure of depositors who are chosen

by the planner to withdraw in τ = 1, and co is the optimal repayment schedule. Notice

that repayments in τ = 1 are not contingent on state z, while repayments in τ = 2 will be

contingent on state z because the remaining resources will depend on Rz. Thus, for each ρ

and z, we denote the optimal level of period-1 repayment by co1(ρ) and the subsequent level

of repayment in period 2 by co2,z(ρ).
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3.3 Lemonisity

We finally study a setting of Lemonisity in which the planner knows the realization of Rz but

investors do not. In such a situation, the planner chooses the repayment schedule depending

on z, and he liquidates different amounts of assets in the two states. This action changes

the expected payoffs of investors that buy an asset in the market. Note that investors offer

the same price to all banks since they do not know which bank has good assets. As good

banks increase (decrease) the number of assets they sell, there are more (fewer) assets that

will yield Rg in the market. This can affect the investors’ valuation of assets because when

good banks increase (decrease) the number of assets they sell, investors will be more (less)

likely to receive a good asset than the distribution of Rz predicts, i.e., the market reflects

positive (adverse) selection. The asset price is therefore driven to p = β̃E[Rz]. Here, β̃ is the

discount factor applied to the asset’s unconditional expected return that determines its price

and reflects both the discount due to the buyer’s inability to control the asset as efficiently as

the seller and an adjustment that reflects the positive or adverse selection in the distribution

of assets traded in the market. Thus, β̃ is not necessarily equal to β.

We denote the solution of the planner’s problem by (ρl, cl), where the superscript l rep-

resents the Lemonisity regime. This notation is defined analogously to that under Trans-

parency. We denote the optimal level of period-1 repayment by cl1,z(ρ) for each ρ and z and

the subsequent level of repayment in period 2 by cl2,z(ρ).

In evaluating the outcome of the planner’s problem under Lemonisity with that under

Transparency or Opacity, it is necessary to identify whether the Lemonisity regime exhibits

positive or adverse selection. To solve this issue, we examine what range of β̃ is consistent

with the solution of the planner’s problem. Recall that investors cannot observe the asset

return, and hence whether investors face positive or adverse selection is determined by how
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many good and bad assets are sold in the market. For example, if we assumed β̃ > β (i.e.,

that the discount in the asset’s price was smaller than in the Transparency regime) but then

found implied adverse selection (with the amount of the good assets sold in the market,

cl1,g(ρ
l)/p, being smaller than that of the bad assets sold, cl1,b(ρ

l)/p), such an assumption

would be inconsistent and we describe such β̃ values as unacceptable. We formally define

the acceptability of β̃ as follows.

Definition 1. β̃ is acceptable if and only if β̃ > β ∧ cl1,g(ρ
l) > cl1,b(ρ

l), β̃ = β ∧ cl1,g(ρ
l) =

cl1,b(ρ
l), or β̃ < β ∧ cl1,g(ρ

l) < cl1,b(ρ
l).

We will show in the next section that acceptable values of β̃ are always equal to or greater

than β. If β̃ ≥ β, we are able to rank each information regime by maximized depositor

welfare.

3.4 Results

We start by reporting the solution of the planner’s problem for each information regime. We

next analyze for each information regime the likelihood of a run induced by the planner’s

choice of a repayment schedule and investigate whether runs can be efficient in some infor-

mation regimes. We conclude the section with a ranking of maximized depositor welfare

achieved within each information regime.

Before reporting the solution of the planner’s problem, we introduce functions χ(x)

and χ̃(x, ρ) for purposes of exposition. χ(x) denotes E[Rx
z ]/(E[Rz])

x and χ̃(x, ρ) denotes

Ẽρ[R
x
z ]/(E[Rz])

x, where Ẽρ is the expectation operator under a modifed measure defined by

the probability of state z being qzc
l
1,z(ρ)

1−γ/E[cl1,z(ρ)1−γ]. Both functions are convenient for

representing the benefit of price pooling. For example, χ(1− γ) captures a depositor’s disu-

tility from a lottery that pays Rg and Rb stochastically relative to that from sure payoff of
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E[Rz]. Depositors who liquidate early will suffer this disutility in the Transparency regime,

but will not do so when they enjoy the price pooling of the Opacity regime.

We differentiate runs by their magnitude and refer to a setting with all patient depositors

withdrawing in τ = 1 as a full run, and a setting in which a positive measure of, but not all,

patient depositors withdraw in τ = 1 as a partial run.

The following lemma summarizes the solution of the planner’s problem in each regime.

Lemma 1. The constrained optimal allocation of resources is characterized by:

(1) The optimal repayment:

Transparency: ct1,z(ρ) = βRz/(ρ+ (1− ρ)β(γ−1)/γ).

ct2,z(ρ) = ct1,z(ρ)(1/β)
1/γ.

Opacity: co1(ρ) = βE[Rz]/(ρ+ (1− ρ)(χ(1− γ)/β1−γ)1/γ).

co2,z(ρ) = co1(ρ)(Rz/(βE[Rz]))(χ(1− γ)/β1−γ)1/γ.

Lemonisity: cl1,z(ρ) = β̃E[Rz]/(ρ+ (1− ρ)(β̃E[Rz]/Rz)
(γ−1)/γ).

cl2,z(ρ) = cl1,z(ρ)(Rz/(β̃E[Rz]))
1/γ.

(2) The optimal withdrawal:

Transparency: ρt = π.

Opacity: If χ(1− γ) < β1−γ, ρo = π.

If χ(1− γ) ≥ β1−γ, ρo = 1.

Lemonisity: If χ̃((1− γ)/γ, π) ≤ β̃(1−γ)/γ, ρl = π.

If χ̃((1− γ)/γ, 1) ≥ β̃(1−γ)/γ, ρl = 1.

If else, a unique solution ρl ∈ (π, 1) s.t. χ̃((1− γ)/γ, ρl) = β̃(1−γ)/γ exists.

Proof. See Appendix A.1.

For the remaining paper, we will assume that β̃ is acceptable unless otherwise mentioned.

In this way, we can improve the predictability of our model.
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The lemma shows that the planner liquidates different volumes of assets, depending on

information structures. The planner allows depositors to consume relatively similar levels of

goods in τ = 1 and in τ = 2, and thus, the volume of assets sold per early withdrawer depends

on the relative value of an asset in τ = 1 to that in τ = 2. For example, under Lemonisity,

the volume of assets sold per early withdrawer is 1/(ρ + (1 − ρ)(β̃E[Rz]/Rz)
(γ−1)/γ), which

decreases with the relative price of an asset in τ = 1, β̃E[Rz]/Rz. Notice that the relative

period-1 price of an asset is lower for good banks than for bad ones under any β̃. The planner

instructs good banks to sell more assets than it instructs bad banks to sell. An investor is

more likely to receive a good asset in the market than qg, and thus, adverse selection never

occurs. Thus, we can conclude that β̃ ≥ β. Under Opacity, assets are sold at the pooled

price that provides an opportunity to insure depositors against the risk in the asset. The

volume of assets sold per early withdrawer, 1/(ρ + (1 − ρ)(χ(1 − γ)/β1−γ)1/γ), therefore

decreases with the benefit from pooled pricing, χ(1−γ)/β1−γ. Here, χ(1−γ)/β1−γ captures

the disutility from a lottery relative to a certain payoff equal to the discounted expected

payoff.

The lemma also shows that the optimal level of early withdrawal varies by information

structures. Under Transparency, no run is induced by the planner: Investors value assets

based on the realized return, so there is no benefit to depositors of insurance against asset

risks by liquidating prior to investors coming to know the realization of the risky payoff.

Under Opacity and Lemonisity, assets are sold at a pooling price in period 1. Then, the

optimal withdrawal strategies of patient depositors trade off the benefit of the insurance

and the cost of premature liquidation. Under Opacity, χ(1 − γ) represents the benefit of

insurance against asset risks whereas β1−γ reflects the cost of premature liquidation. The

planner has an incentive to induce a run in the sense of choosing a repayment schedule that
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leads some patient investors to withdraw in τ = 1 if and only if χ(1− γ) ≥ β1−γ, i.e., when

the benefit of insurance exceeds the cost.7 Under Lemonisity, χ̃((1 − γ)/γ, ρ) represents

the benefit of insurance against asset risks whereas β̃(1−γ)/γ reflects the cost of premature

liquidation.8 When the planner’s optimal choice of early withdrawal ρl is between π and 1,

it satisfies χ̃((1 − γ)/γ, ρl) = β̃(1−γ)/γ, and the planner has an incentive to induce a partial

run. If the cost of premature liquidation is so low that it is below χ̃((1− γ)/γ, 1), which is

the lower bound of χ̃((1−γ)/γ, ρ), the planner has an incentive to induce a full run. On the

other hand, if the cost of premature liquidation is so high that it is above χ̃((1 − γ)/γ, π),

which is the upper bound of χ̃((1− γ)/γ, ρ), the planner has no incentive to induce a run.

Comparing the likelihood of a run under Opacity and Lemonisity is not straightforward.

First, a partial run is induced by the planner only under Lemonisity. Second, whether a

run is induced or not under Lemonisity depends on β̃, which varies by whether positive or

adverse selection occurs. We, therefore, restrict our focus on a full run. If a full run is

induced, both good and bad banks liquidate all of their assets in τ = 1. As a result, neither

positive nor adverse selection occurs. Then, β̃ = β. Because χ̃((1− γ)/γ, 1) = χ((1− γ)/γ),

the relative value of selling assets early is χ((1− γ)/γ)/β(1−γ)/γ under Lemonisity, which is

equivalent to that under Opacity for a less risk-averse depositor.9 Therefore, we conclude

that the insurance benefit is always greater under Opacity than under Lemonisity. If a full

run is induced under Lemonisity, it is also induced under Opacity. We summarize this finding

in the following proposition.

Proposition 1. If a full run is induced under Lemonisity, a full run is induced under

7Precisely speaking, any ρ ∈ [π, 1] becomes a solution if χ(1− γ) = β1−γ . For purposes of exposition, we
choose ρ = 1 as a solution when χ(1− γ) = β1−γ in Lemma 1.

8χ̃(x, ρ) is equivalent to χ(x) if ρ = 1. Also, notice 1− γ and (1− γ)/γ are both decreasing in γ if γ > 1.
9For example, if the coefficient of CRRA is 2, (1 − γ)/γ = −0.5, implying χ̃((1 − γ)/γ, 1) = χ(1 − 1.5)

and β(1−γ)/γ = β1−1.5. As a result, the relative value of selling assets early is equivalent to that where the
coefficient of CRRA is 1.5 under the Opacity regime.
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Opacity.

Proof. See Appendix A.2.

Depositor welfare becomes largest under Lemonisity and smallest under Transparency.

Under Lemonisity and Opacity, price pooling occurs in τ = 1, providing depositors with

insurance against asset risks. However, constraint (9) weakens insurance against liquidity

risks under Opacity. By knowing the asset return in τ = 2, the planner can better smooth

consumption over time under Lemonisity, and thus depositor welfare under Lemonisity is

equal to or larger than that under Opacity if investors set the price of an asset in τ = 1 by

discounting its unconditional expected return by the factor β. Notice β̃ ≥ β always holds

as adverse selection never occurs. Depositor welfare can, therefore, further increase under

Lemonisity. On the other hand, depositor welfare under Transparency is always lower than

that under Opacity. Because price pooling in τ = 1 provides depositors with insurance

against asset risks under Opacity but not under Transparency, depositor welfare becomes

larger under Opacity. In summary, we can derive the following proposition.

Proposition 2. V (ct, ρt) < V (co, ρo). Moreover, V (co, ρo) ≤ V (cl, ρl).

Proof. See Appendix A.3.

3.5 Discussion

So far, we have implicitly assumed that the planner can preclude investors from knowing the

repayment schedule when they are investigating the asset return of the bank to determine

the price that they will pay for its assets. Recall that depositors choose their withdrawal

strategies without knowing the actual repayment level and investors also do not know it.

As a result, the planner utilizes positive selection to enhance depositor welfare, meaning
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that the planner is better off by precluding the assessment of investors. The next section

explores a decentralized economy in which the planner leaves investors to chase signals

when investigating asset returns. This change dramatically affects depositor welfare under

Lemonisity.

4 The Equilibrium Allocation

We will now study equilibrium in the decentralized economy. In this economy, depositors

choose their withdrawal strategies in τ = 1, and then the bank decides a repayment schedule

based on the withdrawal demand. In repaying depositors, the bank sells assets in the market,

and the asset price depends on the information regime. Our interest is in the interaction

between depositors’ withdrawal strategies and asset valuation.

We first study a simultaneous-move game played only by depositors. Based on the with-

drawal demand, the bank makes repayments to maximize depositor welfare.10 Our focus is on

equilibria, where each depositor chooses her withdrawal strategy to maximize her individual

expected utility. An equilibrium of this withdrawal game is defined as follows.

Definition 2. An equilibrium of this withdrawal game is profile of strategies y∗ such that,

for each i and yi,
11

vi(c(y
∗
i , y

∗
−i), (y

∗
i , y

∗
−i)) ≥ vi(c(yi, y

∗
−i), (yi, y

∗
−i)),

where c is the bank’s repayment schedule.

10Banks operate in a perfectly competitive environment and hence choose the contract that maximizes
depositor welfare (Ennis & Keister, 2006)

11Note that the repayment schedule c depends on ρ, which is determined by y. We denote the bank’s
repayment schedule conditional on y by c(y).
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Based on the strategy profile that depositors choose, the bank sets the repayment schedule

to maximize depositor welfare. Because impatient depositors always withdraw in τ = 1,

y∗i (ωi) = 1 if ωi = 0. This implies that the amount of early withdrawal associated with y∗

is equal to or greater than π. It, therefore, suffices to analyze the range of ρ ∈ [π, 1] for the

repayment schedule of the bank.

It is perhaps worth emphasizing that investors are not players in the game, and they are

the pricing device of assets. Under Transparency, investors know the asset return and value

the asset at the discounted realized return βRz. Under Opacity, investors do not know the

return but do not strategically interact with the bank nor depositors because no one knows

the asset return. Under constraint (9), each bank sells the same amount of assets in τ = 1.

Therefore, there is no positive or adverse selection in the distribution of assets traded in the

market. In such a case, investors value the asset at the discounted expected return βE[Rz].

We use this game to analyze equilibria under Transparency and Opacity, and in the later

section, we will generalize the game to incorporate strategic interactions between the bank

and investors under Lemonisity. Specifically, we will consider that the bank’s repayment

schedule signals the asset quality to investors in the decentralized economy. This feature

motivates the signaling subgame between the bank and investors.

4.1 Equilibrium under Transparency

The bank maximizes depositor welfare V (c, ρ) by choosing the repayment schedule c subject

to the feasibility constraint (6) under the asset price p = βRz. The solution becomes the

best response function of the bank. Because this maximization problem is the same as the

first step of the previous planner’s problem, the solution is ct. The solution is characterized

by the first-order condition:
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u′(ct1,z(ρ)) =
Rzu

′(ct2,z(ρ))

βRz

, ∀z, (10)

which implies that ct1,z(ρ) < ct2,z(ρ),∀z,∀ρ. The payoff of withdrawing in τ = 2 is thus always

greater than that in τ = 1. The dominant strategy for a patient depositor is to withdraw

in period 2, and hence there exists a no-run equilibrium and there does not exist a run

equilibrium.

Proposition 3. A bank run never occurs under Transparency.

Proof. See Appendix A.4.

This no-run equilibrium supports the constrained optimal allocation of resources charac-

terized in Section 3 in which good banks always pay greater amounts than bad ones both

in τ = 1 and τ = 2. It is straightforward to show the ratio ctτ,g(ρ)/c
t
τ,b(ρ) = Rg/Rb,∀τ, ∀ρ.

Another characteristic of the allocation is that repayments in both τ = 1 and τ = 2 are

monotonically decreasing over ρ, as in the standard Diamond and Dybvig (1983) model.

Since ρ = π in the no-run equilibrium, depositor welfare is lower when π is higher, i.e., when

the volume of assets sold to meet withdrawals is higher and thus the quantity of assets sold

at a discount is higher.

4.2 Equilibrium under Opacity

Under Opacity, the bank maximizes V (c, ρ) by choosing c subject to constraints (6) and (9).

Because this maximization problem is the same as the first step of the previous planner’s

problem, the best response function of the bank is co. It is then characterized by

u′(co1(ρ)) =
E[Rzu

′(co2,z(ρ))]

βE[Rz]
,∀z. (11)
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If a patient depositor withdraws in τ = 1, she receives co1(ρ) that is not contingent on state

z. However, if she withdraws in τ = 2, she incurs the risk in the asset return. The bank is,

therefore, providing insurance against the risk in the asset return in period 1, while selling

the asset in τ = 1 will be discounted by the factor β in the financial market. Whether she

prefers to withdraw in period 1 or not depends on the magnitude of this insurance and the

discount.

Lemma 2. u(co1(ρ))


>

=

<

E[u(co2,z(ρ))],∀ρ, if χ(1− γ)


>

=

<

 β1−γ.

Proof. See Appendix A.5.

This lemma implies that the best response of a depositor does not depend on others’

strategies. When the insurance value is greater, the dominant strategy is to withdraw in

τ = 1. When the market discount is greater, the dominant strategy is to withdraw in period

2. Therefore, whether a run occurs and whether the run is a full or partial run depends on

parameter values:

Proposition 4. The economy experiences
an efficient full run

an efficient full run or an efficient partial run or no run

no run

 if χ(1− γ)


>

=

<

 β1−γ.

Proof. See Appendix A.6.

This result shows that, under Opacity, there does not exist parameter values consistent

with both no-run equilibrium and run equilibrium unless χ(1− γ) = β1−γ. The equilibrium

run, if any, is always efficient because one would not be able to improve depositor welfare
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by changing withdrawal behavior, and the constrained optimal allocation of resources is

supported in the equilibrium.

4.3 Equilibrium under Lemonisity

Under Lemonisity, there is information asymmetry regarding the realization of the asset

return in τ = 1: The bank knows it while investors do not know it. Like the previous

sections, depositors decide withdrawal decisions without knowing the asset return. After

observing the withdrawal demand, the bank can decide the repayment schedule. Unlike the

previous sections, the repayment schedule chosen by the bank affects the belief of investors

and hence the asset price. In this section, we augment the model to explicitly recognize the

signaling role of the bank’s repayment schedule.

We study a two-stage game in which the first stage is the withdrawal subgame and the

second stage is a signaling subgame in the spirit of Leland and Pyle (1977). In the first stage,

depositor i chooses yi upon observing her type ωi. In the second stage, the bank chooses

the repayment schedule c, upon observing the asset return Rz and the withdrawal demand

ρ, and then investors evaluate the bank’s asset based on their posterior beliefs on the bank’s

z. The investors know the probability distribution of z, but do not know the asset return

of each bank. They observe the bank’s period-1 repayment c1, and then they evaluate the

bank’s asset return based on the bank’s choice on c1.
12

We use β, not β̃, for pricing assets. In a separating equilibrium, the investors know the

asset return through the repayment level in period 1 and therefore discount the return by

the factor β that reflects purely the inability of the buyer of an asset to operate it as well as

its original owner. In a pooling equilibrium, every bank sells the same amount of assets in

12The difference from the constrained optimal allocation of resources is to allow investors to consider c1 in
asset pricing here. Specifically, in the pricing equation (2), we now include c1 as part of the information set.
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τ = 1 and there is no positive or adverse selection in the distribution of assets traded in the

market.

Investors in this model determine asset prices based on c1 and their posterior beliefs. The

equilibrium in this game, therefore, is characterized by withdrawal strategies, the repayment

schedule, and the investors’ posterior beliefs:

Definition 3. The equilibrium of the banking game is the pair of the bank’s repayment

schedule and profile of depositors’ strategies (c∗, y∗) such that

• Withdrawal stage: Given c∗, for each i and yi,

vi(c
∗(y∗i , y

∗
−i), (y

∗
i , y

∗
−i)) ≥ vi(c

∗(yi, y
∗
−i), (yi, y

∗
−i)),

• Signaling stage: Given ρ∗ =
´ 1
0
y∗i (ωi)di, c

∗ is the bank’s optimal repayment sched-

ule that maximizes depositor welfare given some Bayes consistent beliefs of investors.

Specifically, c∗ satisfies:

∀ρ ∈ [π, 1], c∗ ∈ argmaxc V (c, ρ) subject to the feasibility constraint (6), where

p = β(B[z = g|c1 = c1,z(ρ)]Rg + B[z = b|c1 = c1,z(ρ)]Rb),

under some beliefs of investors satisfying:

∀z′ ∈ {g, b}, ∀c′1 ∈ R+, B[z = z′|c1 = c′1] is Bayes consistent with each bank’s optimal

period-1 repayment when the withdrawal demand is ρ∗.

The equilibrium of the banking game requires the optimality of withdrawal behavior in

accordance with Definition 2 and the optimality of a repayment schedule in the signaling

stage. We model the signaling stage in the spirit of Leland and Pyle (1977). Our focus in
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this stage is on each bank’s sequential rationality and investors’ Bayes consistent beliefs as

in a Perfect Bayesian equilibrium. In the subsequent sections we solve for the equilibrium of

the banking game in a decentralized economy.

4.3.1 Separating equilibrium

We first characterize a separating equilibrium, where good and bad banks choose different

strategies. Because Bayes consistency does not restrict off-equilibrium beliefs, there are

potentially many beliefs that support separating equilibria. However, for the analysis of a

separating equilibrium, it suffices to study the beliefs where the investors believe that the

bank is bad whenever the period-1 repayment is different from the good bank’s. These beliefs

minimize the incentive of each bank to deviate from equilibrium. If a repayment schedule

does not become optimal under these beliefs, then it never becomes optimal under other

beliefs that support separating equilibria. We thus focus on the following point belief in

analyzing a separating equilibrium:

• B[z = g | c1 = c̄1,g] = 1,

• B[z = g | c1 ̸= c̄1,g] = 0,

where c̄1,g = c∗1,g(ρ
∗) is the repayment of each good bank in τ = 1. Here, c∗τ,z(ρ) denotes the

bank’s optimal repayment to each depositor who withdraws in period τ given ρ and z.

Upon learning its asset return and ρ, each of the banks chooses c1 by internalizing its

effect on the asset price. Each of the good banks can sell its assets at a higher price if

investors are convinced that the asset return Rz is Rg. Each of the good banks has to signal

about the return through c1. Each of the bad banks may mimic the behavior of the good

banks to sell its assets at a higher price. Then, we find that each of the good banks always
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chooses to pay more than socially optimal:

Proposition 5. In a separating equilibrium, c∗1,g(ρ
∗) > ct1,g(ρ

∗) and c∗1,b(ρ
∗) = ct1,b(ρ

∗).

Proof. See Appendix A.7.

In a separating equilibrium, investors can distinguish the good banks from the bad banks.

Then, each of the good banks sells its assets at βRg, while each of the bad banks sells its

assets at βRb. Whether such an equilibrium exists or not depends on the extent to which

good banks can raise c1 without bad banks mimicking the raised value of c1.

The bad banks give up mimicking c∗1,g(ρ
∗) because doing so is too costly in that the bad

banks must distribute too much in τ = 1 relative to the small amount they will then be

able to pay in τ = 2, which hinders them from smoothing consumption. In such a case, the

bad banks will choose to distribute ct1,b(ρ
∗), resulting in the optimal allocation of resources

between early and late withdrawers at the bad banks. However, good banks distort their

repayment schedules to induce a price consistent with the asset having a good return by

preventing the bad banks from mimicking the good banks. The resulting allocation is thus

worse than the optimal allocation of resources between early and late withdrawers at the

good banks.

One interesting finding is that there is no full run in a separating equilibrium, and thus

ρ∗ < 1 always holds. If all depositors were to withdraw in τ = 1, then bad banks would

choose to mimic good banks. The cost of mimicking is that doing so distorts consumption

smoothing between periods 1 and 2. However, when all depositors withdraw in τ = 1, then

bad banks do not have to worry about the period-2 repayments and there is no cost of

mimicking. Therefore, a full run does not occur in a separating equilibrium.
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4.3.2 Inefficient bank runs

Although a full run does not occur, a partial run can occur in a separating equilibrium.

Although good banks can choose to allocate their resources optimally among early and late

withdrawers, they choose to deviate from such an allocation in order to induce a higher price.

Specifically, they pay early withdrawers excessively to differentiate themselves from the bad

banks. Anticipating this distorted allocation, some depositors are incentivized to run on the

banks. Since a separating equilibrium exists only if ρ∗ < 1, such a run is always partial.

Such a partial run is inefficient. In redeeming more withdrawals in τ = 1, banks have to

liquidate more assets in τ = 1. Liquidating assets in τ = 1 is costlier than holding them until

τ = 2. As in the canonical Diamond and Dybvig (1983) model, this run equilibrium yields

lower depositor welfare than the no-run equilibrium. This result shows that an inefficient run

can be caused by a signaling motive even if each bank can use a complete deposit contract.

Proposition 6. In a separating equilibrium, a partial inefficient run can occur.

Proof. See Appendix A.8.

4.3.3 Pooling equilibrium

We will now turn our focus to a pooling equilibrium in this environment, where both the

good and bad banks choose the same strategy. When analyzing a pooling equilibrium, we

again set the point belief to minimize the banks’ incentives to deviate from equilibrium such

that: given c̄1,p

• B[z = g | c1 = c̄1,p] = qg,

• B[z = g | c1 ̸= c̄1,p] = 0,
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where c̄1,p = c∗1,z(ρ
∗),∀z, is the common repayment in τ = 1. If a repayment schedule is not

optimal under these beliefs, then it never becomes optimal under other beliefs that support

pooling equilibria. It, therefore, suffices to study this belief for the analysis of a pooling

equilibrium.

In a pooling equilibrium, the good banks give up differentiating themselves from the bad

banks, and the bad banks mimic the good banks. Investors cannot distinguish the good

banks from the bad banks, and hence they purchase any asset at βE[Rz]. The number of

withdrawals is one determinant of whether a pooling equilibrium exists or not. As discussed

in the earlier section, the cost of mimicking the good banks for the bad banks is that doing so

undermines consumption smoothing between τ = 1 and τ = 2. As more depositors withdraw

in τ = 1, such a cost becomes smaller, and each of the bad banks has a higher incentive to

mimic the good banks. In particular, the full-run equilibrium under Opacity is supported as

a pooling equilibrium. In addition, a partial run is also supported in a pooling equilibrium.

We find:

Proposition 7. There exists a pooling equilibrium with any ρ∗ ∈ [ρ, 1], where ρ is some

lower bound, and

c∗1,z(ρ
∗) = βE[Rz]/(ρ

∗ + (1− ρ∗)(χ(1− γ)/β1−γ)1/(γ−1)),∀z.

Proof. See Appendix A.9.

We compare depositor welfare under each regime in the next section.
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4.4 Comparison

We conclude the analysis of equilibria in the decentralized economy with the comparison

of depositor welfare associated with each equilibrium. We first compare the equilibrium in

Opacity and Transparency and find:

Proposition 8. The equilibrium under Opacity is strictly welfare-superior to the equilibrium

under Transparency.

Proof. See Appendix A.10.

This result is attributed to the fact that banks can provide insurance against asset risks in

period 1 in the spirit of the classic Hirshleifer (1971) effect. Because the equilibrium matches

the constrained optimal allocation of resources under Opacity and Transparency, this result

is consistent with Proposition 2.

It is straightforward to show that a separating equilibrium under Lemonisity is even worse

than the equilibrium under Transparency:

Proposition 9. A separating equilibrium under Lemonisity is strictly welfare-inferior to the

equilibrium under Transparency.

Proof. See Appendix A.11.

This result is driven by the fact that the good banks distort the allocation of resources

between early and late withdrawers. Since investors can infer the realization of the asset

return, the difference from the equilibrium under Transparency is the distorted allocation

that is chosen by the good banks. This result holds even if an inefficient run occurs since

such a run only increases costly early liquidation without providing insurance against asset

risks.
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A pooling equilibrium under Lemonisity also has a clear relation with the equilibrium

under Opacity.

Proposition 10. A pooling equilibrium under Lemonisity is weakly welfare-inferior to the

equilibrium under Opacity.

Proof. See Appendix A.12.

These equilibria yield the same level of welfare when a run occurs under both equilibria,

but a pooling equilibrium can be worse when a run occurs only under a pooling equilib-

rium. Propositions 9 and 10 imply that information asymmetry in the asset market reduces

depositor welfare in equilibrium. When a repayment schedule has a signaling role, banks

distort the allocation of resources between early and late withdrawers to induce preferable

asset prices, which in turn, results in worse depositor welfare.

5 Optimal Obfuscation

The preceding sections have studied the constrained optimal allocation of resources and the

decentralized equilibrium under each information regime. In this section, we endogenize the

information regime. Specifically, the planner or the bank chooses the opacity of its asset in

period 0, which determines the probability distribution of information regimes (s). Let θ

denote the level of obfuscation chosen by the planner or the bank. θ, for example, reflects

accounting quality. We define the probability distribution as follows:


P[s = t] = 1− θ

P[s = l] = θ(1− θη−1)

P[s = o] = θη

 , (12)
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where η ∈ [1,+∞) ∪ {+∞}. In this setup, θ captures the probability of “opacity” shock,

which is the probability that investors fail to observe z, and θη−1 represents the probability

that the planner or the bank fails to observe z. (η−1) captures how many times the planner

or the bank has to receive opacity shocks more than investors to fail to observe asset returns.

For example, suppose that the accountant of the bank or an external pricing service

provider produces multiple reports about the bank’s assets. Suppose that the initial report

is publicly available and the remaining reports are available only to the planner or the bank.

The initial report is, for instance, the bank’s accounting statement or the announcement of

its net asset value (NAV). The remaining reports are the planner’s or the bank’s internal

documents. With probability θ, each report fails to contain the information about asset

quality (i.e., each report obfuscates asset quality with probability θ). θ is higher when,

for example, the bank’s assets are less likely to be marked-to-market, accounting rules give

more discretion about whether a bank’s assets are to be reported at fair value, or the report’s

contents are dated. Investors only read the initial report published to them and, because they

spread their research efforts across a portfolio of assets, choose not to investigate further.

The planner or the bank, in contrast, reads all the reports. Suppose the planner or the bank

reads two reports (η = 2). If asset quality is not obfuscated in the initial report, then both

investors and the planner/bank come to know asset quality. Thus, the Transparency regime

occurs with probability 1− θ. If the first report obfuscates asset quality, then investors will

fail to learn asset quality while the planner or the bank will read and may learn from the

second report. If obfuscation again occurs at the second read, the planner or the bank fails

to know asset quality as well. Opacity therefore occurs with probability θ2. If obfuscation

does not occur at the second read, the planner or the bank comes to know asset quality.

Lemonisity thus occurs with probability θ(1− θ).
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When η = +∞, the planner or the bank never fails to observe asset returns. We then

assume P[s = o] = 0,∀θ, so that the economy never experiences Opacity. We use this

probability distribution to characterize the optimal level of θ where the planner or the bank

chooses to maximize expected depositor welfare in period 0.13

5.1 Optimal obfuscation in a centralized economy

In this section, we examine the case where the planner endogenously chooses the information

structure. Specifically, the planner first optimizes depositor welfare in accordance with the

constrained optimal allocation of resources described in Section 3 and second chooses the

level of obfuscation that maximizes depositor welfare expected over information regimes. We

characterize the planner’s problem of the optimal level of obfuscation as

max
θ∈[0,1]

∑
j∈{t,l,o}

P[s = j]V (cj, ρj). (13)

As θ increases, the information regime shifts from Transparency, Lemonisity, to Opacity.

Proposition 2 suggests that depositor welfare is largest under Lemonisity. Depending on

the choice of parameters, the planner’s objective function can be inverse U-shaped and an

interior solution can exist. Specifically, we summarize the solution of the planner’s problem

in Proposition 11.

13We use this specification of obfuscation for purposes of exposition. We can alternatively use any proba-
bility distributions that satisfy that an increase in θ makes the Lemonisity regime more likely to realize and
a substantial increase in θ makes the Opacity regime more likely to realize. Such an alternative specification
will not change our discussions on the optimal level of obfuscation because the welfare rank of information
regimes is independent of θ.
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Proposition 11. The optimal level of obfuscation in a centralized economy is θc such that

θc = min{((V (cl, ρl)− V (ct, ρt))/η(V (cl, ρl)− V (co, ρo)))1/(η−1), 1}.

Proof. Trivial.

Proposition 11 shows that the optimal level of obfuscation is determined under a trade-off

between insurance against asset risks and insurance against liquidity risks. The optimal level

of obfuscation increases with V (cl, ρl)−V (ct, ρt), which is the difference of depositor welfare

between Lemonisity and Transparency. Because this difference reflects the benefit from

insurance against asset risks, the optimal level of obfuscation increases with this difference.

However, it decreases with V (cl, ρl) − V (co, ρo), which is the difference of depositor welfare

between Lemonisity and Opacity. Because this difference reflects the distortion to insurance

against liquidity risks that arises because of constraint (9), the optimal level of obfuscation

is decreasing in this term.

Note that a corner solution is possible. Recall from Proposition 1 that if a full run occurs

under Lemonisity, then a full run also occurs under Opacity. If a full run occurs, there is no

distinction of Lemonisity and Opacity. Under both regimes, the planner sells all the assets

at the same pooled price in period 1. As there is neither positive nor adverse selection,

β̃ = β under Lemonisity. Then, V (cl, ρl)−V (co, ρo) = 0, meaning that there is no distortion

to insurance against liquidity risks. The planner keeps raising the level of obfuscation until

hitting the upper bound of 1. Alternatively, when η = +∞, the probability of Opacity

becomes 0 as the planner never fails to observe asset returns. The planner, therefore, keeps

raising the level of obfuscation, because constraint (9) never binds. We, however, find no

possibility that the planner would choose complete transparency. At θ = 0, the marginal
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value of raising obfuscation level is positive as the gain from insurance against asset risks

exceeds the loss from distortion to insurance against liquidity risks.

5.2 Optimal obfuscation in a decentralized economy

We will now study the optimal obfuscation level in equilibrium. The bank chooses θ in

period 0, and each choice of θ creates a banking game in τ = 1. Anticipating the depositor

welfare associated with the equilibrium path in each information regime, the bank chooses

θ to maximize expected depositor welfare.

Under Transparency and Opacity (s = t, o), there is no difference between the con-

strained optimal and the equilibrium allocation of resources. The bank expects depositor

welfare V (ct, ρt) and V (co, ρo), respectively. However, under Lemonisity, the bank expects

the equilibria that involve signaling in the decentralized economy. Denoting the deposi-

tor welfare associated with the equilibrium that involves signaling by V (csignal, ρsignal), the

bank’s problem is:

max
θ∈[0,1]

∑
j∈{t,signal,o}

P[s = j]V (cj, ρj), (14)

where there are multiple candidates for (csignal, ρsignal) as we have multiple equilibria in

s = signal. The solution to this problem depends on which equilibrium path we consider

for s = signal.

We first consider a separating equilibrium. From Propositions 8 and 9, it is known that

a separating equilibrium in s = signal yields the least depositor welfare. Therefore, the

solution to the problem is at a corner. Whether the optimal level of obfuscation is 0 or 1

depends on the value of η:

Proposition 12. Consider a separating equilibrium in s = signal. The optimal level of
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obfuscation in a decentralized economy is θd = 1 if η < +∞, and θd = 0 if η = +∞.

Proof. Trivial.

When η = +∞, there is no benefit of raising θ as maximizing θ only raises the probability

of Lemonisity occurring, and thus the bank minimizes θ as much as possible.

We then consider a pooling equilibrium. Proposition 10 implies that the equilibrium in

s = o is dominant in terms of depositor welfare:

Proposition 13. Consider a pooling equilibrium in s = signal. The optimal level of obfus-

cation in a decentralized economy is θd = 1 if η < +∞, and θd ∈ {0, 1} if η = +∞.

Proof. Trivial.

When η = +∞, Opacity never occurs. The expected depositor welfare becomes the average

of that under Transparency and Lemonisity weighted by θ. The optimal level of obfuscation

in a decentralized economy θd is therefore either 0 or 1, depending on the depositor welfare

under a pooling equilibrium.

The intuition behind these results is that banks choose to be completely transparent or

give up acquiring the information about asset returns to avoid costly signaling, anticipating

the distortion of depositor welfare associated with the information asymmetry. This result

implies that some banks choose to be perfectly opaque, as Dang et al. (2017) point out, but

we also show that other banks choose to be perfectly transparent.

5.3 Discussion

In the presence of bail-in tools, asymmetric information delivers two possible but opposing

results. When bail-ins do not signal the asset quality, banks may insure depositors against
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asset risks by selling assets at a pooled price to uninformed investors and also against liquid-

ity risks by adjusting repayments through bail-ins. When bail-ins signal the asset quality,

bail-ins may reveal the asset quality to uninformed investors, undermining the risk-sharing

benefits. Thus, the optimal level of obfuscation can be moderate in the former scenario and

extremely low or high in the latter scenario.

Which case is more likely in the current banking system? The literature has argued that

evaluating banks’ assets by uninformed investors is often costly, which indicates the first

scenario. However, disclosing banks’ flexible repayments could be common if swing pricing

were introduced. For example, with swing pricing, UK fixed income funds can flexibly set

repayments through swing factors (Jin et al., 2021). If swing factors were required to be

disclosed in a timely manner, they could signal asset quality to investors who would buy

assets liquidated by funds seeking to meet redemptions. The second case then would be

increasingly plausible.

6 Conclusion

Introducing bail-in tools and enhancing transparency were two major reforms after the fi-

nancial crisis of 2007-08. While each of the reforms has been studied intensively, it is not

well understood how they interact. This paper has studied the interaction between opacity

and bail-ins with a particular focus on signaling roles of bail-ins. In identifying such an inter-

action, we consider depositors’ withdrawal behavior and asset valuation. We have presented

a model of financial intermediation where banks’ incentives to bail-in depositors depend on

information regimes.

Our model has the following three key ingredients: (i) each bank sells assets in the
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market in redeeming short-term repayments, (ii) a repayment schedule may signal the asset

quality, (iii) each bank can form a complete deposit contract, which we interpreted as bail-

ins. Banks may bail-in depositors when they are distressed, and such an action allocates

resources optimally between early and late withdrawers. Transparency allows banks to bail-

in depositors in a timely manner. Opacity causes a delay in bail-ins, allowing banks to

sell assets at a pooled price and provide insurance against asset risks. However, if banks

privately know the losses, bail-ins may signal the asset quality. When bail-ins do not signal

the quality, banks immediately bail-in depositors and sell assets at a pooled price, which can

insure depositors against both asset and liquidity risks.14 When bail-ins signal the quality,

banks attempt to delay bail-ins to sell their assets at a higher price. Such incentives to delay

bail-ins result in excessive short-term repayments and inefficient runs.

We used this model to discuss the optimal degree of obfuscation. We find that information

asymmetry in the asset market induces the optimal allocation of resources between early and

late withdrawers unless bail-ins signal the asset quality to financial markets. However, if bail-

ins signal the asset quality, the allocation will be distorted and yield even lower depositor

welfare than the other information regimes. To avoid the signaling cost of bail-ins, banks

choose to be transparent or opaque so that they will not know asset quality privately.

Regulators or banks may adjust disclosure policies to achieve the optimal level of obfusca-

tion. For example, they can modulate θ by introducing stricter accounting rules that require

banks’ assets to be measured at fair value or weaker rules that allow these assets to be mea-

sured at book value. Alternatively, they can adjust the frequency of updating and disclosing

14Under Opacity, in τ = 1, banks cannot adjust repayments, depending on asset returns. As a result,
they pay too low if they are good and too high if they are bad. Under Lemonisity without signaling,
banks can adjust up (down) repayments if they are good (bad), relative to their repayments under Opacity.
Then, banks provide better insurance against liquidity risks: Depositors, facing liquidity shocks, experience
smoother consumption, because the consumption level of an impatient depositor becomes closer to that of a
patient one. Banks, knowing their asset returns privately, bail-in depositors even if they face a pooled price.
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the NAVs of fixed income funds. However, because of potential unintended consequences,

policy makers need to be cautious when considering disclosure policies and bail-ins. For

example, the recent reforms of fixed income funds aimed to enhance the disclosure of their

repayments, and at the same time, have authorized swing prices and implemented liquidity

fees. Under the situation where funds can know the asset quality privately, these bail-in tools

may become signaling instruments and distort the allocation of resources between early and

late withdrawers. In such a situation, enhancing disclosure may lead to transparency, but

it may also induce a signaling game between investors and banks which reduces depositor

welfare by distorting the allocation of resources between early and late withdrawers.

Alternatively, regulators may consider restricting banks from holding certain types of

assets to achieve the optimal level of obfuscation. Specifically, they may categorize types

of assets based on the resulting information structure and prohibit banks from holding the

assets that result in undesirable outcomes. For example, limiting banks to holding only assets

designed as Level 1 assets by Statement 157 of the Financial Accounting Standards Board

could implement Transparency. Dang et al. (2017) view commercial real estate loans as assets

whose characteristics and values are opaque. Restricting banks from holding these loans may

reduce the likelihood of Opacity or Lemonisity. Another example of an asset that could result

in Lemonisity is HTM securities, where the investors’ assessments of the asset’s valuation

can depend on the bank’s choice of accounting rules. A further example is an off-chain

digital asset, where a possibility of double-spending makes information on the asset’s value

asymmetric. Given that Lemonisity is the least desirable equilibrium outcome, regulators

may always desire to prohibit banks from holding assets associated with Lemonisity.
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Online Appendix

A Proof

A.1 Proof for Lemma 1

We solve the planner’s problem in two steps. We first optimize c given ρ and second optimize

ρ under the optimized repayment schedule. In our exposition, we use α (α ∈ {g, b,m}) to

represent the type of asset return. If α = z (z ∈ {g, b}), the return is Rz. If α = m, the

return is the expectation, i.e., E[Rz].

Under Transparency and Lemosity, the planner’s problem given ρ is

max{c1,z(ρ),c2,z(ρ)}z∈{g,b} E[ρu(c1,z(ρ)) + (1− ρ)u(c2,z(ρ))]

s.t. ρ
c1,z(ρ)

p
+ (1− ρ)

c2,z(ρ)

Rz

≤ 1,∀z.

Then, the problem is reducible to the problem contingent on state z:

maxc1,z(ρ),c2,z(ρ) ρu(c1,z(ρ) + (1− ρ)u(c2,z(ρ))

s.t. ρ
c1,z(ρ)

β̃Rα

+ (1− ρ)
c2,z(ρ)

Rz

≤ 1.

Because Rm = E[Rz], α = z with β̃ = β under Transparency and α = m under Lemosity.

The first order condition implies:

u′(c1,z(ρ)) =
Rz

β̃Rα

u′(c2,z(ρ)).
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The solution for c2,z(ρ) is therefore

cα,z2 (ρ) = cα,z1 (ρ)

(
Rz

β̃Rα

)1/γ

.

As the constraint binds, the solution for c1,z(ρ) is

cα,z1 (ρ) =
β̃Rα

ρ+ (1− ρ)(Rz/(β̃Rα))(1−γ)/γ
.

Thus, ctτ,z(ρ) = cz,zτ (ρ) with β̃ = β and clτ,z(ρ) = cm,z
τ (ρ).

Using the Lagrangian, we can define the value function evaluated at the optimal repay-

ment schedule as

L(ρ) = E[ρu(cα,z1 (ρ)) + (1− ρ)u(cα,z2 (ρ))] +
∑

z∈{g,b}

λα,z(ρ)

(
1− ρcα,z1 (ρ)

β̃Rα

− (1− ρ)cα,z2 (ρ)

Rz

)
,

where λα,z(ρ) is the non-negative Lagrange multiplier for the resource constraint in state z.

Then, from the first-order condition,

λα,z(ρ) = qzβ̃Rαu
′(cα,z1 (ρ)).
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Using the envelope theorem,

dL(ρ)

dρ
= (E[u(cα,z1 (ρ))]− E[u(cα,z2 (ρ))]) +

∑
z∈{g,b}

λα,z(ρ)

(
cα,z2 (ρ)

Rz

− cα,z1 (ρ)

β̃Rα

)

= (E[u(cα,z1 (ρ))]− E[u(cα,z2 (ρ))]) +
∑

z∈{g,b}

qzβ̃Rαu
′(cα,z1 (ρ))

(
cα,z2 (ρ)

Rz

− cα,z1 (ρ)

β̃Rα

)
= (E[u(cα,z1 (ρ))]− E[u(cα,z2 (ρ))]) +

∑
z∈{g,b}

qz((1− γ)u(cα,z2 (ρ))− (1− γ)u(cα,z1 (ρ)))

= γ(E[u(cα,z1 (ρ))]− E[u(cα,z2 (ρ))]).

We thus claim Remark 1.

Remark 1. For s ∈ {t, l}, dL(ρ)/dρ ⋛ 0 ⇔ E[u(cs1,z(ρ))]− E[u(cs2,z(ρ))] ⋛ 0.

As ct1,z(ρ) < ct2,z(ρ),∀z,∀ρ, E[u(ct1,z(ρ))] < E[u(ct2,z(ρ))],∀ρ. Remark 1 implies dL(ρ)/dρ <

0,∀ρ. As a result, L(ρ) is greatest when ρ is its smallest possible value π, implying ρt = π.

Next, notice

E[u(cl1,z(ρ))]
E[u(cl2,z(ρ))]

=
E[cl1,z(ρ)1−γ]

E[cl2,z(ρ)1−γ]

=
E[cl1,z(ρ)1−γ]

E[(cl1,z(ρ)(Rz/(β̃Rm))1/γ)1−γ]

=
(β̃Rm)

(1−γ)/γ

E[cl1,z(ρ)1−γR
(1−γ)/γ
z ]/E[cl1,z(ρ)1−γ]

=
β̃(1−γ)/γR

(1−γ)/γ
m

Ẽρ[R
(1−γ)/γ
z ]

=
β̃(1−γ)/γ

χ̃((1− γ)/γ, ρ)
.

Before determining the sign of dL(ρ)/dρ, we examine function χ̃(x, ρ). The probability of

the good state under the measure used by the expectation operator Ẽρ as defined in Section
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3.4 is

qgc
l
1,g(ρ)

1−γ

E[cl1,z(ρ)1−γ]
=

1 +
qb
qg

(
cl1,b(ρ)

cl1,g(ρ)

)1−γ
−1

.

Notice

cl1,b(ρ)

cl1,g(ρ)
=

ρ(β̃Rm)
(1−γ)/γ + (1− ρ)Rg

(1−γ)/γ

ρ(β̃Rm)(1−γ)/γ + (1− ρ)Rb
(1−γ)/γ

.

Also, notice

∂(cl1,b(ρ)/c
l
1,g(ρ))

∂ρ
=

(β̃Rm)
(1−γ)/γ(Rb

(1−γ)/γ −Rg
(1−γ)/γ)

(ρ(β̃Rm)(1−γ)/γ + (1− ρ)Rb
(1−γ)/γ)2

> 0.

Therefore,

∂(qgc
l
1,g(ρ)

1−γ/E[cl1,z(ρ)1−γ])

∂ρ
> 0.

Recall

χ̃(x, ρ) =
Ẽρ[R

x
z ]

Rx
m

.

As Rx
g < Rx

b ,∀x < 0, the numerator decreases with the probability of good state under the

measure used by expectation operator Ẽρ if x < 0. Also, Ẽ1 = E, trivially. From these

observations, we claim Remark 2.

Remark 2. If x < 0, ∂χ̃(x, ρ)/∂ρ < 0. χ̃(x, 1) = χ(x).
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Remark 2 implies E[u(cl1,z(ρ))]/E[u(cl2,z(ρ))] strictly increases with ρ. If β̃(1−γ)/γ/χ̃((1 −

γ)/γ, π) ≥ 1, E[u(cl1,z(ρ))]/E[u(cl2,z(ρ))] ≥ 1,∀ρ, suggesting E[u(cl1,z(ρ))] − E[u(cl2,z(ρ))] ≤

0,∀ρ, and dL(ρ)/dρ ≤ 0,∀ρ. Because these hold with strict inequality when ρ > π, the

optimal level of ρ is the smallest possible value π, implying ρl = π. If β̃(1−γ)/γ/χ̃((1 −

γ)/γ, 1) ≤ 1, E[u(cl1,z(ρ))]/E[u(cl2,z(ρ))] ≤ 1,∀ρ, suggesting E[u(cl1,z(ρ))] − E[u(cl2,z(ρ))] ≥

0,∀ρ, and dL(ρ)/dρ ≥ 0,∀ρ. Because these hold with strict inequality when ρ < 1, the

optimal level of ρ is its largest possible value 1, implying ρl = 1. Otherwise, there is a unique

ρl ∈ (π, 1) such that E[u(cl1,z(ρl))]/E[u(cl2,z(ρl))] = 1. Then, E[u(cl1,z(ρl))]−E[u(cl2,z(ρl))] = 0

and dL(ρl)/dρ = 0. Trivially, if ρ < ρl, dL(ρ)/dρ > 0, and, if ρ > ρl, dL(ρ)/dρ < 0. Then,

ρl maximizes the value function.

Under Opacity, the planner is subject to constraint (9) and its problem given ρ is

maxc1(ρ),{c2,z(ρ)}z∈{g,b} ρu(c1(ρ)) + E[(1− ρ)u(c2,z(ρ))]

s.t. ρ
c1(ρ)

βRm

+ (1− ρ)
c2,z(ρ)

Rz

≤ 1, ∀z.

The first order condition implies:

u′(c1(ρ)) =
E[Rzu

′(c2,z(ρ))]

βRm

.

Its solution for c1(ρ) and c2,z(ρ) is therefore

co1(ρ) =
βRm

ρ+ (1− ρ)(χ(1− γ)/β1−γ)1/γ
,

co2,z(ρ) =
βRm

ρ+ (1− ρ)(χ(1− γ)/β1−γ)1/γ
Rz

βRm

(
χ(1− γ)

β1−γ

)1/γ

,∀z,

respectively.
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Using the Lagrangian, we can define the value function evaluated at the optimal repay-

ment schedule as

L(ρ) = ρu(co1(ρ)) + E[(1− ρ)u(co2,z(ρ))] +
∑

z∈{g,b}

λo
z(ρ)

(
1− ρco1(ρ)

βRm

−
(1− ρ)co2,z(ρ)

Rz

)
,

where λo
z(ρ) is the non-negative Lagrange multiplier for the resource constraint in state z.

Then, from the first-order condition,

λo
z(ρ) = qzRzu

′(co2,z(ρ)).

Using an envelope theorem,

dL(ρ)

dρ
= (u(co1,z(ρ))− E[u(co2,z(ρ))]) +

∑
z∈{g,b}

λo
z(ρ)

(
co2,z(ρ)

Rz

− co1(ρ)

βRm

)

= (u(co1,z(ρ))− E[u(co2,z(ρ))]) +
∑

z∈{g,b}

qzRzu
′(co2,z(ρ))

(
co2,z(ρ)

Rz

− co1(ρ)

βRm

)
= (u(co1,z(ρ))− E[u(co2,z(ρ))]) +

∑
z∈{g,b}

qz((1− γ)u(co2,z(ρ))− (1− γ)u(co1(ρ)))

= γ(u(co1,z(ρ))− E[u(co2,z(ρ))]).

We thus claim Remark 3.

Remark 3. dL(ρ)/dρ ⋛ 0 ⇔ u(co1(ρ))− E[u(co2,z(ρ))] ⋛ 0.
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Next, notice

u(co1(ρ))

E[u(co2,z(ρ))]
=

co1(ρ)
1−γ

E[co2,z(ρ)1−γ]

=
co1(ρ)

1−γ

E[co1(ρ)1−γ(Rz/(βRm))1−γ(χ(1− γ)/β1−γ)(1−γ)/γ]

=
β1−γR1−γ

m

E[R1−γ
z ]

(β1−γ/χ(1− γ))(1−γ)/γ

=

(
β1−γ

χ(1− γ)

)1/γ

.

From this result, Remark 3 tells us the sign of dL(ρ)/dρ. If β1−γ/χ(1−γ) > 1, u(co1(ρ))/E[u(co2,z(ρ))] >

1,∀ρ, suggesting u(co1(ρ)) − E[u(co2,z(ρ))] < 0,∀ρ, and dL(ρ)/dρ < 0,∀ρ. The optimal

level of ρ is the smallest possible value π, implying ρo = π. If β1−γ/χ(1 − γ) ≤ 1,

u(co1(ρ))/E[u(co2,z(ρ))] ≤ 1,∀ρ, suggesting u(co1(ρ)) − E[u(co2,z(ρ))] ≥ 0,∀ρ, and dL(ρ)/dρ ≥

0,∀ρ. The optimal level of ρ is the largest possible value 1, implying ρo = 1.

A.2 Proof for Proposition 1

Before proving Proposition 1, we first study βx/χ(x). Let f(x) = βx/χ(x). Then, f ′(x) =

βx(ln βχ(x)− χ′(x))/χ(x)2. Notice

χ′(x) =
E[lnRzR

x
z ](E[Rz])

x − E[Rx
z ] lnE[Rz](E[Rz])

x

(E[Rz])2x

=
E[lnRzR

x
z ]

(E[Rz])x
− lnE[Rz]χ(x).
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Also, notice

f ′(x) =
βx(ln βχ(x)− χ′(x))

χ(x)2

=
βx(ln βχ(x)− (E[lnRzR

x
z ]/(E[Rz])

x − lnE[Rz]χ(x)))

χ(x)2

=
βx(ln βE[Rz]χ(x)− E[lnRzR

x
z ]/(E[Rz])

x)

χ(x)2

= f(x)

(
ln βE[Rz]−

E[lnRzR
x
z ]

E[Rx
z ]

)
.

Then, if f ′(x) = 0,

f ′′(x) = −f(x)
∂(E[lnRzR

x
z ]/E[Rx

z ])

∂x

= −f(x)
E[(lnRz)

2Rx
z ]E[Rx

z ]− (E[lnRzR
x
z ])

2

(E[Rx
z ])

2

= f(x)

((
E[Rx

z lnRz]

E[Rx
z ]

)2

− E[Rx
z (lnRz)

2]

E[Rx
z ]

)
= f(x)((Ê[lnRz])

2 − Ê[(lnRz)
2]),

where Ê is the expectation operator under the modifed measure defined by the probability

of state z ∈ Z being qzR
x
z/E[Rx

z ]. Due to the convexity of a quadratic function, Jensen’s

inequality implies

f ′′(x) = f(x)((Ê[lnRz])
2 − Ê[(lnRz)

2])

< 0.

Remark 4. If f ′(x) = 0, f ′′(x) < 0.

We now prove χ((1 − γ)/γ) ≥ β(1−γ)/γ ⇒ χ(1 − γ) ≥ β(1−γ). Suppose χ((1 − γ)/γ) ≥
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β(1−γ)/γ.

To establish contradiction, assume χ(1−γ) < β1−γ. Then, f(1−γ) > 1 and f((1−γ)/γ) ≤

1. Because f(1 − γ) > 1 and f(0) = 1, if f((1 − γ)/γ) < 1, f has an interior minimum at

x = d, where d ∈ (1− γ, 0). Then, f ′(d) = 0 and f ′′(d) ≥ 0. But, this is not possible to hold

as f ′′(x) < 0 if f ′(x) = 0 according to Remark 4. Thus, f((1− γ)/γ) = 1.

f is not flat on the interval [(1 − γ)/γ, 0], so f(x′) > 1 or f(x′) < 1 at some x′ ∈

((1− γ)/γ, 0). If f(x′) < 1 at some x′ ∈ ((1− γ)/γ, 0), f has an interior minimum at x = d,

where d ∈ ((1−γ)/γ, 0). Based on the previous argument, this is not possible to hold. Thus,

f(x′) > 1 at some x′ ∈ ((1− γ)/γ, 0).

Because f(1−γ) > 1 and f(x′) > 1 at some x′ ∈ ((1−γ)/γ, 0) whereas f((1−γ)/γ) = 1,

f has an interior minimum at x = d, where d ∈ (1−γ, x′). Based on the previous argument,

this is not possible to hold.

Therefore, the initial assumption is wrong. We claim Remark 5.

Remark 5. χ((1− γ)/γ) ≥ β(1−γ)/γ ⇒ χ(1− γ) ≥ β(1−γ).

If a full run occurs under Lemosity, ρl = 1. Then, cl1,z(ρ
l) = β̃Rm,∀z. Because both

the price of an asset and the period-1 repayment level are uniform across banks, there is

neither positive nor adverse selection in the distribution of assets traded in the market.

Therefore, if β̃ is acceptable, β̃ = β. Lemma 1 suggests a full run under Lemosity is

equivalent to β̃(1−γ)/γ/χ̃((1−γ)/γ, 1) ≤ 1. Given Remark 2, this condition, under acceptable

β̃, is equivalent to

β(1−γ)/γ/χ((1− γ)/γ) ≤ 1.
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Applying Remark 5, we can show

β(1−γ)/χ(1− γ) ≤ 1.

Lemma 1 implies ρo = 1.

A.3 Proof for Proposition 2

Consider the following planner’s problem:

max{c1,z(ρ),c2,z(ρ)}z∈{g,b} E[ρu(c1,z(ρ)) + (1− ρ)u(c2,z(ρ))]

s.t. ρ
E[c1,z(ρ)]
βRm

+ (1− ρ)
c2,z(ρ)

Rz

≤ 1,∀z.

The first order condition implies:

u′(c1,z(ρ)) =
E[Rzu

′(c2,z(ρ))]

βRm

,∀z.

Section A.1 suggests this condition is satisfied under co. Because co satisfies the resource

constraint, it becomes the solution of this problem. Also, notice ct satisfies the resource

constraint. However, ct does not satisfy the above condition, as c1,g(ρ) = c1,b(ρ) is required

to satisfy it. ct is not the solution of this problem. From this observation, we can con-

clude V (ct, ρt) < V (co, ρt) ≤ V (co, ρo), which completes the proof of the first part of the

proposition.

If β̃ = β, the planner’s problem under Opacity is same as the problem under Lemosity

except for the presence of constraint (9). Because the planner is more constrained, its

value is equal to or smaller under Opacity than under Lemosity. Therefore, if β̃ = β,
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V (co, ρo) ≤ V (cl, ρl). We now know

cl1,b(ρ)

cl1,g(ρ)
=

ρ(β̃Rm)
(1−γ)/γ + (1− ρ)Rg

(1−γ)/γ

ρ(β̃Rm)(1−γ)/γ + (1− ρ)Rb
(1−γ)/γ

≤ 1.

Therefore, adverse selection never occurs for any β̃ and ρ. Under acceptable β̃, β̃ ≥ β. Thus,

it suffices to show that V (cl, ρl) increases with β̃ to prove the latter part of the proposition.

Using the Lagrangean, we can define the value function evaluated at the optimized repayment

schedule and withdrawal amount under Lemosity as

L(β̃) = E[ρlu(cl1,z(ρl)) + (1− ρl)u(cl2,z(ρ
l))]

+
∑

z∈{g,b}

λl
z(ρ

l)

(
1−

ρlcl1,z(ρ
l)

β̃Rm

−
(1− ρl)cl2,z(ρ

l)

Rz

)
,

where λl
z(ρ) is the non-negative Lagrange multiplier for the resource constraint in state z

given ρ. Using an envelope theorem, we find:

dL(β̃)

dβ̃
=

∑
z∈{g,b}

λl
z(ρ

l)
ρlcl1,z(ρ

l)

β̃2Rm

≥ 0.

This result suggests that V (cl, ρl) increases with β̃.

A.4 Proof for Proposition 3

Under the withdrawal subgame, given ρ and c, each patient depositor runs if E[u(c1,z(ρ))] >

E[u(c2,z(ρ))] and waits if E[u(c1,z(ρ))] < E[u(c2,z(ρ))]. Otherwise, the patient depositor

57



becomes indifferent between running and waiting. Then, the equilibrium number of with-

drawal ρ∗ satisfies the following: ρ∗ = π if E[u(c1,z(ρ∗))] < E[u(c2,z(ρ∗))], ρ∗ ∈ [π, 1] if

E[u(c1,z(ρ∗))] = E[u(c2,z(ρ∗))], and ρ∗ = 1 if E[u(c1,z(ρ∗))] > E[u(c2,z(ρ∗))].

Under Transparency, c = ct. According to Section A.1, E[u(ct1,z(ρ))] < E[u(ct2,z(ρ))],∀ρ,

and hence ρ∗ = π .

A.5 Proof for Lemma 2

See Section A.1.

A.6 Proof for Proposition 4

Under Opacity, c = co. According to Section A.1, the following is true. If χ(1 − γ) <

β1−γ, u(co1(ρ)) > E[u(co2,z(ρ))],∀ρ, and hence ρ∗ = π. If χ(1 − γ) = β1−γ, u(co1(ρ)) =

E[u(co2,z(ρ))],∀ρ, and hence ρ∗ ∈ [π, 1]. If χ(1− γ) > β1−γ, u(co1(ρ)) > E[u(co2,z(ρ))],∀ρ, and

hence ρ∗ = 1.

A.7 Proof for Proposition 5

We first define a couple of functions and values. Given repayment c1 in τ = 1, hα,z
2 (c1, ρ)

denotes the repayment in period 2 when the asset price is Rα at τ = 1 and Rz at τ = 2. As

β̃ = β under signaling equilibira,

hα,z
2 (c1, ρ) = lim

ρ′→ρ
Rz

1− ρ′c1/(βRα)

1− ρ′
.

We define this function in its limit form as it allows us to compute this function at ρ = 1.

We then find the following.
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Remark 6. (i) hα,z
2 (c1, ρ)/h

α,z′

2 (c1, ρ) = Rz/Rz′ , ∀ρ, ∀c1. (ii) hα,z
2 (c1, ρ) strictly increases with

Rα and Rz and strictly decreases in c1, ∀ρ < 1.

Also, we define the following values: for given ρ,

• A bad bank’s value when unmimicking: Vb,fb(ρ) = ρu(ct1,b(ρ)) + (1− ρ)u(ct2,b(ρ)),

• A good bank’s value when deviating: Vg,dev(ρ) = ρu(cb,g1 (ρ)) + (1− ρ)u(cb,g2 (ρ)),

• A bad bank’s value when mimicking: Vb,mimic(ρ) = ρu(c̄1,g) + (1− ρ)u(hg,b
2 (c̄1,g, ρ)),

• A good bank’s value when undeviating: Vg,signal(ρ) = ρu(c̄1,g) + (1− ρ)u(hg,g
2 (c̄1,g, ρ)),

where cα,zτ (ρ) is defined in accordance with Section A.1 with β̃ = β.

(c̄1,g, ρ
∗) is the outcome of a separating equilibrium if and only if, given the point belief

function defined in Section 4.3.1, (i) No mimic: Vb,fb(ρ
∗) ≥ Vb,mimic(ρ

∗), (ii) No deviation:

Vg,signal(ρ
∗) ≥ Vg,dev(ρ

∗), and (iii) qgu(c̄1,g) + qbu(c
t
1,b(ρ

∗)) ≤ qgu(h
g,g
2 (c̄1,g, ρ

∗)) + qbu(c
t
2,b(ρ

∗))

under ρ∗ = π, qgu(c̄1,g) + qbu(c
t
1,b(ρ

∗)) = qgu(h
g,g
2 (c̄1,g, ρ

∗)) + qbu(c
t
2,b(ρ

∗)) under ρ∗ ∈ (π, 1),

and qgu(c̄1,g) + qbu(c
t
1,b(ρ

∗)) ≥ qgu(h
g,g
2 (c̄1,g, ρ

∗)) + qbu(c
t
2,b(ρ

∗)) under ρ∗ = 1. The first two

conditions are standard conditions for sequential rationality. The last one is the condition

for an equilibrium of the withdrawal subgame. At a separating equilibrium, a good bank

chooses the repayment level (c̄1,g, h
g,g
2 (c̄1,g, ρ

∗)), and a bad bank chooses the repayment level

(ct1,b(ρ
∗), ct2,b(ρ

∗)).15

If a bad bank chooses c̄1,g such that c̄1,g = ct1,g(ρ
∗), its consumption at τ = 2 is

hg,b
2 (ct1,g(ρ

∗), ρ∗) = (Rb/Rg)h
g,g
2 (ct1,g(ρ

∗), ρ∗) = (Rb/Rg)c
t
2,g(ρ

∗) = ct2,b(ρ
∗) according to Re-

mark 6 (i). Therefore, if a bad bank chooses c̄1,g such that ct1,b(ρ
∗) < c̄1,g ≤ ct1,g(ρ

∗), its

consumption at τ = 2 is hg,b
2 (c̄1,g, ρ

∗) ≥ ct2,b(ρ
∗).

15As discussed later, c̄1,g ̸= ct1,b(ρ
∗) in a separating equilibrium. If c̄1,g = ct1,b(ρ

∗), a bad bank has an
incentive to mimic. Thus, in a separating equilibrium, a bad bank’s best repayment level under the region
where the bank is believed to be bad based on the point belief function of investors is ct1,b(ρ

∗).

59



Suppose ct1,b(ρ
∗) < c̄1,g ≤ ct1,g(ρ

∗). If a bad bank chooses the best option within the

range where a bank is believed to be bad, a bad bank chooses (ct1,b(ρ
∗), ct2,b(ρ

∗)). Then, as

(ct1,b(ρ
∗), ct2,b(ρ

∗)) ≤ (c̄1,g, h
g,b
2 (c̄1,g, ρ)) with ct1,b(ρ

∗) < c̄1,g, a bad bank is better off by choosing

c̄1,g than choosing the best option within the range where a bank is believed to be bad. Thus,

there is an incentive for a bad bank to mimic.

Suppose c̄1,g = ct1,b(ρ
∗) and ρ∗ < 1. (ct1,b(ρ

∗), ct2,b(ρ
∗)) ≤ (ct1,b(ρ

∗), hg,b
2 (ct1,b(ρ

∗), ρ∗)) where

ct2,b(ρ
∗) = hb,b

2 (ct1,b(ρ
∗), ρ∗) < hg,b

2 (ct1,b(ρ
∗), ρ∗), according to Remark 6 (ii). A bad bank is

better off by choosing c̄1,g as it earns more value than the maximum possible value it earns

when it is believed to be bad.

Suppose c̄1,g = ct1,b(ρ
∗) and ρ∗ = 1. A bad bank is better off by choosing c̄1,g; otherwise,

it can at most offer the first-period repayment less than ct1,b(ρ
∗).

Suppose c̄1,g < ct1,b(ρ
∗) and ρ∗ < 1. Denote Vb,fb(ρ

∗)−Vb,mimic(ρ
∗) by ∆b(ρ

∗). Also denote
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Vg,dev(ρ
∗)− Vg,signal(ρ

∗) by ∆g(ρ
∗). We can show:

∆g(ρ
∗)−∆b(ρ

∗) = (ρ∗u(cb,g1 (ρ∗)) + (1− ρ∗)u(cb,g2 (ρ∗)))

−(ρ∗u(cb,b1 (ρ∗)) + (1− ρ∗)u(cb,b2 (ρ∗))

−(1− ρ∗)(u(hg,g
2 (c̄1,g, ρ

∗))− u(hg,b
2 (c̄1,g, ρ

∗))),

from the optimality of (cb,g1 (ρ∗), cb,g2 (ρ∗)) under α = b, z = g,

≥ (ρ∗u(cb,b1 (ρ∗)) + (1− ρ∗)u(hb,g
2 (cb,b1 (ρ∗), ρ∗)))

−(ρ∗u(cb,b1 (ρ∗)) + (1− ρ∗)u(cb,b2 (ρ∗))

−(1− ρ∗)(u(hg,g
2 (c̄1,g, ρ

∗))− u(hg,b
2 (c̄1,g, ρ

∗)))

from cb,b2 (ρ∗) = hb,b
2 (cb,b1 (ρ∗), ρ∗),

= (1− ρ∗)(u(hb,g
2 (cb,b1 (ρ∗), ρ∗))− u(hb,b

2 (cb,b1 (ρ∗), ρ∗)))

−(1− ρ∗)(u(hg,g
2 (c̄1,g, ρ

∗))− u(hg,b
2 (c̄1,g, ρ

∗))),

from Remark 6 (i),

= (1− ρ∗)(u(Rgh
b,b
2 (cb,b1 (ρ∗), ρ∗)/Rb)− u(hb,b

2 (cb,b1 (ρ∗), ρ∗)))

−(1− ρ∗)(u(Rgh
g,b
2 (c̄1,g, ρ

∗)/Rb)− u(hg,b
2 (c̄1,g, ρ

∗)))

= (1− ρ∗)
(Rg/Rb)

1−γ − 1

1− γ
(hb,b

2 (cb,b1 (ρ∗), ρ∗)1−γ − hg,b
2 (c̄1,g, ρ

∗)1−γ).

Remark 6 (ii) suggests hg,b
2 (c̄1,g, ρ

∗) > hb,b
2 (cb,b1 (ρ∗), ρ∗), so ∆g(ρ

∗)−∆b(ρ
∗) > 0. If a bad bank

does not have an incentive to mimic (∆b(ρ
∗) ≥ 0), a good bank always has an incentive to

deviate (∆g(ρ
∗) > 0).

Suppose c̄1,g < ct1,b(ρ
∗) and ρ∗ = 1, a good bank deviates by offering the first-period

repayment ct1,b(ρ
∗).
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A.8 Proof for Proposition 6

The immediate implication of Proposition 5 is that a full run never occurs under a separating

equilibrium. Because paying greater than ct1,g(1) = βRg in period 1 is impossible for a good

bank, there is no separating equilibrium where ρ∗ = 1.

Remark 7. In a separating equilibrium, ρ∗ < 1.

However, a partial run can still occur. Moreover, such a partial run is inefficient. To

prove this claim, I provide an explicit numerical example. Consider the following set of

parameters.

π γ qg Rg Rb β

0.2 3 0.5 1.8 0.7 0.73

We solve the set of outcomes (c̄1,g, ρ
∗) supported as separating equilibria. In Figure 2,

the thick black line represents this set. The dotted black line represents the boundary where

a bad bank mimics or not. I also label the region where patient depositors wait and the

region where they run. At the boundary between the two regions, patient depositors are

indifferent between waiting and running. The figure shows that a partial run equilibrium

exists when (c̄1,g, ρ
∗) = (2.20, 0.35). We also find V (c∗, ρ∗) = −1.58 < −1.37 = V (c∗, π) at

this equilibrium, which indicates the inefficiency of the partial run.
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Figure 2: Separating Equilibria
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A.9 Proof for Proposition 7

Notice

u(c̄1,p) = E[u(hm,z
2 (c̄1,p, ρ))]

⇔ c̄1−γ
1,p = E[R1−γ

z ]

(
1− ρc̄1,p/(βRm)

1− ρ

)1−γ

⇔ c̄1,p = (E[R1−γ
z ])1/(1−γ)1− ρc̄1,p/(βRm)

1− ρ

⇔ (1− ρ)βRmc̄1,p = (E[R1−γ
z ])1/(1−γ)(βRm − ρc̄1,p)

⇔ ((1− ρ)βRm + ρ(E[R1−γ
z ])1/(1−γ))c̄1,p = βRm(E[R1−γ

z ])1/(1−γ)

⇔ c̄1,p =
βRm(E[R1−γ

z ])1/(1−γ)

(1− ρ)βRm + ρ(E[R1−γ
z ])1/(1−γ)

=
βE[Rz]

ρ+ (1− ρ)(χ(1− γ)/β1−γ)1/(γ−1)
.

Given such c̄1,p and ρ, a patient depositor is indifferent between waiting and running. Each

ρ can be supported as an equilibrium of the withdrawal subgame. Also, for such c̄1,p,

ρu(c̄1,p) + (1− ρ)u(hm,z
2 (c̄1,p, ρ))− (ρu(cb,z1 (ρ)) + (1− ρ)u(cb,z2 (ρ)))

=
cb,z1 (ρ)1−γ

γ − 1

(
ρ+ (1− ρ)

(
Rz

βRb

)(1−γ)/γ
)

−
c̄1−γ
1,p

γ − 1

(
ρ+ (1− ρ)

β1−γ

χ(1− γ)

(
Rz

βRm

)1−γ
)

=
c̄1−γ
1,p

γ − 1

(
cb,z1 (ρ)

c̄1,p

)1−γ (
ρ+ (1− ρ)

(
Rz

βRb

)(1−γ)/γ
)

−
c̄1−γ
1,p

γ − 1

(
ρ+ (1− ρ)

β1−γ

χ(1− γ)

(
Rz

βRm

)1−γ
)

=
c̄1−γ
1,p

γ − 1

(
ρ+ (1− ρ)

(
β1−γ

χ(1− γ)

)1/(1−γ)
)1−γ (

Rb

Rm

)1−γ
(
ρ+ (1− ρ)

(
Rz

βRb

)(1−γ)/γ
)γ

−
c̄1−γ
1,p

γ − 1

(
ρ+ (1− ρ)

β1−γ

χ(1− γ)

(
Rz

βRm

)1−γ
)
,

64



where cα,zτ (ρ) is defined in accordance with Section A.1 with β̃ = β. From this result,

notice ρu(c̄1,p) + (1− ρ)u(hm,z
2 (c̄1,p, ρ))− (ρu(cb,z1 (ρ)) + (1− ρ)u(cb,z2 (ρ))) is positive at ρ = 1,

∀z. Therefore, ∀z, it is above 0, ∀ρ, or ∃ρ
z
< 1 such that it is nonnegative, ∀ρ ≥ ρ

z
.

Thus, ∀ρ ≥ max{ρ
g
, ρ

b
}, ρu(c̄1,p) + (1 − ρ)u(hm,z

2 (c̄1,p, ρ)) − (ρu(cb,z1 (ρ)) + (1 − ρ)u(cb,z2 (ρ)))

is nonnegative, ∀z.

ρu(c̄1,p)+(1−ρ)u(hm,z
2 (c̄1,p, ρ)) corresponds to the depositor welfare for the bank in state

z under the outcome of a pooling equilibrium and ρu(cb,z1 (ρ)) + (1− ρ)u(cb,z2 (ρ)) corresponds

to the maximum possible value for the bank in state z when it deviates under the point belief

function. Therefore, ∀ρ ≥ max{ρ
g
, ρ

b
}, each bank does not have an incentive to deviate from

the outcome of a pooling equilibrium.

A.10 Proof for Proposition 8

At the equilibrium under Opacity, the depositor welfare is V (co, ρo).16 At the equilibrium

under Transparency, the depositor welfare is V (ct, ρt). Proposition 2 suggests V (ct, ρt) <

V (co, ρo).

A.11 Proof for Proposition 9

Recall the planner’s problem under Transparency. The planner’s problem under Trans-

parency given the level of withdrawal under a separating equilibrium is

max{c1,z(ρsignal),c2,z(ρsignal)}z∈{g,b} E[ρsignalu(c1,z(ρsignal)) + (1− ρsignal)u(c2,z(ρ
signal))]

s.t. ρsignal
c1,z(ρ

signal)

βRz

+ (1− ρsignal)
c2,z(ρ

signal)

Rz

≤ 1, ∀z.

16Suppose χ(1− γ) = β1−γ . V (co, ρ) = V (co, ρo),∀ρ.
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There exists a unique solution that is {ct1,z(ρsignal), ct2,z(ρsignal)}z∈{g,b}. Notice the bank’s

repayment level under a separating equilibrium also satisfies the resource constraint. Be-

cause c̄1,g ̸= ct1,g(ρ
signal), according to Proposition 5, V (ct, ρsignal) > V (csignal, ρsignal). Thus,

V (ct, ρt) ≥ V (ct, ρsignal) > V (csignal, ρsignal).

A.12 Proof for Proposition 10

Recall the planner’s problem under Opacity. The planner’s problem under Opacity given

the level of withdrawal under a pooling equilibrium is

maxc1(ρsignal),{c2,z(ρsignal)}z∈{g,b} ρsignalu(c1(ρ
signal)) + E[(1− ρsignal)u(c2,z(ρ

signal))]

s.t. ρsignal
c1(ρ

signal)

βRm

+ (1− ρsignal)
c2,z(ρ

signal)

Rz

≤ 1,∀z.

There exists a unique solution that is co1(ρ
signal), {co2,z(ρsignal)}z∈{g,b}. Notice the bank’s

repayment level under a pooling equilibrium also satisfies the resource constraint. Thus,

V (co, ρo) ≥ V (co, ρsignal) ≥ V (csignal, ρsignal).
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