Collective State Spaces

Noriaki Kiguchi (joint with Takashi Hayashi and Norio Takeoka)

April 7, 2025

Introduction

- We consider Dekel, Lipman, and Rustichini's (2001) (DLR) preferences:
 - For a set X, which is referred to as a *menu*,

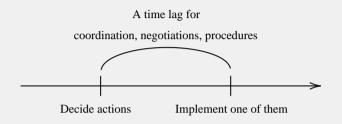
$$U(X) = \sum_{s \in S} \pi(s) \max_{x \in X} u(x, s),$$

where

- S: a subjective state space,
- π : a probability measure over S,
- $u: A \times S \rightarrow \mathbb{R}$: a state dependent utility function.
- We aggregate individual DLR preferences into social DLR preferences.
 - No paper has tackled this aggregation problem yet.

- Consider a meeting in a large company, which is held by
 - CEO (= society),
 - division heads (= individuals).
 - E.g., automobiles, social networking services (SNS), artificial intelligence (AI).
- They decide on the next action,
 - e.g., determining which another company to acquire.

Why Menu Preferences?



- The effectiveness of an action depends on the circumstances during its implementation.
 - But, the CEO and the devision heads do not know them when deciding an action.
- \Rightarrow They need multiple actions as candidates for the best option at the decision stage.
 - Multiple actions = a menu.

Why Subjective States? and Why Aggregation?

- Each division head only represents their division.
 - Automobile head: {gasoline engines, hydrogen engines}.
 - AI head: {Google, Apple}.
- \Rightarrow They hold different preferences over menus of actions.
 - How should the CEO aggregate these preferences?
 - Especially, how should the CEO construct a comprehensive state space?

- A: a finite set.
 - We refer to $a \in A$ as an *outcome*.
- $\Delta(A)$: the set of probability distributions over A.
 - We refer to $I = (I(a))_{a \in A} \in \Delta(A)$ as a *lottery* (or an option).
- *K* (Δ(*A*)): the set of nonempty and compact subsets in Δ(*A*), which is endowed with
 the Hausdorff topology.
 - We refer to $X \in \mathcal{K} \left(\Delta \left(A
 ight)
 ight)$ as a *menu*.

- $N = \{1, \ldots, n\}$: a set of individuals.
- Index 0 represents society.
- \gtrsim_i : a complete and transitive binary relation on the set of menus, $\mathcal{K}(\Delta(A))$.
 - $X \succeq_i Y$: Individual *i* evaluates that X is at least as good as Y.

• $(\succeq_i)_{i \in N}$ and \succeq_0 admit the DLR representation:

$$U_{i}(X) = \sum_{s_{i} \in S_{i}} \pi_{i}(s_{i}) \max_{l \in X} u_{i}(l, s_{i}).$$

- S_i : a finite set.
- π_i : a full support probability measure over S_i .
- $u_i: \Delta(A) \times S_i \rightarrow \mathbb{R}$: a state dependent utility function.
 - Each u_i (\cdot , s_i) is mixture-linear.

Question:

• How should society aggregate $(S_i, \pi_i, u_i)_{i \in N}$ into (S_0, π_0, u_0) ?

Representation: Rough Preview

$$S_{1} = \left\{ S_{1}^{x}, S_{1}^{y}, S_{1}^{z} \right\}, S_{2} = \left\{ S_{2}^{a}, S_{2}^{b}, S_{2}^{c}, S_{2}^{d}, S_{2}^{e} \right\}$$

$$\downarrow$$

$$\left\{ \begin{array}{c|c} s_{1}^{x} & s_{2}^{b} & s_{2}^{c} & s_{2}^{d} & s_{2}^{e} \\ \hline s_{1}^{x} & s_{1}^{y} & s_{2}^{e} \\ \hline s_{1}^{x} & s_{1}^{y} & s_{2}^{e} \\ \hline s_{1}^{x} & s_{1}^{z} & s_{1}^{z} \\ \hline s_{1}^{x} & s_{1}^{z} & s_{$$

- The following axioms characterize this representation:
 - 1. two restricted Pareto conditions,
 - 2. a violation of Pareto indifference,
 - 3. a tentative technical axiom. (We are still working on this axiom.)

Outline of the Remaining Part

- 1. Preliminary clarifications on DLR preferences
- 2. A benchmark Pareto indifference
 - 2.1 An impossibility theorem
 - 2.2 Discussion
- 3. Our axioms
 - 3.1 Two axioms from the above discussion
 - 3.2 Two further axioms
- 4. Representation theorem

5. Proof

Features of DLR Preferences

DLR Representation: $U_i(X) = \sum_{s_i \in S_i} \pi_i(s_i) \max_{l \in X} u_i(l, s_i)$.

- For all $X \supset Y$, $X \succeq_i Y$ must hold.
- $X \cup \{I\} \succ_i X$: "Individual *i* has a possibility to need option *I*." \iff There exists $s_i \in S_i$ such that $u_i(I, s_i) > u_i(I', s_i)$ for all $I' \in X$.

- We do not know whether u_i $(I, s'_i) \geq u_i$ (I', s'_i) under other $s'_i \in S_i$.

• $X \cup \{I\} \sim_i X$: "Individual *i* will never need option *I*."

 \iff For each $s_i \in S_i$, there exists $I_{s_i} \in X$ such that $u_i(I_{s_i}, s_i) \ge u_i(I, s_i)$.

Expanding Pareto Indifference

For all menus $X \in \mathcal{K} (\Delta (A))$ and all lotteries $I \in \Delta (A)$,

$$X \cup \{I\} \sim_i X$$
 for all $i \in N \Longrightarrow X \cup \{I\} \sim_0 X$.

Interpretation:

• If no one needs option *I*, then neither does society.

DLR Representation: $U_i(X) = \sum_{s_i \in S_i} \pi_i(s_i) \max_{l \in X} u_i(l, s_i)$.

Theorem

The DLR preference profile, $(\succeq_i)_{i \in N}$ and \succeq_0 , satisfies Expanding Pareto Indifference if and only if for each $s_0 \in S_0$, there exist $i \in N$ and $s_i \in S_i$ such that $u_0(\cdot, s_0) = u_i(\cdot, s_i)$.

Interpretation:

- It says $S_0 \subset S_1 \cup \cdots \cup S_n$.
 - $\rightarrow\,$ Society plans to focus exclusively on one aspect.

Discussions about Expanding Pareto Indifference

Example:

•
$$N = \{1, 2\}, S_1 = \{s_1\}, \text{ and } S_2 = \{s_2\}.$$

$$\Rightarrow U_i(X) = \max_{I \in X} u_i(I, s_i).$$

• $u_1(I, s_1) > u_1(I'', s_1) >> u_1(I', s_1)$ and $u_2(I', s_2) > u_2(I'', s_2) >> u_2(I, s_2)$.

 \parallel

•
$$\{I, I', I''\} \sim_i \{I, I'\}$$
 for $i = 1, 2$.

- However, $\{I, I', I''\} \succ_0 \{I, I'\}$ seems desirable.
 - \therefore Option I'' is highly regarded by everyone.

Lesson:

• If an ex-post disagreement will occur, society may need a compromise option.

Idea: If an option is surely Pareto dominated ex-post, society does not need it.

Pareto Indifference for Dominated Options For all menus $X \in \mathcal{K} (\Delta (A))$ and all lotteries $\hat{l} \in \Delta (A)$, if (1) $X \cup \{\hat{l}\} \sim_i X$ for some $i \in N$ and (2) $\{\hat{l}, l\} \sim_j \{l\}$ for all $l \in X$ and all other individuals $j \in N \setminus \{i\}$, then $X \cup \{\hat{l}\} \sim_0 X$.

- Under DLR preferences: $U_i(X) = \sum_{s_i \in S_i} \pi_i(s_i) \max_{l \in X} u_i(l, s_i)$,
 - (1) \iff In every $s_i \in S_i$, \hat{l} is not the best among $X \cup \{\hat{l}\}$.
 - (2) \iff In every $s_j \in S_j$, \hat{l} is the worst among $X \cup \{\hat{l}\}$.

Idea: $\{I, I', I''\} \succ_0 \{I, I'\}$ if an ex-post disagreement between I and I' is sufficiently large.

Expansion toward Moderate Options

For all lotteries $\hat{l}, l_1, \ldots, l_n \in \Delta(A)$, if for each individual $i \in N$,

- $\{\hat{l}, l_j\} \sim_i \{\hat{l}\} \sim_i \{l_j\}$ for all $j \neq i$ and
- $\{\hat{l}, l_i\} \succ_i \{l_i\},$

there exists $I^* := \sum_{i=1}^n \lambda_i I_i + (1 - \sum_{i=1}^n \lambda_i) \hat{I} ((\lambda_i)_i \in (0, 1)^n \text{ with } \sum_{i=1}^n \lambda_i < 1)$ such that

$$\{l^*, l_1, \ldots, l_n\} \succ_0 \{l_1, \ldots, l_n\}.$$

n = 2 Case

Expansion toward Moderate Options (when n = 2) For all lotteries \hat{l} , l_1 , $l_2 \in \Delta(A)$, if

- $\{\hat{l}, l_2\} \sim_1 \{\hat{l}\} \sim_1 \{l_2\} \text{ and } \{\hat{l}, l_1\} \succ_1 \{l_1\},$
- $\{\hat{l}, l_1\} \sim_2 \{\hat{l}\} \sim_2 \{l_1\} \text{ and } \{\hat{l}, l_2\} \succ_2 \{l_2\},$

there exists $l^* := \lambda_1 l_1 + \lambda_2 l_2 + (1 - \lambda_1 - \lambda_2) \hat{l} (\lambda_1, \lambda_2 \in (0, 1) \text{ with } \lambda_1 + \lambda_2 < 1)$ such that $\{l^*, l_1, l_2\} \succ_0 \{l_1, l_2\}.$

Interpretation: when $S_1 = \{s_1\}$, $S_2 = \{s_2\}$, and λ_1 and λ_2 are sufficiently small,

Commitment Pareto

For all lotteries $I, I' \in \Delta(A)$, if $\{I\} \succeq_i \{I'\}$ for all $i \in N$, then $\{I\} \succeq_0 \{I'\}$.

Limitation for Flexibility

For each $X \in \mathcal{K}(\Delta(A))$, there exist $l_1, \ldots, l_m \in \Delta(A)$ with $m \leq |S_1 \times \cdots \times S_n|$ such that $X \sim_0 \{l_1, \cdots, l_m\}$.

- This axiom is a tentative one to obtain a clear representation.
 - It has no normative meaning.
- Imposing this axiom is equivalent to assuming

$$|S_0| \leq |S_1 \times \cdots \times S_n|.$$

DLR Representation: $U_i(X) = \sum_{s_i \in S_i} \pi_i(s_i) \max_{l \in X} u_i(l, s_i)$.

Theorem

The DLR preference profile, $(\succeq_i)_{i \in N}$ and \succeq_0 , satisfies the four axioms if and only if

- 1. $S_0 = S_1 \times \cdots \times S_n$; 2. for each $s_0 = (s_i)_i \in S_0$, there exists $(\alpha_{i,s_0})_i \in (0,1)^n$ such that $u_0(\cdot, (s_i)_i) = \sum_{i \in N} \alpha_{i,s_0} u_i(\cdot, s_i)$;
- 3. for each $i \in N$ and each $s_i^* \in S_i$,

$$\sum_{s_{0}=(s_{i})_{j}\in S_{0}:s_{i}=s_{i}^{*}}\alpha_{i,s_{0}}\pi_{0}\left(s_{0}\right)=\pi_{i}\left(s_{i}^{*}\right).$$

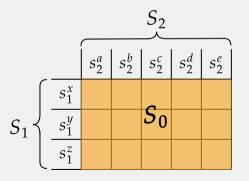
Interpretation

DLR Representation: $U_i(X) = \sum_{s_i \in S_i} \pi_i(s_i) \max_{l \in X} u_i(l, s_i)$.

Theorem

The DLR preference profile, $(\succeq_i)_{i \in N}$ and \succeq_0 , satisfies the four axioms if and only if

1. $S_0 = S_1 \times \cdots \times S_n$;



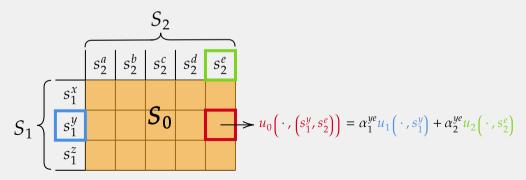
Interpretation

DLR Representation: $U_i(X) = \sum_{s_i \in S_i} \pi_i(s_i) \max_{l \in X} u_i(l, s_i)$.

Theorem

The DLR preference profile, $(\succeq_i)_{i \in N}$ and \succeq_0 , satisfies the four axioms if and only if

2. for each $s_0 = (s_i)_i \in S_0$, $u_0(\cdot, (s_i)_i) = \sum_{i \in N} \alpha_{i,s_0} u_i(\cdot, s_i)$:



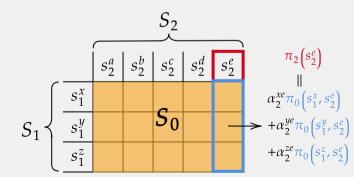
Interpretation

DLR Representation: $U_i(X) = \sum_{s_i \in S_i} \pi_i(s_i) \max_{l \in X} u_i(l, s_i)$.

Theorem

The DLR preference profile, $(\succeq_i)_{i \in N}$ and \succeq_0 , satisfies the four axioms if and only if

3. for each $i \in N$ and each $s_i^* \in S_i$, $\sum_{s_0 = (s_j)_j \in S_0: s_i = s_i^*} \alpha_{i,s_0} \pi_0(s_0) = \pi_i(s_i^*)$.



Proof Intuition (1/3)

Pareto Indifference for Dominated Options

(1)
$$X \cup \{\hat{l}\} \sim_i X$$
 for some $i \in N$ and
(2) $\{\hat{l}, l\} \sim_j \{l\}$ for all $l \in X$ and all other individuals $j \in N \setminus \{i\}$,
 $\Rightarrow X \cup \{\hat{l}\} \sim_0 X$.

= a Pareto principle for tastes over lotteries

 \Rightarrow For each $s_0 \in S_0$, there exists some $(s_i)_{i \in N}$ such that

$$u_{0}(\cdot, s_{0}) = \sum_{i \in N} \alpha_{i,s_{0}} u_{i}(\cdot, s_{i}).$$

Proof Intuition (2/3)

Expansion toward Moderate Options (when n = 2)

1.
$$\{\hat{l}, l_2\} \sim_1 \{\hat{l}\} \sim_1 \{l_2\}$$
 and $\{\hat{l}, l_1\} \succ_1 \{l_1\}$,
2. $\{\hat{l}, l_1\} \sim_2 \{\hat{l}\} \sim_2 \{l_1\}$ and $\{\hat{l}, l_2\} \succ_2 \{l_2\}$,
 $\Rightarrow \exists l^* := \lambda_1 l_1 + \lambda_2 l_2 + (1 - \lambda_1 - \lambda_2) \hat{l}$ such that $\{l^*, l_1, l_2\} \succ_0 \{l_1, l_2\}$.

- "Any $(u_i (\cdot, s_i))_{i \in N}$ has a disagreement \implies society needs a compromise lottery."
- \Rightarrow Society considers all of the combinations $S_1 \times \cdots \times S_n$.

 $\Rightarrow S_0 \supset S_1 \times \cdots \times S_n.$

• Limitation for Flexibility: $|S_0| \leq |S_1 \times \cdots \times S_n|$.

 $\Rightarrow S_0 = S_1 \times \cdots \times S_n.$

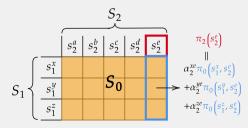
Proof Intuition (3/3)

Commitment Pareto: $\{I\} \succeq_i \{I'\}$ for all $i \in N \Longrightarrow \{I\} \succeq_0 \{I'\}$.

 \Rightarrow In the evaluation, society has to maintain the ratio

 $\pi_i(\mathbf{s}_i) u_i(\cdot, \mathbf{s}_i) / \pi_i(\mathbf{s}'_i) u_i(\cdot, \mathbf{s}'_i)$.

 $\Rightarrow \sum_{s_0=(s_j)_j\in S_0: s_i=s_i^*} \alpha_{i,s_0} \pi_0\left(s_0\right) = \pi_i\left(s_i^*\right) \text{ for each } s_i^* \in S_i.$



Proof of the Core Part

Two Core Axioms

• We only see the implications of the first two axioms:

```
Pareto Indifference for Dominated Options
```

(1) $X \cup \{\hat{l}\} \sim_i X$ for some $i \in N$ and (2) $\{\hat{l}, l\} \sim_j \{l\}$ for all $l \in X$ and all other individuals $j \in N \setminus \{i\}$, $\Rightarrow X \cup \{\hat{l}\} \sim_0 X$.

Expansion toward Moderate Options (when n = 2)

1.
$$\{\hat{l}, l_2\} \sim_1 \{\hat{l}\} \sim_1 \{l_2\}$$
 and $\{\hat{l}, l_1\} \succ_1 \{l_1\}$,
2. $\{\hat{l}, l_1\} \sim_2 \{\hat{l}\} \sim_2 \{l_1\}$ and $\{\hat{l}, l_2\} \succ_2 \{l_2\}$,
 $\Rightarrow \exists l^* := \lambda_1 l_1 + \lambda_2 l_2 + (1 - \lambda_1 - \lambda_2) \hat{l}$ such that $\{l^*, l_1, l_2\} \succ_0 \{l_1, l_2\}$.

Richness Condition

For each $i \in N$ and each $s_i \in S_i$, there exist lotteries $I_{s_i}, I'_{s_i} \in \Delta(A)$ such that

- $u_i(I_{s_i}, s_i) > u_i(I'_{s_i}, s_i)$,
- $u_i(l_{s_i}, t_i) = u_i(l_{s_i}', t_i)$ for all $t_i \neq s_i$, and
- $u_j(I_{s_i}, s_j) = u_j(I'_{s_i}, s_j)$ for all $j \neq i$ and all $s_j \in S_j$.

- In the paper, we adopt a weaker richness condition.
 - But here, we impose the above condition to simplify the proof.

Lemma (1/2): Ex-Post Utilitarianism

DLR Representation: $U_i(X) = \sum_{s_i \in S_i} \pi_i(s_i) \max_{l \in X} u_i(l, s_i)$.

Lemma

If the DLR preference profile, $(\succeq_i)_{i \in I}$ and \succeq_0 , satisfies Pareto Indifference for Dominated Options, then for each $s_0 \in S_0$, there exist $(s_i)_i \in S_1 \times \cdots \times S_n$ and $(\alpha_i)_i \in [0,1]^n$ with $\sum_{i \in N} \alpha_i = 1$ such that

$$u_0(\cdot, s_0) = \sum_{i \in N} \alpha_i u_i(\cdot, s_i).$$

Remarks:

- Under some $s_0 \in S_0$, society may assign zero weight to some individuals.
- For some profile $(s_i)_i \in S_1 \times \cdots \times S_n$, there may be no corresponding s_0 .

DLR Representation: $U_i(X) = \sum_{s_i \in S_i} \pi_i(s_i) \max_{l \in X} u_i(l, s_i)$.

• When $X = \{l\}$ in Pareto Indifference for Dominated Options,

$$- \{I, \hat{I}\} \sim_i \{I\} \text{ for all } i \in N \Longrightarrow \{I, \hat{I}\} \sim_0 \{I\}.$$

 $\Leftrightarrow u_i(I,s_i) \geq u_i\left(\hat{I},s_i\right) \text{ for all } s_i \in S_i \text{ and all } i \in N \Longrightarrow u_0(I,s_0) \geq u_0(I',s_0) \text{ for all } s_0 \in S_0.$

 \Rightarrow For each $s_0 \in S_0$, by applying Harsanyi's Theorem,

$$u_0(\cdot, s_0) = \sum_{i \in N} \sum_{s_i \in S_i} \alpha_{s_i} u_i(\cdot, s_i).$$

Proof (Continued)

• Suppose that for some $s_0 \in S_0$,

$$u_{0}(\cdot, s_{0}) = \underbrace{\alpha_{s_{i}}}_{>0} u_{i}(\cdot, s_{i}) + \underbrace{\alpha_{s'_{i}}}_{>0} u_{i}(\cdot, s'_{i}) + \sum_{j \neq i} \sum_{s_{j} \in S_{j}} \alpha_{s_{j}} u_{j}(\cdot, s_{j}).$$

- Take I, I', $I'' \in \Delta(A)$ so that
 - $u_i(l, s_i) = u_i(l'', s_i) > u_i(l', s_i),$
 - $u_i(l', s'_i) = u_i(l'', s'_i) > u_i(l, s'_i),$
 - $u_j(I'',s_j) = u_j(I,s_j) = u_j(I',s_j)$ for all $s_j \in \bigcup_{j \in \mathbb{N}} S_j \setminus \{s_i,s_i'\}$.
- 1. Pareto Indifference for Dominated Options \implies {I, I', I''} \sim_0 {I, I'}.

2. But, $u_0(I'', s_0) > u_0(I, s_0)$ and $u_0(I'', s_0)$. $\implies \{I, I', I''\} \succ_0 \{I, I'\}$: a contradiction.

Lemma (2/2): Responsiveness to Every Profile of Individual States

DLR Representation: $U_i(X) = \sum_{s_i \in S_i} \pi_i(s_i) \max_{l \in X} u_i(l, s_i)$.

Lemma

Suppose that for each $s_0 \in S_0$, there exist $(s_i)_i \in S_1 \times \cdots \times S_n$ and $(\alpha_i)_i \in [0, 1]^n$ with $\sum_{i \in N} \alpha_i = 1$ such that

$$u_0(\cdot, s_0) = \sum_{i \in \mathcal{N}} \alpha_i u_i(\cdot, s_i).$$
(1)

Then, if the DLR preference profile, $(\gtrsim_i)_{i \in I}$ and \gtrsim_0 , satisfies Expansion toward Moderate Options, for each profile $(s_i)_i \in S_1 \times \cdots \times S_n$, there exists $s_0 \in S_0$ such that equation (1) holds where $\alpha_i > 0$ for all $i \in N$.

Remarks:

• Still, for some $(s_i)_i \in S_1 \times \cdots \times S_n$, there may exist multiple corresponding social states.

Proof

• Take any $s_1 \in S_1$, $s_2 \in S_2$ and \hat{l} , l_1 , $l_2 \in \Delta(A)$ so that

$$- u_1(\hat{l}, \underline{s_1}) = u_1(l_2, \underline{s_1}) > u_1(l_1, \underline{s_1}),$$

-
$$u_2(\hat{l}, s_2) = u_2(l_1, s_2) > u_2(l_2, s_2),$$

$$- u_i\left(\hat{l}, s_i\right) = u_i\left(l_1, s_i\right) = u_i\left(l_i, s_i\right) \text{ for all } s_i \in (S_1 \cup S_2) \setminus \{s_1, s_2\}.$$

1. Expansion toward Moderate Options $\implies \{l^*, l_1, l_2\} \succ_0 \{l_1, l_2\}.$

2.
$$eqta s_0 \in S_0$$
 such that $u_0(\cdot, s_0) = lpha_1 u_1(\cdot, s_1) + lpha_2 u_2(\cdot, s_2)$.

$$\Rightarrow \ ^{\not\exists} s_0 \in S_0 \text{ such that } u_0\left(l^*, s_0\right) > u_0\left(l_1, s_0\right) \text{ and } u_0\left(l_2, s_0\right).$$

$$\Rightarrow \{l^*, l_1, l_2\} \sim_0 \{l_1, l_2\}$$
: a contradiction.

Question:

- How should society aggregate preferences over menus of options?
 - Especially, how should society construct a comprehensive state space?

Answer:

$$S_{1} = \left\{ s_{1}^{x}, s_{1}^{y}, s_{1}^{z} \right\}, S_{2} = \left\{ s_{2}^{a}, s_{2}^{b}, s_{2}^{c}, s_{2}^{d}, s_{2}^{e} \right\}$$

$$\downarrow$$

$$S_{1}^{x} = \left\{ s_{2}^{x}, s_{2}^{b}, s_{2}^{c}, s_{2}^{d}, s_{2}^{e} \right\}$$

$$u_{0}(\cdot, (s_{1}^{y}, s_{2}^{e})) = \alpha_{1}u_{1}(\cdot, s_{1}^{y}) + \alpha_{2}u_{2}(\cdot, s_{2}^{e})$$

Dekel, Eddie, Barton L. Lipman, and Aldo Rustichini, "Representing Preferences with a Unique Subjective State Space," *Econometrica*, 2001, *69* (4), 891–934.