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Abstract

Time-to-build of an investment project induces a discrepancy between the timing of investment

and that of revenue generation. Jeon (2024b) showed that uncertainty in the time-to-build always

accelerates investment and enhances pre-investment firm value, regardless of its distribution. In this

study, we examine how much the uncertainty advances the timing of investment and improves the

firm value. Specifically, we show that there always exists a unique certainty equivalent of uncertain

time-to-build and derive it in an analytic form. This enables us to derive the investment strategy with

uncertain time-to-build in the form of the one that would have been adopted in the absence of such

uncertainty. Even without full knowledge of the uncertainty, the firm can approximate the optimal

investment strategy using only the mean and variance of time-to-build. We also clarify the positive

impact of entropic risk measure of time-to-build on investment and derive the dual representation

of the certainty equivalent of time-to-build based on relative entropy. Furthermore, we show that

there always exists an uncertainty equivalent of fixed time-to-build. This implies that the firm can

deduce the equivalent risk that its investment strategy, established without considering uncertainty

in time-to-build, implicitly assumes. Lastly, we illustrate the practical application of our findings

using some representative probability distributions and analyze the effects of the variance of time-

to-build. In particular, we contrast the effects of uncertainty in demand with those of uncertainty

in time-to-build, deriving the level of variance in time-to-build that offsets the negative impact of

increased demand volatility on investment.
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1 Introduction

In 2015, Elon Musk made a bold promise that Tesla’s vehicles would drive themselves in two years. In

2019, he made another promise, claiming that there would be a million robotaxis on the road in a year.

After nearly a decade, neither have we seen fully self-driving technology from Tesla, nor do we see any of

their robotaxis on the road.1 At an event in October 2024, which had been delayed multiple times, they

revealed a few prototypes of their robotaxis. Elon claimed that they would be available before 2027,

which seems very unlikely to be fulfilled, considering his notorious record of unmet promises regarding

timelines, as well as the complex regulatory requirements the technology must meet.

Elon and his company are not the only ones. Olkiluoto 3 in Finland is one of the largest nuclear

reactors in Europe. Its construction began in 2005 with an estimated completion date in 2009 but it was

finalized in 2022, resulting in a 13-year delay. Flamanville 3 in France is another example of a significant

delay in the construction of a power plant. It started in 2007 with a goal of completion by 2012, but

it still has not been finished yet (White (2024)). As can be seen from these examples, time-to-build is

prevalent in real-world investment projects, and uncertainty is one of its inherent attributes.2 Time-

to-build has a significant impact on firm value because it introduces a discrepancy between the timing

of investment and that of revenue generation. When its duration is uncertain, the firm’s investment

strategy must be established even more meticulously. Nevertheless, the effects of uncertainty in time-

to-build on corporate investment have not been explored sufficiently.

To the best of our knowledge, Nishihara (2018) is the first study that shed light on the effects

of uncertainty in time-to-build on investment. The paper analyzed a firm’s research and development

(R&D) investment decision, assuming its duration to follow a uniform distribution, and numerically

showed that the uncertainty in the duration leads to earlier investment compared to the case with

a fixed counterpart. Jeon (2024b) investigated the effects of uncertainty in time-to-build without any

assumption on its distribution and analytically showed that uncertainty in time-to-build always accel-

erates investment and enhances pre-investment firm value.3 Jeon (2024a) extended this framework by

incorporating the firm’s investment size decision in addition to the timing decision, and found that the

positive impacts of uncertainty in time-to-build on investment remain intact. However, these studies

did not demonstrate how much the uncertainty advances the timing of investment and improves firm

value. In this study, we tackle this unanswered yet significant problem by clarifying the impacts of

uncertainty in time-to-build on firm value in more detail.

First, we show that there always exists a unique certainty equivalent of uncertain time-to-build,

regardless of its distribution. That is, there is a fixed time-to-build whose duration is shorter than the

uncertain counterpart but yields the same firm value. Furthermore, we derive the certainty equivalent in

1Although Tesla has provided a driver-assistance system called Full Self-Driving (FSD), the name is misleading, as it

remains at Level 2 automation, with Level 5 being fully autonomous driving based on the standards of the Society of

Automotive Engineers (SAE) International.
2Examples are abundant. Recent ones include sluggish capacity expansion in the semiconductor industry, where demand

surged during the COVID-19 pandemic, and significant production delays among new automakers following the rise of the

electric vehicle market.
3Jeon (2024b) considered not only time-to-build but also regulation as internal and external factors that hinder imme-

diate revenue generation after the investment, respectively. This study excludes the latter to simplify the model and its

solution.
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an analytic form. This enables us to derive the optimal investment strategy with uncertain time-to-build

in the form of the investment strategy that would have been adopted in the absence of such uncertainty.

Even without the full knowledge of the uncertainty in time-to-build (i.e., probability distribution), the

certainty equivalent can be approximated using only a few moments, such as mean and variance, which

greatly enhances the practicality. Moreover, we derive the tight upper and lower bounds of the certainty

equivalent for given mean and variance of time-to-build. We also show that the degree of investment

acceleration by the uncertainty in time-to-build decreases with the expected growth rate of demand

and is independent of demand volatility.

Second, we characterize the entropic risk measure of time-to-build and show that it always accelerate

investment and improves pre-investment firm value. It is defined as the maximum size of fixed time-to-

build that can be added while ensuring that the firm value is above a certain level, and it is shown to be

positively associated with the firm’s optimal investment timing. We also derive the dual representation

of the certainty equivalent of time-to-build based on relative entropy. Specifically, it is the sum of the

expected duration of time-to-build under equivalent measure and the relative distance between the

measures.

Third, we show that there always exists an uncertainty equivalent of fixed time-to-build. That

is, there is an uncertain time-to-build whose expected duration is longer than the fixed counterpart

but induces the identical firm value. Unlike the certainty equivalent, there can be many uncertainty

equivalents for a given fixed time-to-build. The uncertainty equivalent enables the firm to deduce the

equivalent risk that its investment strategy, established without considering uncertainty in time-to-

build, implicitly assumes. We also show that for a given fixed time-to-build, there always exists an

uncertain counterpart whose expected duration is longer yet yields higher firm value, which verifies the

positive impacts of uncertainty in time-to-build.

Lastly, we apply the above arguments to representative probability distributions to demonstrate

their practicality. We observe that the mean and variance of time-to-build are sufficient to approximate

its certainty equivalent in many cases, unless the underlying distribution has a peak at either end of

its support, such as an exponential distribution. Furthermore, we contrast the effects of uncertainty in

demand with those of uncertainty in time-to-build. The former delays investment because it increases

the value of the option to wait, whereas the latter accelerates investment because it increases the

expected profits from the investment by the convexity of the discount factor with respect to the revenue

generation timing. With these arguments, we derive the level of variance in time-to-build that offsets

the negative impacts of increased demand volatility on investment.

The remainder of this paper is organized as follows. Section 2 reviews the literature on uncertainty-

investment relationship and time-to-build. Section 3 introduces the setup of the model and Section 4

derives its solution. Specifically, Section 4.1 demonstrates the preliminary results based on a standard

real options model and Section 4.2 contrasts the effects of uncertainty in time-to-build with those

of uncertainty in demand. Section 4.3 derives the certainty equivalent of uncertain time-to-build and

analyzes its sensitivity. Section 4.4 discusses the certainty equivalent from the perspective of entropic risk

measure and Section 4.5 derives the uncertainty equivalent of fixed time-to-build. Section 5 applies the

arguments discussed in Section 4 to representative probability distributions. Specifically, Sections 5.1

to 5.6 correspond to a uniform distribution, a triangular distribution, a log-normal distribution, an
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exponential distribution, a gamma distribution, and a scaled beta distribution, respectively. Section 5.7

focuses on the mean and variance of time-to-build and contrasts the effects of uncertainty in time-to-

build and those of uncertainty in demand. Section 6 summarizes the main results and suggests possible

future works. Appendix A presents all proofs and Appendix B summarizes the characteristics of the

probability distributions discussed in Section 5.

2 Literature review

Majd and Pindyck (1987) was one of the first studies to examine the impact of time-to-build on corporate

investment. They assumed a maximum rate at which a firm can invest and showed that such friction

leads to a delay in investment. Bar-Ilan and Strange (1996a,b) supposed that a certain period of time

must elapse after the investment to generate revenue, showing that uncertainty in demand can hasten

investment in the presence of lags. They presumed a fixed time-to-build, and the one that accelerates

investment is uncertainty in demand, not that in time-to-build. Furthermore, they assumed the firm’s

option to abandon the ongoing project, which truncates the downside risk of the project and yields a

greater incentive to invest aggressively. Bar-Ilan and Strange (1998) extended their previous work to a

two-stage investment project and found that the investment can be sequential in the presence of the

firm’s option to suspend the ongoing project. Pacheco-de-Almeida and Zemsky (2003) also studied a

multi-stage investment in the presence of time-to-build and duopoly. They found that the investment

behavior of firms can be either incremental or lumpy depending on the duration of time-to-build.

These studies only considered a fixed time-to-build, leaving the effects of the uncertain counterpart

unanswered.

Some studies adopted uncertain time-to-build in the discussion of corporate investment decision.

Weeds (2002) investigated R&D competition in a duopoly market, assuming random discovery time

for new technologies, and the uncertain lags are found to make negative impacts on the investment

decision. Alvarez and Keppo (2002) examined a firm’s irreversible investment with delivery lags in a

generalized setup in which they are interdependent. Specifically, they assumed the lags increase with the

level of demand shock and showed that the investment might be suboptimal depending on the level of

demand shock, primarily because higher demands imply longer delivery lags. Jeon (2021a) investigated

the effects of uncertain time-to-build on a levered firm’s investment and financing decisions, showing

that the default probability can be lower than the case without time-to-build. Jeon (2021b) studied a

duopolistic market with asymmetric uncertain time-to-build and found the equilibrium in which the

dominated firm with longer expected time-to-build becomes a leader. Jeon (2023) took account of

learning effects in the discussion of capacity expansion with uncertain time-to-build.

Although these studies considered uncertain time-to-build in their discussion, the sheer effects of

uncertainty in time-to-build were not addressed. To our knowledge, Nishihara (2018) is the first to

discuss this issue. This study investigated a firm’s R&D investment decision with uncertainty in market

demands, competition, and R&D duration, and numerically showed that uncertainty in the duration,

described by a uniform distribution, leads to earlier investment compared to the case in which the

duration is fixed. Jeon (2024b) compared the optimal investment strategy and firm value with fixed

time-to-build and those with uncertain time-to-build whose expected duration is identical with the fixed
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counterpart, without any assumption on the distribution of time-to-build. The comparison showed that

uncertainty in time-to-build always accelerates investment and improves pre-investment firm value,

regardless of its distribution. Jeon (2024a) found that the positive impact of uncertainty in time-to-

build is robust even when the investment size decision is taken into account in addition to the timing

decision.

Despite the difficulties of collecting data, a few studies empirically analyzed the effects and determi-

nants of time-to-build. Koeva (2000) analyzed plant investment from various industries and found that

time-to-build is about two years and is not sensitive to business cycles. Zhou (2000) found from empir-

ical data that the presence of time-to-build can explain the positive correlation of investment. Salomon

and Martin (2008) analyzed the determinants of time-to-build based on data from the semiconductor

indsustry. They reported that the duration of time-to-build is associated with market competition, firm

ownership, and firm/industry experience. Tsoukalas (2011) showed that in the presence of time-to-

build, a firm’s investment decision is significantly affected by the firm’s cash flows. Kalouptsidi (2014)

analyzed data from the bulk shipping industry and found that time-varying time-to-build decreases

the level and volatility of investment. Oh and Yoon (2020) examined the U.S. residential investment

during the 2002-2011 housing boom-bust cycle and found that the increase of time-to-build during the

boom is due to construction bottlenecks whereas that during the bust is due to an increase of uncer-

tainty. Charoenwong et al. (2024) utilized Japanese dataset to show that information acquisition and

investment flexibility can reduce the negative impacts of time-to-build significantly.

3 Setup

Suppose that a risk-neutral firm is considering an investment project from which the following profit

flow is generated:

dX(t) = µX(t)dt+ σX(t)dW (t), (1)

where µ and σ are positive constants and (W (t))t≥0 is a standard Brownian motion on a filtered space

(Ω,F ,F := (Ft)t≥0,P) satisfying the usual conditions. The investment incurs lump-sum costs I and the

variable costs of production are normalized to zero. The discount rate is r(> µ) to ensure finite value

function, which is a standard assumption in real options literature.

The investment project does not yield revenue instantly after the investment because of the project’s

time-to-build. This can arise because of either the R&D for new technologies or the construction of

manufacturing facilities of a large scale. Due to its inherent uncertainty, the size of time-to-build is a

nonnegative random variable τ , which is assumed to be independent of X(t) for simplicity.

4 Models and solutions

4.1 Preliminary results

The firm value with an option to invest in a project of which time-to-build is τ can be written as follows:

Vτ (X) = max
T≥0

E
[ ∫ ∞

T̂
e−rtX(t)dt− e−rT I

∣∣∣X(0) = X
]
. (2)
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The investment timing can be characterized by the level of demand shock at which the firm invests

in the project, and T := inf{t > 0|X(t) ≥ Xτ} and T̂ := T + τ denote the timing of investment and

revenue generation, respectively, where Xτ represents the corresponding investment threshold.

Due to the Markov property, the firm value at the investment timing for given demand shock X is

E
[ ∫ ∞

τ
e−rtX(t)dt− I

∣∣∣X(0) = X
]
=
Xδ(τ)

r − µ
− I, (3)

where δ(τ) := E[e−(r−µ)τ ] represents the discount factor with respect to the revenue generation timing,

which plays a pivotal role in the discussion hereafter. Note that it is the Laplace transform of the

time-to-build. Following the standard argument of real options, the firm value in (2) can be calculated

as follows:4

Vτ (X) =


[Xτ δ(τ)

r−µ − I
](

X
Xτ

)γ
, if X < Xτ ,

Xδ(τ)
r−µ − I, if X ≥ Xτ ,

(4)

where the optimal investment threshold is

Xτ =
γ(r − µ)I

(γ − 1)δ(τ)
, (5)

and

γ :=
1

2
− µ

σ2
+

√(1
2
− µ

σ2
)2

+
2r

σ2
(> 1). (6)

4.2 The effects of uncertainty on investment

The effects of uncertainty in time-to-build on investment and firm value can be described as follows:

Lemma 1 If τn+1 is a mean-preserving spread of τn for n ≥ 0 with a constant τ0 = τ̄ , the following

always holds:

Xτn+1 < Xτn and Vτn+1(X) > Vτn(X) for all n ≥ 0. (7)

Proof See Appendix A.1.

Lemma 1 implies that uncertainty in time-to-build always accelerates investment and enhances pre-

investment firm value, which was first shown by Jeon (2024b). This is essentially due to the convexity

of the discount factor with respect to the timing of revenue generation. That is, the good news (i.e.,

τ < E[τ ]) is discounted less while the bad news (i.e., τ > E[τ ]) is discounted significantly, yielding the

asymmetric effects of uncertainty in time-to-build on the firm value. Note that this argument does not

depend on the distribution of time-to-build τ .5

Hartman (1972, 1973) and Abel (1983) demonstrated that uncertainty can accelerate investment,

focusing on uncertainties in the state space, such as market demands and output prices. In their papers,

the convexity of the marginal profitability of capital, which results from the optimal adjustment of

labor, induces the positive impacts of uncertainty in demands. Jeon (2024b,a) and this study shed light

4See Dixit and Pindyck (1994) for a comprehensive review regarding the real options theory.
5Jeon (2024b) verified the robustness of this result, showing that it still holds even when there are running costs during

the phase of time-to-build and the firm has an option to abandon the ongoing project. Jeon (2024a) showed that the

positive impacts of uncertainty in time-to-build remain intact even when the firm’s investment size decision is considered

in addition to the timing decision.
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on the uncertainty in the time dimension, showing that uncertainty in revenue generation timing always

accelerates investment, and it is also the convexity that drives the positive impacts of uncertainty in

time-to-build.

In the standard real options literature in which the investment timing decision is mainly discussed,

it is well-known that an increase in demand volatility (i.e., σ) delays investment. This negative impact

of demand uncertainty on investment is in sharp contrast with the positive impact of uncertainty in

time-to-build, and the economic intuition behind these opposing effects is as follows. When demand is

uncertain, the firm obtains more information and resolves the uncertainty by waiting to invest. In other

words, the value of the option to wait increases with demand uncertainty, and therefore, the firm delays

investment as the market becomes more volatile. This can be seen from the fact that ∂γ/∂σ < 0, and

thereby γ/(γ − 1) in (5), which represents the option value, increases with σ. Note that the expected

profits from the investment in (3) are independent of σ. This implies that the option value is the sole

channel through which uncertainty in demand negatively affects the investment decision.

Meanwhile, the firm can obtain more information regarding the timing of revenue generation and

resolve the uncertainty only after the investment, but the amount and quality of the information do

not depend on the investment timing. Thus, earlier investment due to the uncertainty in time-to-build

is not associated with the value of the option to wait. This can be seen from the fact that γ in (6) is

independent of τ . Note that the expected profits at the investment timing in (3) depends on τ . This

implies that the expected profits from the investment, which depends on the convexity of the discount

factor with respect to the revenue generation timing, are the sole channel through which uncertainty

in time-to-build positively impacts the investment decision. This argument will be discussed in detail

with numerical examples in Section 5.7.

Most empirical studies on uncertainty-investment relationship support the negative link between

them (e.g., Leahy and Whited (1996), Guiso and Parigi (1999), Meinen and Roehe (2017)), but there

are a few exceptions. For instance, Driver et al. (2008) used panel data from the British survey to test

the effects of uncertainty on investment and found the positive impacts in the industries with high

R&D and advertising intensities. Marmer and Slade (2018) analyzed the U.S. copper mining industry

and reported the positive impact of uncertainty on investment when the project involves time-to-build.

These studies suggest that time-to-build might be one of the the drivers behind the positive impacts of

uncertainty on investment, although this hypothesis needs to be tested with empirical data.

4.3 Certainty equivalent of uncertain time-to-build

Now we examine how much uncertainty in time-to-build advances the timing of investment and improves

the firm value.

Proposition 1 (Certainty equivalent) For any uncertain time-to-build τ , there always exists a

unique constant τ̄c( < E[τ ]) such that δ(τ) = δ(τ̄c), or equivalently, Xτ = Xτ̄c and Vτ (X) = Vτ̄c(X).

The certainty equivalent is derived as

τ̄c = −Kτ (−(r − µ))

r − µ
, (8)
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where Kτ (t) is the cumulant-generating function of τ :6

Kτ (t) = lnE[etτ ] =
∞∑
n=1

tnκn
n!

, (9)

with κn denoting the n-th cumulant of τ .

Proof See Appendix A.2.

Proposition 1 provides a practical framework for deriving the optimal investment strategy in the

presence of uncertain time-to-build in a straightforward manner. Given prior knowledge of the uncer-

tainty in time-to-build τ , the firm can derive the corresponding certainty equivalent τ̄c in (8) and apply

it to the optimal investment strategy that would have been adopted in the absence of such uncertainty

(i.e., Xτ = Xτ̄c). This tractable framework is applicable to any τ that has its probability density

function.

Proposition 1 implies that the firm value with longer and uncertain time-to-build (i.e., E[τ ]) is

same as that with shorter and fixed time-to-build (i.e., τ̄c) and that the unique correspondence (i.e.,

Xτ = Xτ̄c and Vτ (X) = Vτ̄c(X)) always exists, regardless of the distribution of stochastic time-to-build.

The degree to which uncertainty in time-to-build accelerates investment and thus improves firm value

is measured by E[τ ]− τ̄c (> 0), which is referred to as uncertainty premium of time-to-build.

Consumption

U
ti
lit

y

Uncertainty

premium

Certainty

equivalent

Uncertainty

premium

Certainty

equivalent

(a) Uncertain consumption and utility

Time-to-build

F
ir
m

 v
a
lu

e

Uncertainty

premium

Certainty

equivalent

(b) Uncertain time-to-build and firm value

Figure 1: Positive impacts of uncertainty in time-to-build on firm value

Figure 1 graphically illustrates the positive impacts of uncertainty in time-to-build and the existence

of the certainty equivalent. To facilitate understanding, Figure 1a reviews the well-known negative

impacts of uncertainty in consumption on utility. For a risk-averse investor, her utility function U(x) is

a function of consumption level x with U ′ ≥ 0 and U ′′ ≤ 0. Given possible outcomes of x1 and x2, the

concavity of the utility function ensures E[U(x)] ≤ U(E[x]) always holds, and there exists the certainty

equivalent x̄c such that E[U(x)] = U(x̄c) and x̄c ≤ E[x]. Figure 1b follows similar arguments. Firm

value V (τ) is a function of time-to-build τ with V ′ ≤ 0 and V ′′ ≥ 0, and given possible outcomes of

6The cumulant-generating function is the natural logarithm of the moment-generating function Mτ (t) = E[etτ ] =∑∞
n=0

tnE[τn]
n!

. Since r > µ, Mτ (−(r − µ))( < 1) always exists and so does Kτ (−(r − µ))( < 0), provided that the

probability density function exists.
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τ1 and τ2, the convexity ensures E[V (τ)] ≥ V (E[τ ]); there exists the certainty equivalent τ̄c such that

E[V (τ)] = V (τ̄c) and τ̄c ≥ E[τ ].
The sensitivity of the certainty equivalent of uncertain time-to-build with respect to market demands

can be addressed as follows:

Corollary 1 The certainty equivalent of time-to-build increases with the expected growth rate of de-

mand (i.e., µ). In other words, the uncertainty premium of time-to-build decreases with it. Both are

independent of demand volatility (i.e., σ).

Proof See Appendix A.3.

This result implies that uncertainty in time-to-build accelerates investment more significantly when

the market demand is expected to grow slowly. Technically speaking, this is because the convexity of the

discount factor with respect to the timing of revenue generation—the main driver of the positive effects

of uncertainty in time-to-build—decreases with the expected growth rate of demand (i.e., µ).7 That is,

the firm discounts the future cash flow more heavily when µ is low, and thus, earlier completion of the

project is more appreciated and losses from the delay are discounted more substantially when µ is low.

To sum up, the adjustment in the investment strategy due to the uncertainty of revenue generation

timing needs to consider how much the demand is expected to grow over time but it should not reflect

how volatile the demand is.

Proposition 1 allows us to summarize a direct relationship between time-to-build and firm value as

follows:

Corollary 2 Suppose the initial demand X is sufficiently low such that the investment is not triggered

instantly. The firm value Vτ (X) being greater than X̄ is equivalent to

τ̄c ≤
ln(A(X)/X̄)

(r − µ)γ
, (10)

where

A(X) =
(γ − 1

I

)γ−1( X

γ(r − µ)

)γ
. (11)

Proof See Appendix A.4.

It is obvious that the right-hand side of (10) decreases with X̄. This implies that the certainty

equivalent of time-to-build needs to be smaller, or equivalently, the uncertainty premium of time-to-

build needs to be greater to achieve a higher firm value.

Proposition 1 implies that the firm needs perfect prior information regarding the time-to-build (i.e.,

probability distribution) to derive the optimal investment strategy based on the certainty equivalent.

However, in practice, it is rare for firms to have such perfect prior information regarding the uncertainty

in time-to-build. Nevertheless, even without the full knowledge regarding such uncertainty, the firm can

approximate the certainty equivalent using only a few moments of the time-to-build as follows:

7For f(τ) = exp(−(r − µ)τ), the degree of convexity, measured by 1
f

∂2f
∂τ2 = (r − µ)2, decreases with µ.
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Corollary 3 Given the mean and variance of time-to-build τ , denoted by m and v, respectively, the

certainty equivalent of τ is approximated as follows:

τ̃c,2 := m− (r − µ)v

2
. (12)

With the addition of skewness and excess kurtosis, denoted by s and e, respectively, it can be approxi-

mated more precisely as follows:

τ̃c,3 := m− (r − µ)v

2

(
1− (r − µ)s

√
v

3

)
, (13)

τ̃c,4 := m− (r − µ)v

2

(
1− (r − µ)s

√
v

3
+

(r − µ)2ev

12

)
, (14)

where the approximation error is τ̃c,i − τ̄c for i ∈ {2, 3, 4}.

Proof See Appendix A.5.

Corollary 3 implies that if the firm has estimates of the mean and variance of time-to-build based

on its prior investment experiences in similar fields, it can derive the optimal investment strategy

that accounts for the uncertainty in time-to-build without any further information (i.e., the exact

distribution). As will be shown in Section 5, the mean and variance are sufficient to approximate the

certainty equivalent of uncertain time-to-build in many cases. In other words, the approximation error

is negligible, unless the underlying distribution has a peak at either end of its support, such as an

exponential distribution.

Based on Proposition 1 and Corollary 3, we can easily obtain the following result:

Corollary 4 The certainty equivalent of time-to-build decreases with its dispersion. In other words, the

uncertainty premium of time-to-build increases with its dispersion. Specifically, with the approximation

up to the third moment in (13), the uncertainty premium of time-to-build increases with the variance

v if s < 3/((r− µ)
√
v). With the approximation up to the fourth moment in (14), it increases with the

variance v if s < 3/((r − µ)
√
v) + (r − µ)e

√
v/4.

Proof See Appendix A.6.

The positive impact of the variance of time-to-build on its uncertainty premium is straightforward;

as noted in Lemma 1, the more dispersed time-to-build is, the more incentive to invest the firm has. The

result in (13) shows that all else being equal, the skewness of time-to-build has a negative impact on its

uncertainty premium. This is because the positively-skewed time-to-build implies that the distribution

has a longer tail over the likelihoods of longer time-to-build, which reduces the firm’s incentive to invest.

The result in (14) implies that all else being equal, the excess kurtosis of time-to-build positively affects

its uncertainty premium. This is because the greater excess kurtosis implies fatter tails, which increases

the firm’s incentive to invest due to the convexity effect described in Lemma 1.

Furthermore, for given mean and variance of time-to-build, we can derive the distribution-free upper

and lower bounds of the certainty equivalent as follows:
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Proposition 2 For given mean m and variance v of time-to-build, the certainty equivalent of time-

to-build is bounded as follows:

− 1

r − µ
ln
(e−(r−µ)(m+v/m)m2 + v

m2 + v

)
≤ τ̄c ≤ m. (15)

In particular, both the upper and lower bounds are tight, and the lower bound strictly decreases with v.

Proof See Appendix A.7.

Corollary 4 suggests that the uncertainty premium of time-to-build might not increase with its

variance. In fact, the following result can be obtained:

Proposition 3 The certainty equivalent of time-to-build does not strictly decrease with variance of

time-to-build. In other words, the uncertainty premium of time-to-build does not always strictly increase

with its variance.

Proof See Appendix A.8.

At a glance, the result of Proposition 3 might seem to contradict Lemma 1, but it does not. A mean-

preserving spread of given time-to-build always accelerates investment, as addressed in Lemma 1, and

it has a greater variance than the given time-to-build.8 However, this does not imply that time-to-build

with a greater variance always accelerates investment. This is because a random variable with the same

mean yet a greater variance is not necessarily a mean-preserving spread of the counterpart.9

4.4 Entropic risk measure of time-to-build

In general, entropic risk measure is defined from the perspective of a risk-averse investor’s expected

utility. Specifically, it draws on exponential utility function uθ(x) = 1 − e−θx where θ(> 0) is a risk

aversion parameter, which strictly increases with x and is concave with respect to it, and it is defined

as follows:

ρθ(x) := inf{z ∈ R |E[uθ(x+ z)] ≥ 0}. (16)

It is the minimum amount of additional capital to ensure that the expected utility is above a certain

level. Therefore, the higher (16) is, the riskier x is.

Following similar arguments, we can define entropic risk measure of time-to-build. Since the firm

value decreases with the size of time-to-build τ and is convex with respect to it, we can consider

vθ(τ) = e−θτ − 1(= −uθ(τ)). With these, entropic risk measure of time-to-build τ can be defined as

follows:

sup{z ∈ R |E[vθ(τ + z)] ≥ 0} = inf{z ∈ R |E[uθ(τ + z)] ≥ 0}, (17)

which amounts to the right-hand side of (16) with τ instead of x. It represents the maximum size of

fixed time-to-build that can be added while ensuring that the firm value is above a certain level. As

8As in Lemma 1, suppose τn+1 = τn + ϵn+1 where E[ϵn+1|τn] = 0. By the law of iterated expectations, E[ϵn+1] =

E[E[ϵn+1|τn]] = 0 holds, and it is straightforward to show that Var(τn+1) = Var(τn) + Var(ϵn+1) > Var(τn) since

Cov(τn, ϵn+1) = E[τnϵn+1]− E[τn]E[ϵn+1] = E[τnE[ϵn+1|τn]] = 0.
9Namely, τn+1 is not necessarily a mean-preserving spread of τn even if E[τn+1] = E[τn] and Var(τn+1) > Var(τn) hold.

Refer to Appendix A.8 for a specific example.
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noted in Lemma 1, uncertainty in time-to-build always increases the firm value. In other words, the

firm has more slack in terms of time-to-build when it is riskier. Therefore, the higher (17) is, the riskier

time-to-build is.10

With these arguments, we can describe the positive impact of uncertainty in time-to-build in terms

of its entropic risk measure:

Proposition 4 The certainty equivalent strictly decreases with entropic risk measure of time-to-build.

In other words, the uncertainty premium of time-to-build strictly increases with its entropic risk measure.

Proof See Appendix A.9.

Furthermore, we can express the certainty equivalent of time-to-build in terms of relative entropy:

Proposition 5 The certainty equivalent of time-to-build τ can be represented as follows:

τ̄c = inf
Q∈M(P)

{
EQ[τ ] +

1

r − µ
H(Q|P)

}
, (18)

where M(P) is the set of probability measures on (Ω,F) which are absolutely continuous with respect

to P, and
H(Q|P) := EQ

[
ln

dQ
dP

]
(19)

denotes the relative entropy of Q with respect to P, also known as Kullback-Leibler divergence, with EQ

denoting the expectation under measure Q.

Proof See Appendix A.10.

Proposition 5 implies that the certainty equivalent of time-to-build can be expressed as the sum of

the expectation of time-to-build under equivalent measure and the distance between the two measures,

minimized over the set of equivalent measures. Note that EQ[τ ] ≤ τ̄c < E[τ ] always holds sinceH(Q|P) ≥
0. That is, the equivalent measure Q is chosen such that the expectation of time-to-build under the

measure becomes smaller than under physical measure P, but it is penalized by the relative distance

between the two measures.

With the relevance of certainty equivalent of time-to-build and relative entropy described in Propo-

sition 5, one might conjecture that the uncertainty premium of time-to-build, which measures how

much investment is accelerated by the uncertainty of time-to-build, would increase with entropy of

time-to-build. Recall that differential entropy of a continuous random variable x with a probability

density function f(x) is defined as H(x) := −
∫
f(x) ln f(x)dx, and it measures the average level of un-

certainty, or more pricisely, information associated with the possible outcome of the random variable.11

However, the following result is obtained:

10Although we measure the uncertainty of time-to-build based on the concept of entropic risk measure, our discussion

is not directly associated with the decision-making of a risk-averse agent. As noted in Section 3, we assume a risk-neutral

firm.
11For a discrete random variable x with a probability mass function p(x), Shannon’s entropy is defined as

−
∑

p(x) ln p(x)(≥ 0). Unlike Shannon’s entropy, differential entropy can be negative since f(x) > 1 is possible.
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Proposition 6 The certainty equivalent of time-to-build does not strictly decrease with entropy of time-

to-build. In other words, the uncertainty premium of time-to-build does not always strictly increase with

its entropy.

Proof See Appendix A.11.

In fact, as will be shown in Section 5, the opposite can hold depending on the distribution of time-

to-build. That is, a decrease of entropy of time-to-build can lead to an increase of uncertainty premium

of time-to-build. For instance, when the distribution is bimodal with most density being concentrated

around both ends of its support, its variance becomes substantial, which in most cases increases the

uncertainty premium of time-to-build, but its entropy is relatively insignificant.

4.5 Uncertainty equivalent of fixed time-to-build

Proposition 1 presents the firm’s optimal investment decision, given precise knowledge of the uncertainty

in time-to-build (i.e., probability distribution), in the form of the investment strategy that would have

been implemented in the absence of such uncertainty. In practice, the opposite is more plausible; the firm

has established the optimal investment strategy without consideration of uncertainty in time-to-build

but does not know the extent of uncertainty that such an investment strategy implicitly assumes.

From this perspective, we can derive the following result:

Proposition 7 (Uncertainty equivalent) For any fixed time-to-build τ̄ (> 0), there always exists a

nonnegative random variable τu with E[τu] > τ̄ such that δ(τ̄) = δ(τu), or equivalently, Xτ̄ = Xτu and

Vτ̄ (X) = Vτu(X). Specifically, the uncertainty equivalent is derived from

Kτu(−(r − µ)) = −(r − µ)τ̄ . (20)

Proof See Appendix A.12.

Note that Proposition 7 proves the existence of the uncertainty equivalent but its uniqueness is

not guaranteed. Namely, there can be many uncertainty equivalents that satisfy (20) for given fixed

time-to-build. The degree to which the investment is disincentivized by the certainty of time-to-build

compared to the case with uncertain time-to-build τu is measured by τ̄−E[τu](< 0), and its magnitude,

E[τu]− τ̄ (> 0), is referred to as certainty discount of time-to-build.

Figure 2 graphically illustrates the multiplicity of the uncertainty equivalent for a fixed time-to-

build. For a given constant τ̄ , there can exist a random variable with greater mean and variance that

satisfies (20) and the other one with smaller mean and variance yet satisfies (20); they need not follow

the same distribution as well.

Proposition 7 suggests a guideline for firms to evaluate their investment strategies that have been

established without consideration of uncertainty in time-to-build, specifying the equivalent risks they

would essentially take under such an investment policy.
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Figure 2: Examples of multiple uncertainty equivalents for a fixed time-to-build

Based on Proposition 7, we can derive the following result:

Corollary 5 The expected value of the uncertainty equivalent τu for a fixed time-to-build τ̄ increases

with the dispersion of τu. In other words, the certainty discount of the fixed time-to-build increases with

the dispersion of τu.

Proof See Appendix A.13.

Following similar arguments from Proposition 7, we can also obtain the following result:

Corollary 6 For any fixed time-to-build τ̄ (> 0), there always exists a nonnegative random variable

τw with E[τw] > τ̄ such that δ(τ̄) < δ(τw), or equivalently, Xτ̄ > Xτw and Vτ̄ (X) < Vτw(X).

Proof See Appendix A.14.

This implies that for any fixed time-to-build, there always exists uncertain time-to-build whose

expected duration is longer than the fixed counterpart but induces higher firm value.

5 Probability distributions of time-to-build

In this section, we illustrate the practical application of the results from Section 4 using representative

probability distributions. Throughout this section, we adopt the following parameters for describing the

investment project. They are in a moderate range that can be easily found from real options literature.

Notation Value Description

r 0.08 Risk-free rate

µ 0.02 Expected growth rate of demand shock

σ 0.2 Volatility of demand shock

I 3 Lump-sum investment costs

X 0.1 Initial demand shock

Table 1: Benchmark parameters for numerical calculation
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5.1 Uniform distribution

Suppose the firm knows that the time-to-build of its investment project has equal likelihood between

the minimum a and maximum b. That is, assume that τ follows a uniform distribution with parameters

(a, b) where 0 ≤ a < b. Its probability density function is

f(τ) =


1

b−a if a ≤ τ ≤ b,

0 otherwise,
(21)

which is described in Figure 3a, and its moment-generating function is

Mτ (t) =
etb − eta

t(b− a)
, (22)

which amounts to the cumulant-generating function Kτ (t) = lnMτ (t).

Recall that Propositions 3 and 6 showed an increase of variance and entropy of time-to-build does

not always accelerate investment. However, it always has the positive impacts on investment when

time-to-build follows a uniform distribution:

Proposition 8 When time-to-build follows a uniform distribution, the certainty equivalent strictly

decreases with its variance and differential entropy. In other words, the uncertainty premium strictly

increases with its variance and differential entropy.

Proof See Appendix A.15.

The certainty equivalent of uniformly distributed time-to-build can be calculated by (8) with (22).

Figure 3c presents the certainty equivalent (i.e., τ̄c) for a given minimum (i.e., a = 1). It is obvious that

E[τ ] increases with the maximum b, and so does τ̄c. By comparing Figures 3b, 3c and 3e, we can see

that the uncertainty premium of time-to-build (i.e., E[τ ] − τ̄c) strictly increases with its variance and

differential entropy, which verifies Proposition 8.

The uncertainty equivalent of fixed time-to-build, assumed to follow a uniform distribution, can

be found by determining (a, b) that satisfies (20) with (22). Since a uniform distribution is defined

by two parameters, if the firm assumes that time-to-build follows this distribution and is certain of

its minimum (i.e., a), it naturally determines the maximum of the uncertainty equivalent (i.e., b), the

worst-case scenario, corresponding to the fixed time-to-build. This is illustrated in Figure 3d for τ̄ = 5.

As noted in Section 4.5, there can exist many uncertainty equivalents for a fixed time-to-build, which

is described by the solid line in Figure 3d. Recall that the uncertainty equivalent of time-to-build has a

longer (expected) duration than the fixed one but yields the same firm value. Furthermore, the shaded

area corresponds to the case in which uncertain time-to-build is longer (in expectation) than the fixed

counterpart but induces higher firm value (i.e., τ̄ < E[τ ] and Vτ̄ < Vτ ), which confirms Corollary 6.

Figures 3f and 3g present the optimal investment threshold and firm value along with their approx-

imation based on the moments described in Figure 3b, and they show that the approximation error is

negligible. That is, the firm can essentially establish the optimal investment strategy taking account of

uncertain time-to-build solely based on its mean and variance. Note that the approximation described

in Figures 3f and 3g is solely based on the moments of the corresponding distribution without assuming

any specific distribution; this is the same for other figures regarding the approximation hereafter.
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(b) Four common moments for a = 1
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a = 1
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(e) Differential entropy for a = 1
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tion for a = 1
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Figure 3: When time-to-build follows a uniform distribution with minimum a and maximum b
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5.2 Triangular distribution

Suppose that the firm knows the minimum, maximum, and mode of the time-to-build of its project,

denoted by a, b, and c, respectively, and that its likelihood is unimodal and piece-wise linear. That is,

assume that τ follows a triangular distribution with parameters (a, b, c) with 0 ≤ a ≤ c ≤ b and a < b.

Its probability density function is

f(τ) =



2(τ−a)
(b−a)(c−a) if a ≤ τ < c,

2
b−a if τ = c,

2(b−τ)
(b−a)(b−c) if c < τ ≤ b,

0 otherwise,

(23)

which is depicted in Figure 4a, and its moment-generating function is

Mτ (t) =
2{(b− c)eat − (b− a)ect + (c− a)ebt}

(b− a)(c− a)(b− c)t2
. (24)

As in Proposition 8, an increase of variance and differential entropy of time-to-build always accel-

erates investment when it follows a symmetric triangular distribution:

Proposition 9 When time-to-build follows a symmetric triangular distribution, the certainty equivalent

strictly decreases with its variance and differential entropy. In other words, the uncertainty premium

strictly increases with its variance and differential entropy.

Proof See Appendix A.16.

The certainty equivalent of time-to-build following a triangular distribution can be obtained by (8)

with (24). Figure 4c presents the certainty equivalent assuming the minimum a = 1 and the mode

c = (a + b)/3. Comparing Figures 4b, 4c and 4e, we can see that the uncertainty premium increases

with the variance and differential entropy of time-to-build (Proposition 9).

The uncertainty equivalent of fixed time-to-build, assumed to follow a triangular distribution, can

be found by determining (a, b, c) that satisfies (20) with (24). If the firm assumes that time-to-build

follows this distribution and is sure of its minimum and mode (i.e., a and c), it can instantly deduce

the worst-case scenario of the uncertainty equivalent (i.e., b) corresponding to the fixed time-to-build,

which is described in Figure 4d for τ̄ = 5. We can see that the worst-case scenario (i.e, b) decreases

with the most likely scenario (i.e., c) for given best-case scenario (i.e., a = 1) and fixed time-to-build

(i.e., τ̄ = 5). The shaded area represents the uncertain time-to-build whose expected duration is longer

than the fixed counterpart yet induces higher firm value (i.e., τ̄ < E[τ ] and Vτ̄ < Vτ ), which supports

Corollary 6.

Figures 4f and 4g present the optimal investment threshold and firm value along with their approx-

imation based on the moments described in Figure 4b. As in Section 5.1, the approximation error is

negligible, which implies that the mean and variance of time-to-build are sufficient to derive the optimal

investment strategy.
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(b) Four common moments for a = 1 and

c = (a+ b)/3
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tion for a = 1 and c = (a+ b)/3

2 3 4 5 6 7 8 9 10
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

F
ir
m

 v
a

lu
e

(g) Firm value and its approximation for a =

1 and c = (a+ b)/3

Figure 4: When time-to-build follows a triangular distribution with minimum a, maximum b, and mode

c

18



5.3 Log-normal distribution

Suppose the firm knows that time-to-build τ follows a log-normal distribution with parameters µτ and

στ (> 0). That is, ln τ follows a normal distribution with mean µτ and variance σ2τ . It is a unimodal

distribution on (0,∞), and τ → ∞ can describe the failure of R&D project. Its probability density

function is

f(τ) =


1

τστ

√
2π
e
− (ln τ−µτ )2

2σ2
τ if τ > 0,

0, otherwise,
(25)

which is described in Figure 5a. Its moment-generating function (i.e., Mτ (t) = E[etτ ]) does not exist

for t ≥ 0 since the defining integral diverges. Although E[etτ ] converges for t < 0 due to τ ∈ (0,∞),

its closed-form expression has not been found yet.12 Asmussen et al. (2016) suggested the following

approximation of the moment-generating function:

Mτ (t) ≈
exp

(
− {W (−tσ2

τ e
µτ )}2+2W (−tσ2

τ e
µτ )

2σ2
τ

)
√
1 +W (−tσ2τeµτ )

, (26)

where W (x) is the Lambert W function defined as the solution of W (x)eW (x) = x, and we adopt this

approximation to derive the certainty equivalent and uncertainty premium of time-to-build following

log-normal distribution.

The certainty equivalent of time-to-build following a log-normal distribution can be found by (8)

with (26), which is described in Figure 5c for µτ = 1. Its comparison with Figures 5b and 5e numerically

shows that the uncertainty premium of time-to-build increases with the variance and differential entropy.

The uncertainty equivalent of time-to-build, assumed to follow a log-normal distribution, can be

found by obtaining (µτ , στ ) that satisfies (20) with (26). If the firm suppose that the uncertainty

equivalent follows this distribution and is certain of the mean of time-to-build, it can specify the

candidates of the uncertainty equivalent. Figure 5d presents the uncertainty equivalent of fixed time-

to-build τ̄ = 5, and we can see that µτ of the uncertainty equivalent decreases with στ . The shaded

area in Figure 5d represents the uncertain time-to-build whose expected duration is longer than the

fixed counterpart yet yields higher firm value (i.e., τ̄ < E[τ ] and Vτ̄ < Vτ ), consistent with Corollary 6.

Figures 5f and 5g present the optimal investment threshold and firm value along with their approx-

imation based on the moments illustrated in Figure 5b, and we can see that the approximation errors

are negligible.

12All moments of the log-normal distribution exist (i.e., E[τn] = enµτ+n2σ2
τ/2), but the log-normal distribution is not

determined by its moments (e.g., Heyde (1963)). This implies that it cannot have a defined moment-generating function

in a neighborhood of zero.
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(b) Four common moments for µτ = 1
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Figure 5: When time-to-build follows a log-normal distribution with parameters µτ and στ
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5.4 Exponential distribution

Suppose the firm knows that the time-to-build follows an exponential distribution with a parameter

λ > 0, which is well-known for its tractability including the memoryless property.13 Its support is

[0,∞), and the likelihood is significantly more concentrated towards 0 than towards ∞. Its probability

density function is

f(τ) =

 λe−λτ if τ ≥ 0,

0 otherwise,
(27)

which is described in Figure 6a, and its moment-generating function is

Mτ (t) =
λ

λ− t
for t < λ. (28)

The certainty equivalent of time-to-build following an exponential distribution can be found by (8)

with (28). Specifically, it is given by τ̄c = ln(1+(r−µ)/λ)/(r−µ), and it is described in Figure 6c. The

comparison of Figures 6b, 6c and 6e numerically shows that the uncertainty premium of time-to-build

increases with its variance and differential entropy.

The uncertainty equivalent of fixed time-to-build, assumed to follow this distribution, can be found

by determining λ that satisfies (20) with (28). In fact, since there is a single parameter, the uncertainty

equivalent for a given fixed time-to-build following this distribution is unique, and so are its mean and

variance (i.e., 1/λ and 1/λ2) and other n-th moments. Figure 6d presents the uncertainty equivalent

for a various level of fixed time-to-build τ̄ . As in Sections 5.1 to 5.3, the shaded area in Figure 6d

corresponds to the uncertain time-to-build of which expected duration is longer than the fixed one yet

induces higher firm value (i.e., τ̄ < E[τ ] and Vτ̄ < Vτ ), supporting Corollary 6.

Figures 6f and 6g present the optimal investment threshold and firm value considering uncertain

time-to-build along with their approximation based on the moments in Figure 6b. Unlike Sections 5.1

to 5.3, we can see that there is a significant approximation error, which increases with the size of time-

to-build. It is obvious that the size of the error decreases with the number of moments used for the

approximation.

13The memoryless property becomes valuable when there is another decision-making after the investment is made yet

before the project is finished, such as the default decision of a debt-financed firm or a follow-up investment. This is because

it makes the subsequent decision-making time-independent so that we can solve an ordinary differential equation instead

of a partial differential equation. For simplicity, this study only considers a single decision-making.
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(g) Firm value and its approximation

Figure 6: When time-to-build follows an exponential distribution with a parameter λ
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5.5 Gamma distribution

Suppose the firm knows that the time-to-build τ follows a gamma distribution with parameters (k, θ)

where k > 0 is a shape parameter and θ > 0 is a scale parameter. The two-parameter distribution

is well-known for its versatility, encompassing many distributions as its special cases.14 Its support

is (0,∞), which allows us to model the potential for R&D failure (i.e., τ → ∞). However, with the

inclusion of an additional parameter, it can describe a much broader range of likelihoods of time-to-

build. Specifically, unlike the exponential distribution, the likelihood does not nave to be concentrated

near 0. Its probability density function is

f(τ) =


τk−1e−τ/θ

Γ(k)θk
if τ ≥ 0,

0 otherwise,
(29)

where Γ(·) is gamma function, which is described in Figure 7a, and its moment-generating function is

Mτ (t) = (1− θt)−k for t <
1

θ
. (30)

The certainty equivalent of time-to-build following a gamma distribution can be found from (8)

with (30), which is described in Figure 7c. Its comparison with Figures 7b and 7e numerically shows

that the uncertainty premium of time-to-build increases with its variance and differential entropy.

The uncertainty equivalent of fixed time-to-build, assumed to follow this distribution, can be found

by determining (k, θ) that satisfies (20) with (30). If the firm supposes that the uncertainty equivalent

follows this distribution without knowing the parameters but is certain of the mean of time-to-build (i.e.,

kθ), it can specify the candidates of the uncertainty equivalent. Figure 7d presents the combination

of k and θ that yields the uncertainty equivalent of fixed time-to-build τ̄ = 5, and the shaded area

corresponds to the case discussed in Corollary 6.

Figures 7f and 7g illustrate the optimal investment threshold and firm value taking uncertain time-

to-build into account along with their approximation based on the moments in Figure 7b. They show

that the approximation solely based on the mean and variance of time-to-build yields a nonnegligible

error, but it becomes insignificant when the skewness is taken into account.

14With k = 1, it becomes the exponential distribution discussed in Section 5.4. When k is an integer, it is known as the

Erlang distribution. When k = ν/2 and θ = 2, it corresponds to the chi-squared distribution with a parameter ν.
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(b) Four common moments for k = 3
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Figure 7: When time-to-build follows a gamma distribution with shape parameter k and scale parameter

θ
24



5.6 Scaled beta distribution

Despite its flexibility, the gamma distribution might not be suitable for describing the time-to-build of

some investment projects, primarily because of its semi-infinite support. For this reason, we consider a

scaled beta distribution.

Suppose ν follows a beta distribution with parameters (α, β) where α, β > 0 are shape parameters.

Since ν ∈ [0, 1], we can scale it to τ := (c− a)ν + a so that τ ∈ [a, c] where 0 ≤ a < c. The probability

density function of ν is

f(ν) =


να−1(1−ν)β−1

B(α,β) if 0 ≤ τ ≤ 1,

0 otherwise,
(31)

where B(·, ·) is beta function, and that of τ is f(τ) = f(ν)/(c − a) on its support [a, c], which is

described in Figure 8a. The moment-generating function of τ following the scaled beta distribution

with parameters (α, β, a, c) is

Mτ (t) =

∫ c

a
etτf(τ)dτ

=
1

B(α, β)

∫ 1

0
et{(c−a)ν+a}να−1(1− ν)β−1dν

=
1

B(α, β)

∞∑
n=0

(ta)n

n!

∞∑
k=0

{t(c− a)}k

k!

∫ 1

0
να+k−1(1− ν)β−1dν

=
∞∑
n=0

(ta)n

n!

∞∑
k=0

{t(c− a)}k

k!

B(α+ k, β)

B(α, β)

=

∞∑
n=0

(ta)n

n!

[
1 +

∞∑
k=1

( k−1∏
s=0

α+ s

α+ β + s

){t(c− a)}k

k!

]
. (32)

The certainty equivalent of time-to-build following the scaled beta distribution can be found from

(8) with (32). Figure 8d presents the certainty equivalent of time-to-build following this distribution

on [1, 10]. Although the skewness and excess kurtosis greatly vary depending on α and β (Figure 8c),

the comparision of Figures 8b and 8e reveals that the uncertainty premium of time-to-build is mainly

driven by its variance. Figure 8e also shows that the uncertainty premium of time-to-build is highest

when both α and β are below 1 so that it becomes bimodal with peaks at both ends of the support

[a, c]. The comparison of Figures 8e and 8g shows that the uncertainty premium of time-to-build does

not strictly increases with its differential entropy, supporting Proposition 6. Note that the differential

entropy decreases significantly when both α and β are below 1, where the variance becomes substantial.

The uncertainty equivalent of fixed time-to-build, assumed to follow this distribution, can be found

by determining (α, β, a, c) that satisfies (20) with (32). Figure 8f presents the uncertainty equivalent

of time-to-build following this distribution on [1, 10] for fixed time-to-build τ̄ = 5. The shaded area in

Figure 8f corresponds to the case discussed in Corollary 6.

Figures 8h and 8i present the optimal investment threshold and firm value with uncertain time-to-

build following this distribution along with their approximation, showing that the approximation error

is insignificant.
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Figure 8: When time-to-build follows a scaled beta distribution with minimum a, maximum c, and

shape parameters α and β
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(g) Differential entropy for a = 1 and c = 10 (h) Investment threshold and its approxima-

tion for a = 1 and c = 10

(i) Firm value and its approximation for a =

1 and c = 10

Figure 8: When time-to-build follows a scaled beta distribution with minimum a, maximum c, and

shape parameters α and β
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PERT distribution, which was developed for program evaluation and review technique, is a special

case of the scaled beta distribution. Specifically, if τ follows the PERT distribution with parameters

(a, b, c) with 0 ≤ a < b < c < ∞ where a and c are the minimum and maximum of time-to-build,

respectively, and b is its mode, its probability density function coincides with that of the scaled beta

distribution with α = 1+4(b− a)/(c− a) and β = 1+4(c− b)/(c− a), which is described in Figure 9a.

Unlike the triangular distribution discussed in Section 5.2, it is a smooth unimodal distribution, and it

can be suitable for describing time-to-build having gradual changes in likelihoods with a single mode

between a potentially nonzero minimum (i.e., a) and a finite worst-case scenario (i.e., c).

The certainty equivalent of time-to-build following the PERT distribution can be found following

the same manner as before, which is illustrated in Figure 9c. As can be seen from Figure 9b, the variance

does not vary significantly in accordance with the mode b within the fixed support [a, c]. This amounts

to the insignificant change in the uncertainty premium (i.e., E[τ ]− τ̄c) in Figure 9c.

The uncertainty equivalent of fixed time-to-build, assumed to follow the PERT distribution, can

be found by determining (a, b, c) that satisfies (20) and (32) with α = 1 + 4(b − a)/(c − a) and β =

1 + 4(c − b)/(c − a). If the firm supposes that the uncertainty equivalent follows this distribution and

is sure of the best-case scenario (i.e., a) and its most likely one (i.e., b), it can specify the worst-case

scenario (i.e., c) of the uncertainty equivalent, which is presented in Figure 9d. Figures 9f and 9g

describe the optimal investment strategy and firm value taking uncertain time-to-build into account,

along with their approximation, and they reveal that the approximation is negligible.
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Figure 9: When time-to-build follows a PERT distribution with minimum a, mode b, and maximum c
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5.7 Mean and variance of time-to-build

Now we focus on the two most important moments of time-to-build: its mean and variance. Proposition 3

showed that without an assumption regarding the distribution of time-to-build, an increase in the

variance of time-to-build does not always accelerate investment. However, we have seen from Sections 5.1

to 5.6 that such an increase leads to earlier investment for the well-known probability distributions.

Figure 10 illustrates the tight upper and lower bounds of the certainty equivalent of time-to-build

for given mean and variance, which are demonstrated in Proposition 2, along with the corresponding

certainty equivalent for representative probability distributions and its approximation based on the

mean and variance (i.e., τ̃c,2 in (12)). Specifically, we fix the mean of time-to-build m and vary its

variance v, demonstrating how the bounds change along with the certainty equivalent. Due to the

degree of freedom, we choose distributions that can be characterized by two parameters: a uniform

distribution, a symmetric triangular distribution, a log-normal distribution, a gamma distribution, and

a symmetric PERT distribution.

Figure 10a shows that the lower bound decreases with the variance v while the upper bound remains

constant. It also clarifies that the certainty equivalent of time-to-build decreases with variance for these

distributions, although this might not hold in an extreme case as the counterexample from the proof

of Proposition 3. Note that the accuracy of the approximation of the certainty equivalent based on

the mean and variance is significantly high. Its approximation error is essentially zero except for the

log-normal distribution and the gamma distribution of which support is semi-infinite. Figures 10b to 10f

describe the corresponding parameters for each distribution that satisfy the mean m and variance v.

Figure 11 presents the examples of the uncertainty equivalent discussed in Proposition 7. Specif-

ically, Figure 11a depicts the level of variance v, combined with the mean m, that induces the same

optimal investment threshold and firm value as the ones with a fixed time-to-build τ̄ . This figure, along

with Figures 11b and 11c, clarifies that even though the expected duration of time-to-build lengthens,

the optimal investment timing and firm value can remain the same as long as its uncertainty increases

significantly. It also demonstrates that the variance of the uncertainty equivalent depends on the dis-

tribution governing time-to-build. The variance of a gamma distribution is found to be significantly

higher than other distributions, primarily because of its semi-infinite support.

Figures 11d to 11h present the corresponding parameters for each distribution. Note that some of

the distributions are unable to yield the uncertainty equivalent for mean m that is substantially greater

than τ̄ due to their restrictions on the parameters, such as a nonnegative minimum. A log-normal

distribution and a gamma distribution are relatively flexible for yielding the uncertainty equivalent

owing to their versatility. Note that the uncertainty equivalents do not need to follow the distributions

illustrated in Figure 11; they are only a fraction of many alternatives that induce the same investment

decision and firm value for a given τ̄ .

As discussed in Section 4.2, an increase of demand uncertainty (i.e., σ) delays the investment yet

increases the firm value. This is because the firm’s option to wait becomes more valuable when the

market demands are uncertain. By contrast, Lemma 1 demonstrates that an increase of uncertainty in

time-to-build advances the investment timing and improves the firm value. That is, the uncertainty of

demand and that of time-to-build induce the opposite effects on the investment timing yet both yields
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the positive impacts on the firm value.

With these arguments, Figure 12 sheds light on the contrasting effects of the two different types of

uncertainty. Specifically, Figure 12a describes the level of variance v that offsets the negative impacts

of an increase in σ on the investment timing. It shows that the variance of time-to-build required to

offset the impacts of increased demand volatility differs depending on the distribution of time-to-build.

A gamma distribution is found to require significantly higher variance than other distributions, mainly

because of its semi-infinite support. Figures 12b and 12c clarify that the effects of uncertainty on

investment timing from the two different channels are canceled out, while the firm value significantly

improves due to the uncertainty from the both channels. Figures 12d to 12h present the corresponding

parameters for each distribution. Note that some of the distributions are unable to offset the negative

impacts of a significant increase in demand volatility due to their restrictions on the parameters.
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6 Conclusion

This study investigated the impacts of uncertainty in time-to-build on corporate investment, clarifying

how much the uncertainty accelerates investment and improves the firm value. We showed that there

always exists a unique certainty equivalent of uncertain time-to-build, regardless of its distribution,

and derived it in an analytic form. With this, firms can establish the optimal investment strategy with

uncertain time-to-build in the form of the investment strategy that would have been adopted in the

absence of such uncertainty. Even without knowing the exact distribution, the certainty equivalent

can be approximated based on only a few moments, such as mean and variance, which enhances the

practicality significantly. Meanwhile, we characterized the entropic risk measure of time-to-build and

showed its positive impacts on investment. We also found the dual representation of the certainty

equivalent of time-to-build based on relative entropy. Furthermore, we showed that for a given fixed

time-to-build, there always exists an uncertainty equivalent. This enables firms to deduce the equivalent

risk that its investment strategy, established without considering uncertainty in time-to-build, impliclty

assumes. Lastly, we applied these arguments to representative probability distributions to demonstrate

the practicality and analyzed the effects of the variance of time-to-build on investment. In particular,

we derived the variance of time-to-build that offsets the negative impacts of demand uncertainty on

investment.

Many problems still remain to be explored. For instance, we only considered a monopolistic firm

for simplicity. Preemptive incentive due to market competition would significantly alter firms’ optimal

investment strategies, as well as the impacts of time-to-build on them. However, introducing competition

would substantially reduce the tractability of the model. As noted in Section 5.4, another layer of

decision-making that occurs after the investment yet before its completion directly depends on the

remaining time-to-build. Thus, an analytic solution is unlikely, unless the underlying distribution is

assumed to have the memoryless property. We also assumed an all-equity firm, but the impacts of

uncertainty in time-to-build on financing and default decisions for a levered firm need to be addressed.

Jeon (2021a) investigated the effects of uncertain time-to-build on a firm’s investment and default

decisions, showing that it can lead to a lower default probability compared to the case without time-

to-build, mainly due to more conservative investment decisions. However, the study did not clarify

the pure effects of uncertainty in time-to-build by comparing it with the case of fixed time-to-build.

Future works need to address this question, though it will encounter the same technical difficulties

mentioned above. More importantly, we assumed the independence between the demand shock and

time-to-build for tractability. Follow-up research needs to test whether the same result holds without

the independence assumption. Lastly, in spite of the difficulties of collecting data, empirical analysis

needs to be carried out to test the theoretical results discussed in this paper. It is hoped that this study

will serve as a platform for investigating these issues in the future.
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A Proofs

A.1 Proof of Lemma 1

By the definition, τn+1 = τn+ϵn+1 where E[ϵn+1|τn] = 0. Suppose that τn has a cumulative distribution

function Fn for n ≥ 1. Since f(τ) := e−(r−µ)τ is a strictly convex function, Jensen’s inequality ensures

the following always holds for all n ≥ 0:

δ(τn+1) = E[f(τn+1)] =

∫
f(τn+1)dFn+1(τn+1) =

∫
E[f(τn + ϵn+1|τn)]dFn(τn)

>

∫
f(E[τn + ϵn+1|τn])dFn(τn) =

∫
f(τn)dFn(τn) = E[f(τn)] = δ(τn). (33)

With δ(τn+1) > δ(τn), it is straightforward that Xτn+1 < Xτn and Vτn+1(X) > Vτn(X).

A.2 Proof of Proposition 1

By Lemma 1, f(E[τ ]) < E[f(τ)] = δ(τ) always holds, and f(τ) strictly decreases with τ . Thus, there

exists a constant τ̄c(< E[τ ]) such that δ(τ̄c) = δ(τ). The monotonicity of f(τ) ensures its uniqueness.

Meanwhile, the definition of δ(τ) and that of the moment-generating function in (9) imply δ(τ) =

Mτ (−(r − µ)), from which we obtain (8).

A.3 Proof of Corollary 1

Let us define u(z) := Kτ (z)/z for z < 0. It is straightforward that u′(z) = v(z)/z2 where v(z) :=

K ′
τ (z)z−Kτ (z). Due to the convexity of the cumulant-generating function, we have v′(z) = K ′′

τ (z)z ≤ 0

for z < 0, which amounts to v(z) ≥ v(0) = 0 for z < 0. Therefore, we obtain u′(z) ≥ 0. Note that

τ̄c = u(−(r − µ)), and thus, τ̄ increases with µ, and the independence with respect to σ is evident.

A.4 Proof of Corollary 2

Plugging (5) into (4), it is straightforward that Vτ (X) = A(X)(δ(τ))γ where A(X) is given by (11).

Thus, Vτ (X) ≥ X̄ is equivalent to δ(τ) ≥ (X̄/A(X))1/γ . By definition, δ(τ) = δ(τ̄c) = exp(−(r − µ)τ̄c)

and δ(τ) =Mτ (−(r − µ)) = exp(Kτ (−(r − µ))), which amounts to (10).

A.5 Proof of Corollary 3

Combining the cumulants κ1 = E[τ ], κ2 = E[(τ −E[τ ])2], κ3 = E[(τ −E[τ ])3], and κ4 = E[(τ −E[τ ])4]−
3(E[(τ − E[τ ])2])2 with (8) and (9), we can easily obtain (12) through (14).

A.6 Proof of Corollary 4

Suppose τn+1 = τn + ϵn+1 with E[ϵn+1|τn] = 0. Proposition 1 implies that for τn, there exists a unique

constant τ̄c,n = E[τn] − cn where cn > 0 such that δ(τ̄n,c) = δ(τn). By Lemma 1, δ(τn) < δ(τn+1),

or equivalently, f(E[τn] − cn) < f(E[τn+1] − cn+1). Because f(τ) strictly decreases with τ , we have

cn+1 > cn, which implies that the uncertainty premium of time-to-build increases with its dispersion.

The approximation of the certainty equivalent in (13) and (14) decrease with v when the terms in

the parentheses are positive.
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A.7 Proof of Proposition 2

Suppose τ is a nonnegative random variable with mean m and variance v. Jensen’s inequality ensures

the following holds:

e−(r−µ)m ≤ E[e−(r−µ)τ ]. (34)

The tightness of (34) can be shown as follows. Suppose τ follows a two-point distribution with

possible outcomes of m + n and m − l(n) with probabilities vn−2 and 1 − vn−2, respectively, where

n is sufficiently large and l(n) is chosen such that E[τ ] = m (i.e., l(n) = (m + n)v/(n2 − v)). Since

limn→∞ l(n) = 0, the following holds:

E[(τ −m)2] = n2 · v
n2

+ (l(n))2
(
1− v

n2

)
n→∞−−−→ v, (35)

E[e−(r−µ)τ ] = e−(r−µ)(m+n) v

n2
+ e−(r−µ)(m−l(n))

(
1− v

n2

)
n→∞−−−→ e−(r−µ)m. (36)

Meanwhile, let us define a quadratic function g(τ) := aτ2 + bτ + 1 where

a =
1− e−(r−µ)τ0(1 + (r − µ)τ0)

τ20
, (37)

b =
−2 + e−(r−µ)τ0(2 + (r − µ)τ0)

τ0
, (38)

τ0 = m+
v

n
(> 0). (39)

Then, for f(τ) := e−(r−µ)τ , it is straightforward to show the following:

g(0)− f(0) = 0, (40)

g(τ0)− f(τ0) = 0, (41)

g′(τ0)− f ′(τ0) = 0. (42)

We can also show that g′′(τ)− f ′′(τ) = 2a− (r − µ)2e−(r−µ)τ is an increasing function of τ and that

g′′(τ0)− f ′′(τ0) =
2− e−(r−µ)τ0{2 + 2(r − µ)τ0 + (r − µ)2τ20 }

τ20
> 0. (43)

The inequality in (43) holds because for τ > 0,

h(τ) := 2− e−(r−µ)τ{2 + 2(r − µ)τ + (r − µ)2τ2} > h(0) = 0 (44)

since h′(τ) > 0 for τ > 0. From (40), (41), (42), and the monotonic increase of g′′(τ) − f ′′(τ), we can

show that g(τ) − f(τ) for τ ≥ 0 takes the minimum value of 0 at τ = 0 and τ = τ0, implying that

g(τ) ≥ f(τ) for τ ≥ 0. Thus, we have

E[e−(r−µ)τ ] = E[f(τ)] ≤ E[g(τ)] = a(m2 + v) + bm+ 1 =
e−(r−µ)(m+v/m)m2 + v

m2 + v
. (45)

The tightness of (45) can be shown as follows. Suppose τ follows a two-point distribution with

possible outcomes of 0 and m+ v/m with probabilities v/(m2+ v) and m2/(m2+ v), respectively. This

satisfies E[τ ] = m and E[τ2] = v +m2, and E[e−(r−µ)τ ] coincides the right-hand side of (45).

By combining (34) and (45) and rewriting them in terms of the certainty equivalent in (8), we

can obtain (15). The left-hand side of (15) is − ln(p(v))/(r − µ) where p(v) = (e−(r−µ)(m+v/m)m2 +

v)/(m2 + v), and it is straightforward to show ∂p/∂v = {m2(1 − e−c(1 + c))}/(m2 + v)2 where c =

(r − µ)(m + v/m) > 0. For q(c) := e−c(1 + c), ∂q/∂c < 0 and q(0) = 1, and thus, q(c) < 1 for c > 0.

This implies ∂p/∂v > 0, and thus, the left-hand side of (15) strictly decreases with v.
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A.8 Proof of Proposition 3

Suppose that τ follows a two-point distribution with possible outcomes of n and m − l(n) with prob-

abilities n−1.5 and 1 − n−1.5, respectively, where n is sufficiently large and l(n) is chosen such that

E[τ ] = m (i.e., l(n) = (n−m)/(n1.5 − 1)). Since limn→∞ l(n) = 0, the following holds:

E[τ2] =
n2

n1.5
+ (m− l(n))2

(
1− 1

n1.5

)
n→∞−−−→ ∞, (46)

E[e−(r−µ)τ ] =
e−(r−µ)n

n1.5
+ e−(r−µ)(m−l(n))

(
1− 1

n1.5

)
n→∞−−−→ e−(r−µ)m. (47)

That is, as n increases, variance of τ increases, but its certainty equivalent also increases, converging to

m. In other words, it is possible that uncertainty premium of time-to-build can decrease and converge

to 0 as its variance increases.

A.9 Proof of Proposition 4

Given the definition in (16), it is straightforward to derive the following:

ρθ(x) =
Kx(−θ)

θ
. (48)

With (17), and (48), we can express the certainty equivalent of time-to-build in (8) as follows:

τ̄c = −ρr−µ(τ). (49)

Note that ρr−µ(τ) ≤ 0 since τ ≥ 0 and r > µ.

A.10 Proof of Proposition 5

A risk measure ρ(x) is called a convex risk measure if it satisfies the following properties:15

Monotonicity: If x ≤ y, then ρ(x) ≥ ρ(y). (50)

Translation invariance: If z ∈ R, then ρ(x+ z) = ρ(x)− z. (51)

Convexity: ρ(λx+ (1− λ)y) ≤ λρ(x) + (1− λ)ρ(y) for any λ ∈ [0, 1]. (52)

It is well-known that any convex risk measure ρ(x) has a dual representation:

ρ(x) = sup
Q∈M

{
EQ[−x]− α(Q)

}
, (53)

where M is the set of probability measures on Ω and α(·) is a penalty function on M. It is also known

that for entropic risk measure ρθ(x), which is a convex risk measure, the penalty function is given by

H(Q|P)/θ (e.g., Föllmer and Schied (2002, 2016)):16

ρθ(x) = sup
Q∈M(P)

{
EQ[−x]− 1

θ
H(Q|P)

}
. (54)

Thus, the certainty equivalent of time-to-build in (49) can be represented as follows:

τ̄c = − sup
Q∈M(P)

{
EQ[−τ ]− 1

r − µ
H(Q|P)

}
= inf

Q∈M(P)

{
EQ[τ ] +

1

r − µ
H(Q|P)

}
. (55)

15A risk measure ρ(x) is called a coherent risk measure if it satisfies subadditivity (i.e., ρ(x + y) ≤ ρ(x) + ρ(y)) and

positive homogeneity (i.e., if λ ≥ 0, then ρ(λx) = λρ(x)) instead of convexity in (52) (e.g., Artzner et al. (1999)).
16See Föllmer and Knispel (2011), Ahmadi-Javid (2012), and Pichler and Schlotter (2020) for the detailed illustration

regarding entropy-based risk measures.
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A.11 Proof of Proposition 6

Suppose τ1 has possible outcomes of 0 and 2 with equal likelihood while τ2 has possible outcomes of

1− ϵ, 1, and 1 + ϵ with equal likelihood for small ϵ > 0. It is obvious that entropy of τ2 is higher than

that of τ1 but the certainty equivalent of τ2 is smaller than that of τ1.

A.12 Proof of Proposition 7

By Lemma 1, f(τ̄) = f(E[τ̄ + ϵ]) < E[f(τ̄ + ϵ)] where E[ϵ] = 0. Since f(τ) strictly decreases with τ ,

E[f(τ̄ + ϵ+ u)] < E[f(τ̄ + ϵ)] holds for a constant u > 0. Therefore, there always exists τu := τ̄ + ϵ+ u

such that f(τ̄) = E[f(τu)], or equivalently, δ(τ̄) = δ(τu). This, combined with the definitions of δ(τ̄)

and the moment-generating function, amounts to (20).

A.13 Proof of Corollary 5

Suppose τu is the uncertainty equivalent of τ̄ . That is, δ(τ̄) = δ(τu), or equivalently, f(τ̄) = E[f(τu)] =
E[f(τ̄ + ϵ+ u)] where E[ϵ] = 0 and u > 0 is a constant.

Meanwhile, suppose τ ′u is a mean-preserving spread of τu. That is, τ
′
u = τu + ϵ′ where E[ϵ′|τu] = 0.

By Lemma 1, E[f(τu)] < E[f(τ ′u)] always holds. Since f(τ) strictly decreases with τ , there always

exists a constant u′ > 0 such that E[f(τu)] = E[f(τ ′u + u′)] holds, which implies δ(τ̄) = δ(τu) = δ(τ̂u)

where τ̂u := τ ′u + u′. Namely, both τu and τ̂u are the uncertainty equivalents of τ̄ . By the definition,

E[τu] = τ̄ + u and E[τ̂u] = τ̄ + u+ u′, which completes the proof.

A.14 Proof of Corollary 6

By Proposition 7, for any τ̄ ≥ 0, there always exists τu := τ̄ + ϵ + u where E[ϵ] = 0 and u > 0 is a

constant such that f(τ̄) = E[f(τu)]. Because f(τ) strictly decreases with τ , there always exists a constant

w ∈ (0, u) such that E[f(τu)] < E[f(τw)] where τw := τ̄ + ϵ + w, which implies δ(τ̄) = δ(τu) < δ(τw)

and E[τw] = τ̄ + w.

A.15 Proof of Proposition 8

Suppose τ follows a uniform distribution on [a− c, b+ c] where 0 < c < a. As c increases, its variance

increases while its mean remains the same. With (22), it is straightforward to show that ∂Mτ (t)/∂c > 0.

This, combined with (8), implies that an increase of c, which increases the variance, leads to a decrease

of τ̄c, and thus, an increase of E[τ ]− τ̄c.

As can be seen from Appendix B, differential entropy of uniform distribution increases if and only

if its variance increases, which completes the proof.

A.16 Proof of Proposition 9

Suppose τ follows a symmetric triangular distribution on [a−d, b+d] with its mode c = (a+ b)/2. It is

obvious that its variance increases while its mean remains the same when d increases. With (24), one

can easily show that ∂Mτ (t)/∂d > 0. That is, an increase of d, which increases its variance, results in

a decrease of τ̄c, and thus, an increase of E[τ ]− τ̄c.
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It is straightforward to show from Appendix B that differential entropy of symmetric triangular

distribution increases if and only if its variance increases, which completes the proof.
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Föllmer, H. and Schied, A. (2016), Stochastic Finance, 4th edn, De Gruyter.

Guiso, L. and Parigi, G. (1999), ‘Investment and demand uncertainty’, Quarterly Journal of Economics

114(1), 185–227.

Hartman, R. (1972), ‘The effects of price and cost uncertainty on investment’, Journal of Economic

Theory 5(2), 258–266.

Hartman, R. (1973), ‘Adjustment costs, price and wage uncertainty, and investment’, Review of Eco-

nomic Studies 40(2), 259–267.

42



Heyde, C. (1963), ‘On a property of the lognormal distribution’, Journal of the Royal Statistical Society:

Series B (Methodological) 25(2), 392–393.

Jeon, H. (2021a), ‘Investment and financing decisions in the presence of time-to-build’, European Journal

of Operational Research 288(3), 1068–1084.

Jeon, H. (2021b), ‘Investment timing and capacity decisions with time-to-build in a duopoly market’,

Journal of Economic Dynamics and Control 122, 104028.

Jeon, H. (2023), ‘Time-to-build and capacity expansion’, Annals of Operations Research 328, 1461–

1494.

Jeon, H. (2024a), The effects of time-to-build and regulation on investment timing and size. Working

paper.

Jeon, H. (2024b), ‘Time-to-build, regulation, and investment’, European Journal of Operational Research

319(3), 999–1019.

Kalouptsidi, M. (2014), ‘Time to build and fluctuations in bulk shipping’, American Economic Review

104(2), 564–608.

Koeva, P. (2000), The facts about time-to-build. IMF working paper.

Leahy, J. and Whited, T. (1996), ‘The effect of uncertainty on investment: Some stylized facts’, Journal

of Money, Credit and Banking 28(1), 64–83.

Majd, S. and Pindyck, R. (1987), ‘Time to build, option value, and investment decisions’, Journal of

Financial Economics 18(1), 7–27.

Marmer, V. and Slade, M. (2018), ‘Investment and uncertainty with time to build: Evidence from entry

into U.S. copper mining’, Journal of Economic Dynamics and Control 95, 233–254.

Meinen, P. and Roehe, O. (2017), ‘On measuring uncertainty and its impact on investment: Cross-

country evidence from the euro area’, European Economic Review 92, 161–179.

Nishihara, M. (2018), ‘Valuation of an R&D project with three types of uncertainty’, EURO Journal

on Decision Processes 6, 93–113.

Oh, H. and Yoon, C. (2020), ‘Time to build and the real-options channel of residential investment’,

Journal of Financial Economics 135(1), 255–269.

Pacheco-de-Almeida, G. and Zemsky, P. (2003), ‘The effect of time-to-build on strategic investment

under uncertainty’, RAND Journal of Economics 34(1), 166–182.

Pichler, A. and Schlotter, R. (2020), ‘Entropy based risk measures’, European Journal of Operational

Research 285(1), 223–236.

Salomon, R. and Martin, X. (2008), ‘Learning, knowledge transfer, and technology implementation

performance: A study of time-to-build in the global semiconductor industry’, Management Science

54(7), 1266–1280.

43



Tsoukalas, J. (2011), ‘Time to build capital: Revisiting investment-cash-flow sensitivities’, Journal of

Economic Dynamics and Control 35(7), 1000–1016.

Weeds, H. (2002), ‘Strategic delay in a real options model of R&D competition’, Review of Economic

Studies 69(3), 729–747.

White, S. (2024), ‘EDF’s Hinkley Point woes pile pressure on global nuclear push’, Financial Times .

January 29, 2024.

Zhou, C. (2000), ‘Time-to-build and investment’, Review of Economics and Statistics 82(2), 273–282.

44


