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Abstract

Mixed strategy Nash equilibrium is the cornerstone of our understanding

of strategic situations that require decision makers to be unpredictable. Using

data from nearly half a million serves over 3000 tennis matches, and data on

player rankings from the ATP and WTA, we examine whether the behavior

of professional tennis players is consistent with equilibrium. We find that win

rates conform remarkably closely to the theory for men, but conform somewhat

less neatly for women. We show that the behavior in the field of more highly

ranked (i.e., better) players conforms more closely to theory. We show that

the statistical tests used in the prior related literature are not valid for large

samples like ours; we develop a novel statistical test that is valid and show, via

Monte Carlo simulations, that it is more powerful against the alternative that

receivers follows a non-equilibrium mixture.
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1 Introduction

Laboratory experiments have been enormously successful in providing tightly con-

trolled tests of game theory. The results of these experiments, however, have not

been supportive of the theory for games with a mixed-strategy Nash equilibrium:

student subjects do not mix in the equilibrium proportions and subjects exhibit se-

rial correlation in their choices rather than the serial independence predicted by the

theory. While the rules of an experimental game which requires players to be unpre-

dictable may be simple to understand, it is far more diffi cult to understand how to

play well. Student subjects no doubt understand the rules, but they have neither the

experience, the time, nor the incentive to learn to play well. In professional sports,

by contrast, players have typically devoted their lives to the game and they have

substantial financial incentives, and thus it provides an ideal setting to test theory.

The present paper examines whether the behavior of sports professionals conforms

to theory by combining a unique dataset from Hawk-Eye, a computerized ball tracking

system employed at Wimbledon and other top championship tennis matches, with

data on player rankings from the ATP (Association of Tennis Professionals) and the

WTA (Women’s Tennis Association). It makes several contributions: With a large

dataset and a new statistical test we introduce, it provides a far more powerful test

of the theory than in any prior study. It also provides a broad test of the theory by

analyzing the play of both men and women players with different degrees of expertise.

It finds substantial differences in the degree to which the behavior of men and women

conform to equilibrium. Most significantly, it shows that even tennis professionals

differ in the degree to which their behavior conforms to theory and, remarkably, the

on-court behavior of more highly ranked players conforms more closely to theory. We

are aware of no similar result in the literature.

A critique of the results of prior studies using data from professional sports has

been that they have low power to reject the theory.1 Walker and Wooders (2001),

henceforth WW, studies a dataset comprised of approximately 3000 serves made in

10 men’s championship tennis matches. Chiappori, Levitt, and Groseclose (2002),

henceforth CLG, and Palacios-Huerta (2003), henceforth PH, study 459 and 1417

penalty kicks, respectively. Our dataset, by contrast, contains the precise trajectory

and bounce points of the tennis ball for nearly 500,000 serves from over 3000 profes-

sional tennis matches, and thereby provides an extremely powerful test of the theory.

1See Kovash and Levitt (2009).
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Camerer (2003) suggests that WW’s focus on long matches, with the goal of gener-

ating a test with high statistical power, could introduce a selection bias in favor of

equilibrium play. Our analysis does not suffer from this critique as it uses data from

all the matches where the Hawk-Eye system was employed.

The large number of matches in our dataset requires the development of a novel

statistical test for our analysis. When the number of points played in each match is

small relative to the overall number of matches, as it is in our dataset, we show that a

key statistical test employed inWW is not valid: even when the null hypothesis is true,

the test rejects the null (implied by Nash equilibrium) that winning probabilities are

equalized across directions of serve. By contrast, the test that we develop, based on

the Fisher exact test, rejects the true null hypothesis with exactly probability α at the

α significance level. We show via Monte Carlo simulations that our test, as an added

bonus, is substantially more powerful than the test used in WW and the subsequent

literature against the alternative that the receiver follows a non-equilibrummixture.2 ,3

An unusual feature of our test is that the test statistic itself is random, and

thus a different p-value is realized each time the test is conducted. It would be

perfectly legitimate to run the test once and reject the null hypothesis if the p-value

is less than the desired significance level. It is more informative, however, to report

the empirical density of p-values obtained after running the test many times, and

this is what we do. When reporting our results we will make statements such as

“the empirical density of p-values places an x% probability weight on p-values below

.05.”Reporting the empirical density reveals the sensitivity of our conclusions to the

randomness inherent in the test statistic. Since randomized tests are seldom used, we

complement our analysis with the implementation of a deterministic test in Appendix

B.4 The deterministic test has low power in comparison to our randomized test.

We find that the win rates of male professional tennis players are strikingly con-

sistent with the equilibrium play. Despite the enormous power of our statistical test —

due to the large sample size and the greater power of the test itself —we can not reject

the null hypothesis that winning probabilities are equalized across the direction of

serve. We do not reject the null for either first or second serves. For first serves, the

empirical density of p-values places no probability weight on p-values below .05 (i.e.,

2The WW test is valid for the data set it considered, where the number of points in each match

was large relative to the number of matches, as we show in Section 6.
3It should be understood hereafter that all power comparisons are based on Monte Carlo simu-

lations where the alternative hypothesis is that receivers follows a non-equilibrium mixture.
4We are grateful to Kei Hirano for suggesting the construction of the deterministic test.
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the joint null hypothesis is never rejected at the 5% significance level). For second

serves, it places almost no probability weight on p-values below .05.

The win rates for female players, by contrast, conform less neatly to theory. The

empirical density function of p-values places a 44.73% weight on p-values below .05 for

first serves, and a 16.1% weight on p-values below .05 for second serves. Nonetheless,

the behavior of female professional tennis players over 150,000 tennis serves conforms

far more closely to theory than the behavior of student subjects in comparable labora-

tory tests of mixed-strategy equilibrium. Applying our test to the data from O’Neill’s

(1987) classic experiment, for example, we obtain an empirical density function of p-

values that places probability one on p-values less than .05. Hence the null hypothesis

that winning probabilities are equalized is resoundingly rejected based on the 5250

decisions of O’Neill’s subjects while we obtain no such result for female professional

tennis players, despite having vastly more data.

This result naturally raises the question of whether the behavior of better —more

highly ranked —female tennis players conforms more closely to theory. To investigate

the effect of ability on behavior, we divide our data into two subsamples based on

the rank of the player receiving the serve. (It is important to keep in mind that

it is the receiver’s play that determines whether winning probabilities are equalized

across directions of serve.) In one subsample the receiver is a “top”player, i.e., above

the median rank, and in the other the receiver is a “non-top”player. We test the

hypothesis that winning probabilities are equalized across the direction of serve on

each subsample separately. For men, win rates conform closely to equilibrium on

each subsample. This result is not surprising given the close conformity of behavior

to theory in the overall sample for men.

As just noted, win rates conform to equilibrium somewhat less neatly for women.

Significantly, in women’s matches in which the receiver is a “top”player, we do not

come close to rejecting equilibrium, while equilibrium is resoundingly rejected for

the subsample in which the receiver is “non-top.”This result shows that behavior of

female receivers conforms more closely to theory for more highly ranked players.

What might explain this difference between male and female players? While the

rules of the game are the same for men’s and women’s tennis, the payoffs in the

contest for a point are different: in men’s tennis, the server wins 64% of all the

points when he has the serve, while in women’s tennis the server only wins 58% of

the points.5 Hence it seems likely that the players’incentives to learn equilibrium,

5In other words, the value of the game for the point (for the server) is higher in men’s tennis than
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or selection effects that favor equilibrium play, differ for men and women. Given the

greater speed of the serve, a receiver in men’s tennis who fails to play equilibrium

(and equalize the server’s winning probabilities) may be more vulnerable to being

exploited by the server. The serve is widely regarded as more important in men’s

than women’s tennis (see Rothenberg (2017)).

A second implication of equilibrium theory is that the players’choices of direction

of serve are random (i.e., serially independent) and hence unpredictable. We find that

both male and female players exhibit serial correlation in their serves with female

players’serves being significantly more serially correlated than male players’serves.

The difference may be the result of the greater importance of the serve in men’s

tennis. In men’s tennis, 8.71% of all first serves are “aces,”with the receiver unable

to place his racket on the ball. A male player whose serve is predictable surrenders

a portion of the significant advantage that comes from having the serve. In women’s

tennis, by contrast, only 4.41% of first serves are aces.

Here too we find evidence that the behavior of higher ranked players conforms

more closely to equilibrium: higher ranked male players exhibit less serial correlation

in the direction of serve than lower ranked players.

Related Literature

Our paper contributes to the literature investigating the degree to which the

behavior of professions conforms to equilibrium. WW was the first paper to use data

from professional sports to test the minimax hypothesis and the notion of mixed-

strategy Nash equilibrium.6 It found that the win rates of male professional tennis

players conformed to theory, in striking contrast to the consistent failure of subjects

to follow the equilibrium mixtures (and equalize payoffs) in laboratory experiments.

Hsu, Huang, and Tang (2007), henceforth HHT, broadens the analysis of WW.

It found that win rates conformed to the theory for a sample of 9 women’s matches,

8 junior’s matches, and 10 men’s matches. The greater power of our statistical test

means that it potentially overturns these conclusions and indeed it does: Our test,

applied to HHT’s data for women and juniors, puts weights of 18.1% and 49.2%,

women’s tennis, which is likely driven by physical differences: men are taller and stronger, and thus

deliver faster serves. In our dataset, the average speed of the first serve is 160 kph for men and 135

kph for women. Only 0.45 seconds elapses between the serve and the first bounce in men’s tennis!
6von Neuman’s notion of Minimax, the foundation of modern game theory, and Nash equilibrium

coincide in two-player constant-sum games, and we will use the terms minimax and equilibrium

interchangeably.
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respectively, on p-values of less than .05. On the other hand, applying our test to

WW’s data or HHT’s data for men, we reaffi rm their findings that the behavior of

male professional tennis players conforms to equilibrium. In both cases, the empirical

density of p-values assigns zero probability to p-values below .05.

CLG studies a dataset of every penalty kick occurring in French and Italian elite

soccer leagues over a three year period (459 penalty kicks), and tests whether play

conforms to the mixed strategy Nash equilibrium of a parametric model of a penalty

kick in which the kicker and goalkeeper simultaneously choose Left, Center, or Right.

A challenge in using penalty kicks to test theory is that most kickers take few penalty

kicks and, furthermore, a given kicker rarely encounters the same goalie. The latter

is important since the contest between a kicker and goalie varies with the players

involved, as do the equilibrium mixtures and payoffs.7 CLG finds that the data

conforms to the qualitative predictions of the model, e.g., kickers choose “center”more

frequently than goalies.8 A key contribution of CLG is the precise identification of the

predictions of equilibrium theory that are robust to aggregation across heterogeneous

contests.

PH studies a group of 22 kickers and 20 goalkeepers who have participated in at

least 30 penalty kicks over a five year period, in a dataset comprised of 1417 penalty

kicks. The null hypothesis that the probability of scoring is the same for kicks to

the left and to the right is rejected at the 5% level for only 2 kickers.9 Importantly,

his analysis ignores that a kicker generally faces different goalkeepers (and different

goalkeepers face different kickers) at each penalty kick.

In professional tennis, unlike soccer, we observe a large number of serves, taken

in an identical situations (e.g., Federer serving to Nadal from the “ad”court), over

a period of several hours.10 The relationship between the players’actions and the

probability of winning the point is the same in every such instance, and thus the

data from a single match can be used to test equilibrium theory. There is no need to

aggregate data across matches and players as in CLG or PH.

7CLG provides evidence that payoffs in the 3 × 3 penalty kick game vary with the kicker, but

not with the goalie.
8In a linear probability regression the paper finds weak evidence against the hypothesis that

kickers equalize payoffs across directions based on the subsample of 27 kickers with 5 or more kicks.

This null is rejected at the 10% level for 5 of kickers, whereas only 2.7 rejections are expected.
9PH aggregates kicks to the center and kicks to a player’s “natural side”and thereby makes the

game a 2× 2 game.
10Typical experimental studies of mixed-strategy play likewise feature a fixed pair of players

playing the same stage game repeatedly over a period of an hour or two.
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The present paper is related to a literature that examines the effect of experience

in the field on behavior in the laboratory (see, e.g., Cooper, Kagel, Lo and Gu (1999)

and Van Essen and Wooders (2015)). Palacios-Huerta and Volij (2008) reports evi-

dence that professional soccer players behave according to equilibrium when playing

abstract normal form games in the laboratory. Levitt, List, and Reiley (2011) is,

however, unable to replicate this result, while Wooders (2010) argues that Palacios-

Huerta and Volij (2008)’s own data is inconsistent with equilibrium. Levitt, List,

and Sadoff (2011) shows that expert chess players, who might expected to be skilled

at backward induction reasoning, play the centipede game much like typical student

subjects. Our work differs by examining the effect of expertise on the conformity of

behavior in the field to equilibrium play.

Several papers have used data from professional sports to study the effect of

pressure on behavior. Paserman (2010) finds evidence that player performance in

professional tennis is degraded for more “important”points, i.e., points where winning

or losing the point has a large influence on the probability of winning the match.

Gonzalez-Diaz, Gossner, and Rogers (2012) finds that players are heterogeneous in

their response to important points and they develop a measure of a skill they call

“critical ability.”The probability of winning a point is highly responsive to the point’s

importance for players with high critical ability. Kocher, Lenz, and Sutter (2012) finds

for soccer that there is no first-mover advantage in penalty kick shootouts.

In Section 2 we present the model of a serve in tennis and the testable hypotheses

implied by the theory. In Section 3 we describe our data. In Section 4 we describe

our new statistical test of the hypothesis that winning probabilities are equalized, we

present our results, and we show that the behavior of higher ranked players conforms

more closely to theory than for lower ranked players. In Section 5 we report the

results of our test that the direction of serve is serially independent. In Section 6 we

compare the power of the WW test and the power of our new test, for the hypothesis

that winning probabilities are equalized. We show that (i) the WW test is valid when

the number of points in each match is large relative to the number of matches, but is

not valid conversely, (ii) our new test is valid whether the number of matches is small

(as in WW) or large, (iii) our new test is more powerful than the test used WW and

subsequent studies, and we (iv) apply our test to the data from HHT.
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2 Modelling The Serve in Tennis

We model each point in a tennis match as a 2 × 2 normal-form game. The server

chooses whether to serve to the receiver’s left (L) or the receiver’s right (R). The

receiver simultaneously chooses whether to overplay left or right. The probability

that the server ultimately wins the point when he serves in direction s and the receiver

overplays direction r is denoted by πsr. Hence the game for a point is represented by

Figure 1.

Receiver

L R

Server L πLL πLR

R πRL πRR

Figure 1: The Game for a Point

Since one player or the other wins the point, the probability that the receiver wins

the point is 1 − πsr, and hence the game is completely determined by the server’s

winning probabilities. We refer to a game of the kind in Figure 1 as a “point game.”

The probability payoffs in Figure 1 will depend on the abilities of the two players

in the match and, in particular, on which player is serving. In tennis, the player with

the serve alternates between serving from the ad court (the left side of the court)

and from the deuce court (the right side). Since the players’abilities may differ when

serving or receiving from one court or the other, the probability payoffs in Figure

1 may also depend upon whether the serve is from the ad or deuce court. At the

first serve, the probability payoffs include the possibility that the server ultimately

wins the point after an additional (second) serve. Since the second serve is the final

serve, the probability payoffs for a second serve will be different than those for a first

serve.11

In addition to varying the direction of the serve, the server can also vary its type

(flat, slice, kick, topspin) and speed. In a mixed-strategy Nash equilibrium, all types

of serves which are delivered with positive probability have the same payoff. Therefore

it is legitimate to pool, as we do, all serves of different types but in the same direction.

11If the first serve is a fault, then the server gets a second, and final, serve. If the second serve

is also a fault, then the server loses the point. First and second serves are played differently. In

our data set, the average speed of a first serve for men is 160 kph and of a second serve is 126 kph

(35.3% of first serves fault, but only 7.5% of second serves fault).
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Our test of the hypothesis that the probability of winning the point is the same for

serves left and serves right can be viewed as a test of the hypothesis that all serves

in the support of the server’s mixture have the same winning probability.

We assume that within a given match the probability payoffs are completely deter-

mined by which player has the serve, whether the serve is from the ad or deuce court,

and whether the serve is a first or second serve. In other words, there are exactly

eight distinct “point games”in a match. These point games and the rules of tennis

completely determine the extensive form game for a tennis match. We assume for

every point game that (i) πLL < πLR and πRR < πRL, i.e., the server wins the point

with lower probability (and the receiver with higher probability) when the receiver

correctly anticipates the direction of the serve, and (ii) πLL < πRL and πRR < πLR.

Under this assumption there is a unique Nash equilibrium for every point game and

it is in (strictly) mixed strategies.

A tennis match is a complicated extensive form game: The first player to win at

least four points and to have won two more points than his rival wins a unit of scoring

called a “game.”The first player to win at least six games and to have won two games

more than his rival wins a “set.”In a five-set match, the first player to win three sets

wins the match. The players, however, are interested in winning points only in so

far as they are the means by which they win the match. The link between the point

games and the overall match is provided in Walker, Wooders, and Amir (2011) which

defines and analyzes a class of games (which includes tennis) called Binary Markov

games. They show that Nash equilibrium (and minimax) play in the match consists

of playing, at each point, the equilibrium of the point game in which the payoffs are

the winning probabilities πsr of Figure 1. Thus play depends only on which player

is serving, whether the point is an ad-court or a deuce-court point, and whether the

serve is a first or second serve; it does not otherwise depend on the current score or

any other aspect of the history of play prior to that point.12

12A binary Markov game consists of a binary scoring rule and a collection of point games. A

binary scoring rule consists of (i) a finite set of states and (ii) two transition functions that govern

how play proceeds from one state to the next. The states represent the possible scores of the match.

There are two absorbing states, one where Player A has won the match and the other where Player

B has won. From every state there are two possible transitions: the state reached if Player A wins

the current point and the state reached if Player B wins the point. Associated with each state is a

normal form game —a “point game”—that governs how points are won at that state.
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Testing the Theory

Two testable implications come from the theory. The first is that a player ob-

tains the same payoff from all actions which in equilibrium are played with positive

probability. To illustrate this hypothesis, consider the illustrative point game below.

Receiver

L R

Server L 0.58 0.79 8/15

R 0.73 0.49 7/15

2/3 1/3

Figure 2: An Illustrative Point Game

The receiver’s equilibrium mixture is to choose L with probability 2/3 and R with

probability 1/3. When the receiver follows this mixture, then the server wins the

point with the same probability (viz. .65) whether he serves L or he serves R.13 In

an actual tennis match we do not observe the probability payoffs, and hence we can

not compute the receiver’s equilibrium mixture. Nonetheless, so long as the receiver

plays equilibrium, then the server’s probability of winning the point will be the same

for serves L and serves R.

When theory performs poorly, an important question is whether the behavior of

better players conforms more closely to theory. Does a better player, when receiv-

ing the ball, more closely follow his equilibrium mixture and therefore more closely

equalize the server’s winning probabilities? In Section 4 we provide evidence that

top female players do equalize the servers’winning probabilities when receiving the

ball, while lower ranked female players do not. Thus the behavior of better female

players conforms more closely to theory. Both top and non-top male players equalize

the server’s winning probabilities when receiving.

The second implication of the theory, which comes from the equilibrium analysis

of the extensive form game representing a match, is that the sequence of directions of

the serve chosen by a server is serially independent. A server whose choices are serially

correlated may be exploited by the receiver and therefore his play is suboptimal. To

address this question we focus on the rank of the server. Section 4 provides evidence

that higher ranked male players exhibit less serial correlation in the direction of their

13The server’s equilibrium mixture also equalizes the receiver’s winning probability for each of his

actions. Since the receiver’s action is not observed, we can not test this hypothesis.

9



serve than lower ranked males, and thus their behavior conforms more closely to

theory.

3 The Data

Hawk-Eye is a computerized ball tracking system used in professional tennis and

other sports to precisely record the trajectory of the ball. Our dataset consists of the

offi cial Hawk-Eye data for all matches played at the international professional level,

where this technology was used, between March 2005 and March 2009.14 Most of the

matches are from Grand Slam and ATP (Association of Tennis Players) tournaments

Overall, the dataset contains 3, 172 different singles matches. Table 1 provides a

breakdown of the match characteristics of our data.

Female Male All

Carpet 35 174 209

Surface Clay 130 366 496

Grass 95 204 299

Hard 917 1251 2168

Best of 3 1177 1400 2577

5 0 595 595

Davis Cup (Fed Cup) 8 18 26

Grand Slam 458 526 984

Olympics 19 16 35

Events ATP (Premier) 662 101 763

International - 473 473

Master - 825 825

Hopman Cup 30 36 66

Total 1117 1995 3172

Table 1: Match Characteristics

As the use of the Hawk-Eye system is usually limited to the main tournaments,

the dataset contains a large proportion of matches from top tournaments (e.g., Grand

Slams). Within tournaments, the matches in our dataset are more likely to feature

14Hawk-Eye has been used to resolve challenges to line calls since 2006, which is evidence of the

greater reliability of Hawk-Eye over human referees.
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top players as the Hawk-Eye system is used on the main courts and was often absent

from minor courts at the time of our sample. Finally, the tournament structure

of tennis means that top players appear in more matches in a tournament. As a

consequence, the matches contained in the dataset tend to feature the best male and

female players.

For each point played, our dataset records the trajectory of the ball, as well as

the player serving, the current score, and the winner of the point.15 When the server

faults as a result of the ball failing to clear the net, then we extrapolate the path of

the serve to identify where the ball would have bounced had the net not intervened.

Figure 3 is a representation of a tennis court and shows the actual (in blue) and

imputed (in red) ball bounces of first serves by men, for serves delivered from the

deuce court. The dashed lines in the figure are imaginary lines —not present on an

actual court —that divide the two “right service”courts and are used to distinguish

left serves from right serves.

Our analysis focuses on the location of the first bounce following a serve. As is

evident from Figure 3, serves are typically delivered to the extreme left or the extreme

right of the deuce court. We classify the direction of a serve —left or right —from

the server’s perspective: A player serving from the left hand side of the court delivers

a serve across the net into the receiver’s right service court. A bounce above the

dashed line (on the right hand side of Figure 3) is classified as a serve to the left, and

a bounce below the dashed line is classified as a serve to the right. Likewise, for a

player serving from the right hand side of the court, a bounce below the dashed line

(on the left hand side of Figure 3) is classified as a left serve, while a bounce above

is classified as a right serve.

One could more finely distinguish serve directions, e.g., left, center, and right, but

doing so would not impact our hypothesis tests. So long as left and right are both

in the support of the server’s equilibrium mixture, serves in each direction have the

15Hawk-Eye records the path of the ball as a sequence of arcs between impacts of the ball with

a racket, the ground, or the net. Each arc (in three dimensions) is decomposed into three arcs,

one for each dimension —the x-axis, the y-axis, and the z-axis. Each of these arcs is encoded as a

polynomial equation with time as a variable. For each arc in three dimensions we have therefore

three polynomial equations (typically of degree 2 or 3) describing the motion of the ball in time and

space.
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same theoretical winning probability.

Figure 3: Ball Bounces for Deuce Court First Serves by Men

Second serves are delivered at slower speeds than first serves and are less likely to be

a fault, but are also typically delivered to the left or right. See Appendix E for the

ball bounces for second serves, and for serves from the ad court, and for serves by

women.

While Hawk-Eye automatically records bounce data, the names of the players,

the identity of the server and the score are entered manually. This leads to some

discrepancies as a result of data entry errors. To ensure that the information we use

in our analysis is correct, we check that the score evolved logically within a game: the

game should start at 0-0, and the score should be 1-0 if the server wins the first point

and 0-1 if the receiver wins the point. We do this for every point within a game. If

there is even one error within a game, we drop the whole game. While conservative,

this approach ensures that our results are based on highly accurate data. We observe

a total of 465,262 serves in the cleaned data. A detailed description of the data

cleaning process is provided in Appendix A.

Table 2 reports summary statistics for the cleaned data, where P (L) is the fre-

quency of serves to the Left and P (Win|L) is the frequency that the point is won

following a serve to the Left. Both male and female servers win the point more fre-

quently on first serves than second serves. Men win both first and second serves more
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frequently than women.

Serve Court Serves Pointgames Serves/ P (L) P (R) P (Win|L) P (Win|R)

Pointgame

Male

First Deuce 118,843 3,615 32.88 45.07 54.93 65.02 64.71

First Ad 107,455 3,583 29.99 46.19 53.81 63.94 63.78

Second Deuce 45,028 3,615 12.46 30.02 69.98 52.53 52.02

Second Ad 41,674 3,583 11.63 33.45 66.55 51.99 52.72

Female

First Deuce 57,978 2,066 28.06 47.09 52.91 57.93 56.64

First Ad 52,908 2,042 25.91 52.08 47.92 56.55 55.97

Second Deuce 21,525 2,066 10.42 38.84 61.16 46.29 45.61

Second Ad 19,851 2,042 9.72 41.09 58.91 44.28 46.06

Table 2: Summary Statistics

4 Testing for Equality of Winning Probabilities

Let pij denote the true, but unknown, probability that the server in point game i

wins the point when the first serve is in direction j. According to equilibrium theory,

piL = piR for each point game i, i.e., the probability that the server wins the point is

the same for serves left and for serves right in each point game.

Individual Play and The Fisher Exact Test

We use the Fisher exact test to test the null hypothesis that piL = piR = pi for

point game i, i.e., the probability that the server wins the point is the same whether

serving to the left or to the right. Let f(niLS|niS, niL, niR) denote the probability, under

the null, that the server wins niLS serves to the left, conditional on winning n
i
S serves

in total, after delivering niL and n
i
R serves to the left and to the right. As shown by

Fisher (1935), this probability does not depend on pi and is given by

f(niLS|niS, niL, niR) =

( niL
niLS

)( niR
niRS

)
(niL+niR

niS

) ,

where niRS = niS − niLS. Let F (niLS|niS, niL, niR) be the associated c.d.f., i.e.,

F (niLS|niS, niL, niR) =
∑niLS

k=max{niS−niR,0}
f(k|niS, niL, niR).
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In its standard application, the Fisher exact test rejects the null hypothesis at signifi-

cance level α for niLS such that F (niLS|niS, niL, niR) ≤ α/2 or 1−F (niLS−1|niS, niL, niR) ≤
α/2.

The Fisher exact test is the uniformly most powerful (UMP) unbiased test of the

hypothesis that piL = piR but, because of the discreteness of the density f , randomiza-

tion is required to achieve a significance level of exactly α (see Lehmann and Romano

(2005), p. 127). Let n̄iLS be the largest integer such that F (n̄iLS|niS, niL, niR) ≤ α/2

and niLS be the smallest integer such that 1 − F (niLS − 1|niS, niL, niR) ≤ α/2. With-

out randomization, the true size of the test is only F (n̄iLS|niS, niL, niR) + 1− F (niLS −
1|niS, niL, niR), which may be considerably smaller than α.

We implement a randomized Fisher exact test of exactly size α as follows: For each

point game i, let ti be the random test statistic given by a draw from the uniform dis-

tribution U [0, F (niLS|niS, niL, niR)] if niLS takes its minimum value, i.e., n
i
LS = min{niS−

niR, 0}, and by a draw from the distribution U(F (niLS−1|niS, niL, niR), F (niLS|niS, niL, niR)]

otherwise. Under the null hypothesis that piL = piR, the test statistic t
i is distributed

U [0, 1].16 Hence rejecting the null hypothesis if ti ≤ α/2 or ti ≥ 1− α/2 yields a test
of exactly size α.

The Fisher exact test and the randomized Fisher exact test make the same (deter-

ministic) decision for all realizations of niLS except n
i
LS = n̄iLS + 1 or niLS = niLS−1.17

If niLS = n̄iLS + 1, then the Fisher exact test does not reject the null, while the

randomized test rejects it with probability

α/2− F (n̄iLS|niS, niL, niR)

F (n̄iLS + 1|niS, niL, niR)− F (n̄iLS|niS, niL, niR)
.

Likewise, if niLS = niLS − 1, the Fisher exact test does not reject the null, while the

randomized test rejects it with probability

F (niLS − 1|niS, niL, niR)− (1− α/2)

F (niLS − 1|niS, niL, niR)− F (niLS − 2|niS, niL, niR)
.

It is the addition of randomization for these two realizations that yields a test of

exactly size α.

Randomizing over whether to reject a specific null hypothesis might seem unnat-

ural and, indeed, randomized tests are seldom used.18 In our context, however, we are
16See Appendix D for the proof.
17Suppose niLS ≤ n̄iLS . The randomized Fisher exact test rejects the null since t

i ∼ U(F (niLS −
1|niS , niL, niR), F (niLS |niS , niL, niR)] and therefore ti ≤ F (niLS |niS , niL, niR) ≤ F (n̄iLS |niS , niL, niR) ≤
α/2.
18See Tocher (1950) for an early general analysis of randomized tests.
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not interested in whether piL = piR for any particular point game i, but rather whether

the null hypothesis is rejected at the expected rate for the thousands of point games

in our data set. Our use of the randomized Fisher exact test allows us to exactly

control the size of the test, and therefore the expected rejection rate under the null,

without any appeal to an asymptotic distribution of a test statistic.

Table 3 shows the percentage of points games for which equality of winning prob-

abilities is rejected for the Hawk-Eye data, for men and women and for both first

and second serves. As just noted, for point game i the null hypothesis is rejected at

the 5% significance level if either ti ≤ .025 or ti ≥ .975. Since ti is random, each

percentage is computed for 10,000 trials; the table reports the mean and standard

deviation (in parentheses) of these trials. For men, for both first and second serves,

the (mean) frequency at which the null is rejected at the 5% significance level is very

close to 5%, the level expected if the null is true.19 For women, the null is rejected

at a somewhat higher than expected rate (5.35%) on first serves, and a slightly lower

than expected rate (4.86%) for second serves.

Significance Level

Setting # Point Games 5% 10%

Men (1st Serve) 7,198 5.06% (0.16) 10.01% (0.20)

Men (2nd Serve) 7,198 5.02% (0.23) 10.13% (0.30)

Women (1st Serve) 4,108 5.35% (0.22) 10.50% (0.28)

Women (2nd Serve) 4,108 4.86% (0.30) 9.64% (0.40)

Table 3: Rejection Rate (Fisher exact Test) for H0 : piL = piR (10,000 trials)

At the individual level, the rates at which equality of winning probabilities is rejected

at the 5% and 10% significance level are consistent with the theory. These results

are, however, only suggestive. In the next subsection we report the results of our test

of the hypothesis of interest, that piL = piR for each point game i.

Aggregate Play and the Joint Null Hypothesis

Of primary interest is the joint null hypothesis that piL = piR for each point game

i, and we use the ti’s generated from the randomized Fisher exact test to construct

19Since each point game has fewer second serves than first serves, the stochastic nature of the

t’s will tend to be more important for second serves. This is evident in the table from the higher

standard deviations for second serves. Likewise, since we tend to observe fewer serves for women,

the standard deviations are higher for women.
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our test. Since the ti’s are independent draws from the same continuous distribution,

namely the U [0, 1] distribution, we can test the joint hypothesis by applying the

Kolmogorov—Smirnov (KS) test to the empirical c.d.f. of the t-values. Formally,

the KS test is as follows: The hypothesized c.d.f. for the t-values is the uniform

distribution, F (x) = x for x ∈ [0, 1]. The empirical distribution of N t-values,

one for each point game, denoted F̂ (x), is given by F̂ (x) = 1
N

∑N
i=1 I[0,x](t

i), where

I[0,x](t
i) = 1 if ti ≤ x and I[0,x](ti) = 0 otherwise. Under the null hypothesis, the test

statistic K =
√
N supx∈[0,1] |F̂ (x) − x| has a known asymptotic distribution (see p.

509 of Mood, Graybill, and Boes (1974)). Our appeal to an asymptotic distribution at

this stage is well justified since there will be thousands of point games and associated

ti’s for each of the joint null hypotheses we consider.

Figure 4(a) shows a realization of an empirical distribution (in red) of t-values

for the Hawk-Eye data for first serves by men; the theoretical c.d.f. is in blue. The

empirical and theoretical c.d.f.s very nearly coincide. The value of the KS test statistic

is K = .818 and the associated p-value is .515. The data is typical of the data that

equilibrium play would produce: equilibrium play would generate a value of K at

least this large with probability .485. Despite its enormous power, based on 226,298

first serves in 7,198 point games, the test does not come close to rejecting the null

hypothesis.

The results reported in Figure 4(a) provide strong support for equilibrium play.

Since the t-values are stochastic, the empirical c.d.f. and the KS test p-value reported

in Figure 4(a) are also random. It is natural to question the robustness of the conclu-

sion that the joint null hypothesis is not rejected to different realizations of the ti’s.

To assess its robustness, we run the KS test many times, each time generating a new

realization of t-values, a new empirical c.d.f. of t-values, a new test statistic K, and

a new KS test p-value. We emphasize that the data —in this case the data for first

serves by men —is held fixed each time the KS test is run.

Figure 4(b) shows the empirical density of the KS test p-values obtained after

10,000 repetitions of the test. To construct the density, the horizontal axis is divided

into 100 equal-sized bins [0, .01], [.01, .02], . . . , [.99, 1.0] and so, if 10,000 p-values

were equally distributed across bins, then there would be 100 p-values per bin. The

vertical height of each bar in the histogram is the number of p-values observed in the

bin divided by 100. By construction, the area of the shaded region in Figure 4(b) is

one, and hence it is an empirical density. The bins to the left of the vertical lines at

.05 and at .10 contain, respectively, p-values for which the null is rejected at the 5%
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and 10% level.

Figure 4(b) shows that the conclusion above is indeed fully robust to the realiza-

tions of the t-values. The joint null hypothesis of equality of winning probabilities

for first serves does not even come close to being rejected for the Hawk-Eye data for

first serves by men. In only one instance (.01%) of 10,000 trials of the KS test is the

null hypothesis rejected at the 5% level. In only .14% of the trials is it rejected at

the 10% level. The mean p-value is .690, which is far from the rejection region.

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (10,000 trials)

Figure 4: KS test for Men of H0 : piL = piR ∀i (Hawk-Eye, First Serves)

Before proceeding it is important to emphasize several aspects of our test. First,

it is a valid test in the sense that if the null hypothesis is true (i.e., piL = piR for each

i) then the p-value obtained from the KS test is asymptotically uniformly distributed

as the number of point games grows large. Second, conditional on any realization of

the data, there is no reason to expect the KS test p-values obtained from running

the test repeatedly (e.g., as in Figure 4(b)) to be uniformly distributed. Finally, as

the number of serves in each point game grows large, then the intervals U [F (niLS −
1|niS, niL, niR), F (niLS|niS, niL, niR)] from which the t-values are drawn shrink and the

empirical density of the KS p-values collapses to a degenerate distribution.

Figure 5 shows the result of applying our test to the Hawk-Eye data for 86,702

second serves by men from 7,198 point games. For a typical realization of the t-values,

such as the one shown in Figure 5(a), the joint null hypothesis of equality of winning

probabilities is not rejected. Figure 5(b) shows the density of KS test p-values after

10,000 trials. Only for a small fraction of these trials (2.58%) is the joint null rejected

at the 5% level. For second serves as well, the KS test does not come close to rejecting

17



the joint null hypothesis.20

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (10,000 trials)

Figure 5: KS test for Men of H0 : piL = piR ∀i (Hawk-Eye, Second Serves)

While the data for both first and second serves is strikingly consistent with the

theory, comparing Figures 4(b) and 5(b) reveals that for second serves the conformity

to theory is slightly less robust to the realization of the ti’s. This is a consequence

of the fact that in tennis there are fewer second serves than first serves in each point

game. Thus the intervals U [F (niLS−1|niS, niL, niR), F (niLS|niS, niL, niR)] from which the

t-values are drawn tend to be larger for second serves, and the empirical c.d.f. of

t-values is more sensitive to the realization of the t’s.

Our data also allows a powerful test of whether the play of women conforms to

equilibrium. In the Hawk-Eye data for women, there are 110,886 first serves and

41,376 second serves, obtained in 4,108 point games. For women, while the empirical

and theoretical c.d.f.s of t-values appear to the eye to be close, for many realizations

of the t’s the distance between them is, in fact, suffi ciently large that the joint null

hypothesis of equality of winning probabilities is rejected. Figures 6 and 7 show,

respectively, the results of KS tests of the hypothesis that piL = piR for all i, for first

and second serves. For first serves, the null is rejected at the 5% and 10% significance

level in 44.73% and 72.70% of 10,000 trials, respectively. In other words, run once,

the test is nearly equally likely to reject the null as not at the 5% level; three out of

four times the test rejects the null at the 10% level.

20While the numbers of point games for first and second serves are identical, there are fewer second

serves than first serves in each point game and therefore the statistical power of the test is lower for

second serves.
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The results for second serves are more ambiguous. The null hypothesis tends not

to be rejected at the 5% level: in only 16.01% of the trials is the p-value below .05.

(a) An empirical c.d.f. of t-values (b) Density KS test p-values (10,000 trials)

Figure 6: KS test for Women of H0 : piL = piR ∀i (Hawk-Eye, First Serves)

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (10,000 trials)

Figure 7: KS test for Women of H0 : piL = piR ∀i (Hawk-Eye, Second Serves)
In sum, male professional tennis players show a striking conformity to the theory

on both first and second serves. The behavior of female professional tennis players

conforms less closely to the theory, especially on first serves.

The behavior of female professional tennis players, however, conforms far more

closely to equilibrium than the behavior of student subjects in comparable laboratory

tests of mixed-strategy Nash play. Figure 8(a) shows a representative empirical c.d.f.
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of 50 t-values obtained from applying our test to the data from O’Neill’s (1987)

classic experiment in which 50 subjects, in 25 fixed pairs, played a simple card game

105 times. In the game’s unique mixed-strategy Nash equilibrium, the probability

that player i wins a hand is the same when playing the joker card as when playing

a number card (i.e., piJ = piN). Nonetheless, for the empirical c.d.f. of t-values in

Figure 8(a), the joint null hypothesis of equality of winning probabilities is decisively

rejected, with a p-value of .01. The empirical density function in Figure 8(b) shows

that rejection of the null at the 5% significance level is completely robust to the

realization of the t-values —at this significance level the null is certain to be rejected.

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (10,000 trials)

Figure 8: KS test of H0 : piJ = piN ∀i (O’Neill’s (1987) experimental data)

Hence, the behavior of female professional tennis players conforms far more closely

to theory than the behavior of student subjects in laboratory experiments.

Expertise and Equality of Winning Probabilities

Next we consider whether the behavior of better (i.e., higher ranked) players

conforms more closely to theory. The ATP (Association of Tennis Professionals)

and the WTA (Women’s Tennis Association) provide rankings for male and female

players, respectively. Our analysis here is based on the subsample of matches for

which we were able to obtain the receiver’s rank at the time of the match. It consists

of 96% of all point games for men but, since the ranking data was unavailable for

women for the years 2005 and 2006, only 69% of the point games for women.21 The

median rank for male players is 22 and for female players is 17.

21The ATP/WTA ranking were obtained from http://www.tennis-data.co.uk/alldata.php.
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In a mixed-strategy equilibrium the receiver’s play equalizes the server’s winning

probabilities. (In the illustrative example in Figure 2, the servers’s winning probabil-

ity is .65 for each of his actions only if the receiver follows his equilibrium mixture.)

Thus to evaluate the effect of expertise on behavior, we partition the data for first

serves into two subsamples based on whether the rank of the player receiving the

serve was above or below the median rank. We say players with a median or higher

rank are “top”players; all other players are “non-top.”The three panels of Figure 9

show the empirical c.d.f.s of KS-test p-values when testing the joint null hypothesis of

equality of winning probabilities for each subsample of men and for the sample of all

point games for which we could obtain the receiver’s rank. Panel (c) is the analogue

of Figure 4(b) and shows that the null of hypothesis that winning probabilities are

equalized is not rejected for the sample of 6,902 point games for which we have the

receiver’s rank.

(a) “Top”male receivers (b) “Non-top”male receivers (c) All male receivers

Figure 9: KS test for Men of H0 : piL = piR ∀i by receiver’s rank

Panels (a) and (b) of Figure 9 show that the null hypothesis that winning prob-

abilities are equalized is not rejected when servers face either top or non-top male

receivers. In only .39% and .15% of the trials is the null rejected at the 5% signif-

icance level; p-values are typically far from the rejection region. Hence we do not

come close to rejecting the hypothesis that male receivers act to equalize the server’s

winning probability, for either top or non-top receivers. This result is not surprising

given the close conformity of the data to the theory on the whole sample.

Figures 6 and 7 established that the behavior of female professional tennis players

conformed less neatly to equilibrium. For first serves, the joint null hypothesis of

equality of winning probabilities is rejected at the 5% level in 44.73% of all trials.

Figure 10(c) shows that a similar conclusion holds for the subsample of 2,906 point

games for which we were able to obtain the receiver’s rank.
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(a) “Top”female receivers (b) “Non-top”female receivers (c) All female receivers

Figure 10: KS test for Women of H0 : piL = piR ∀i by receiver’s rank

Figures 10(a) and (b) show a striking difference between the play of top and non-

top female receivers: for the subsample of matches in which the receiver is ranked

“top”the joint null hypothesis of equality of winning probabilities does not come close

to being rejected, as shown in panel (a). In contrast, the null is decisively rejected

for the subsample in which the receiver is ranked “non-top,”as shown in panel (b).

The best female players, when receiving the serve, do act to equalize the server’s

winning probabilities, in accordance with equilibrium. To our knowledge, this is the

first evidence in the literature showing that behavior in the field of better players

conforms more closely to theory.

Why do both top and non-top male receivers equalize the server’s winning prob-

abilities, while for women only top receivers do? We conjecture that the selection

pressure towards equilibrium is larger for men than for women. A male receiver who

fails to equalize the server’s winning probabilities can readily be exploited since men

deliver serves at very high speed. Such a receiver may well not be suffi ciently success-

ful to appear in our dataset. The serve in women’s tennis, by contrast, is much slower

—fewer serves are won by aces and the serve is more frequently broken. Return and

volley play is relatively more important in women’s tennis, and a good return and

volley player can be successful even if her play when receiving a serve is somewhat

exploitable. We find that the best female players, nonetheless, do equalize the server’s

winning probabilities.
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Comparing tests

We conclude this section by discussing the differences between our test and the

WW test of the joint null hypothesis that winning probabilities are equalized. Our

test is based on the empirical c.d.f. of the t-values obtained from the randomized

Fisher exact test, which are exactly distributed U [0, 1] under the null hypothesis that

piL = piR for each point game i. WW’s test is based on the empirical c.d.f. of the

Pearson goodness of fit p-values, which are only asymptotically distributed U [0, 1]

under the null. In particular, for each point game i, WW compute the test statistic

Qi =
∑

j∈{L,R}

[
(nijS − nij p̂i)2

nij p̂
i

+
(nijF − nij(1− p̂i))2

nij(1− p̂i)

]
,

where p̂i = (niLS + niRS)/(niL + niR), the server’s empirical win rate, is the maximum

likelihood estimate of the true but unknown winning probability pi, and nijS and n
i
jF

are the number of serves won and lost in direction j. The test statistic Qi is asymp-

totically distributed chi-square with 1 degree of freedom under the null hypothesis

as the number of serves grows large, and the associated p-value is therefore only

asymptotically distributed U [0, 1]. The p-value is not exactly distributed U [0, 1] for

any finite number of serves and thus, when the number of point games grows large

relative to the number of serves in each point game, the WW test rejects the joint

null hypothesis even when it is true, as shown in Appendix D.

In Section 6 we verify via Monte Carlo simulations that the WW test is not valid

when the number of point games is large relative to the number of serves. We show

it is valid when the number of points games is not large relative to the number of

serves, at it was for the WW data set of 40 points games.22 Monte Carlo simulations

show that our test is more powerful than the WW test when the WW test is valid.

Our test, therefore, has two significant advantages over the WW test: (i) it is valid

even when the number of point games is large, and (ii) it is more powerful than the

WW test.

5 Serial Independence

We test the hypothesis that the server’s choice of direction of serve is serial indepen-

dent. For each point game i, let si = (si1, . . . , s
i
niL+n

i
R

) be the sequence of first-serve

22In favor of the WW test, it makes a deterministic decision —it either rejects the null or not —

and hence the results are easier to interpret, even if it falsely rejects a true null when the number of

point games is large.
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directions, in the order in which they occurred, where sij ∈ {L,R} is the direction of
the j-th serve. Let ri denote the number of runs in si. (A run is a maximal string

of identical symbols, either all L’s or all R’s.) Under the null hypothesis of serial

independence, the probability that there are exactly r runs in a randomly ordered

list of niL occurrences of L and n
i
R occurrences of R is

fR(r|niL, niR) =


2
(
niL−1
r/2−1

)(
niR−1
r/2−1

)
/
(niL+niR

niL

)
if r is even

(
niL−1
(r−1)/2

)(
niR−1
(r−3)/2

)
+
(
niL−1
(r−3)/2

)(
niR−1
(r−1)/2

)
/
(niL+niR

niL

)
if r is odd,

for r ∈ {2, . . . , niL + niR}. Let FR(r|niL, niR) be the associated c.d.f. At the 5%

significance level, the null is rejected if FR(r|niL, niR) ≤ .025 or if 1−FR(r−1|niL, niR) ≤
.025, i.e., if the probability of r or fewer runs is less than .025 or the probability of

r or more runs as less than .025. In the former case, the null is rejected since there

are too few runs, i.e., the server switches the direction of serve too infrequently to

be consistent with randomness. In the latter case, the null is rejected as the server

switches direction too frequently.

To test the joint null hypothesis that first serves are serially independent, for each

point game i we draw the random test statistic ti from the U [FR(ri−1|niL, niR), FR(ri|niL, niR)]

distribution. Under the joint null hypothesis of serial independence, each ti is dis-

tributed U [0, 1]. We then apply the KS test to the empirical distribution of the

t-values.

Figure 11 shows representative empirical c.d.f.s of t-values for first serves (left

panel) and for second serves (right panel) for the Hawk-Eye data for men. The KS

test rejects the joint null hypothesis of serial independence, for both first and second

serves, with p-values virtually equal to zero.23 In each case, the empirical c.d.f. lies

below the theoretical c.d.f., and hence the null is rejected as a consequence of too

23At the individual player level, serial independence is rejected in point game i at the 5% signif-

icance level if ti ≤ .025 or ti ≥ .975. For first serves, we reject serial independence as a result too

few runs (i.e., ti ≤ .025) for 2.9% of the point games, and reject it as a result of too many runs (i.e.,

ti ≥ .975) for 7.0% of the point games.

24



frequent switching, i.e., there are more than the expected number of large t-values.

(a) First Serve: Empirical c.d.f. of t-values (b) Second Serve: Empirical c.d.f. of t-values

Figure 11: KS test for Men of H0 : si is serial independent ∀i (Hawk-Eye)

The empirical density of the KS test p-values that we have provided in prior figures

is omitted for Figure 11 since the p-values are virtually zero for every realization of

the t’s.

Figure 12 shows representative empirical c.d.f.s of t-values for first and second

serves by women for the Hawk-Eye data. Women also exhibit negative serial correla-

tion in the direction of serve, for both first and second serves, with the null of serial

independence rejected at virtually any significance level.

(a) First Serve: Empirical c.d.f. of t-values (b) Second Serve: Empirical c.d.f. of t-values

Figure 12: KS test for Women of H0 : si is serial independent ∀i (Hawk-Eye)

Comparing Figures 11(a) and 12(a) one might be tempted to conclude that women

exhibit more serial correlation in first serves than men since the empirical c.d.f. of
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t-values is further from the theoretical one (viz. the 45-degree line) for women. While

this conclusion is correct, as we shall see shortly, it is premature: when the server’s

choice of direction of serve is not serially independent in point game i, then the

distribution of ti will tend to depend on the number of first serves. Since we observe

different numbers of first serves for men and women and, indeed, different numbers of

first serves for different players, a direct comparison of the c.d.f.s is not meaningful.

Gender and Serial Correlation

To determine the degree of serial correlation in first serves, and whether the dif-

ference between male and female players is statistically significant, we compute, for

every point game, the Pearson product-moment correlation coeffi cient between suc-

cessive serves.24 Figure 13 shows the empirical densities of correlation coeffi cients for

male and female tennis players for first serves.

(a) Men (Hawk-Eye) (b) Women (Hawk-Eye)

Figure 13: Empirical density of correlation coeffi cients, first serves

The mean correlation coeffi cient for men is −0.086 and for women is −0.150, a sta-

tistically significant difference using a two-sample t-test.25

Table 4 shows the result of a logit regression for first serves in which the dependent

variable is the direction of the current serve and the independent variables are the

direction of the prior serve (from the same point game) and the direction of the prior

serve interacted with gender. We use a fixed effect logit, using only within point game

24When all serves are in the same direction we take the correlation coeffi cient to be one.
25The two-sample t-test yields a test statistic of −14.16 and p-value of 4.57× 10−39.
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variation, to cancel out variation in the equilibrium mixture across point games.26

Rightt−1 −0.659

(p < 0.001)

Rightt−1 ×male 0.329

(p < 0.001)

Nserves 325, 394

Fixed Effect point game

Table 4: Serial Correlation and Gender

The coeffi cient estimate on Rightt−1×male is statistically significant and positive, in-
dicating that men exhibit less negative serial correlation in their choices than women.

The estimated magnitude of serial correlation is strategically significant. To illus-

trate, consider a female player who (unconditionally) serves right and left with equal

probability. If the prior serve was right, the estimates predict that the next serve will

be right with probability 0.418 if the server is male but will be right with probability

only 0.341 if the server is female.27

Expertise and Serial Correlation

We now provide additional evidence that the behavior of better players conforms

more closely to optimal and equilibrium play. Optimal play for the server requires

that the direction of serve be serially independent, since serially correlated play is

predictable and therefore exploitable. Here we show that higher ranked male players

exhibit less serial correlation than lower ranked players, while the degree of serial

correlation does not depend on rank for women. This provides additional evidence,

consistent with our earlier conjecture, that there is a strong selection effect against

men who depart from equilibrium play.

26Estimating the fixed effect logit regression requires that point games in which all first serves are

in the same direction be dropped from the sample.
27In particular, on the next serve the probability of a serve to the right is, for males and females,

respectively,

Pr(Rightt|Rightt−1,male) =
exp(−.659 + .329)

1 + exp(−.659 + .329)
= .418,

and

Pr(Rightt|Rightt−1, female) =
exp(−.659)

1 + exp(−.659)
= .341.
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Table 5 shows the results of logit regressions in which the dependent variable is

the direction of the current first serve and the independent variables are the direction

of the prior first serve (in the same point game), the direction of the prior serve

interacted with the server’s rank, and the direction of the prior serve interacted

with the receiver’s rank.28 We measure rank as proposed by Klaassen and Magnus

(2001), transforming the ATP/WTA rank of a player into the variable R̃ where R̃ =

8 − log2(ATP/WTA rank). Higher ranked players have higher values of R̃, e.g.,

the players ranked first, second, third have values of R̃ equal to 8, 7, and 6.415,

respectively.29

Men Women

Rightt−1 −.577 −.689

(p < 0.001) (p < 0.001)

Rightt−1 × R̃server 0.067 0.008

(p < 0.001) (p = 0.359)

Rightt−1 × R̃receiver −0.002 0.004

(p = 0.628) (p = 0.610)

Nserve 207, 418 77, 508

Npointgame 6, 887 2, 901

Fixed Effect point game point game

Table 5: Serial Correlation and Player Rank

For men, the coeffi cient on Rightt−1 × R̃server is positive and statistically sig-

nificant. Men exhibit less correlation in their direction of serve as they are more

highly ranked. For women, by contrast, the server’s rank is statistically insignificant.

As expected, the rank of the receiver is statistically insignificant for both men and

women.
28In Section 4 we focused on the ranks of receivers since it is the receiver’s mixture that determines

whether server’s winning probabilities are equalized.
29As described in Klaassen and Magnus (2014), pp. 107-110, the measure R̃(ATP rank) = 8 −

log2(ATP rank) can be interpreted as a (smoothed) measure of the “expected”round a player reaches

in a tennis tournament. A player ranked 1 has R̃ = 8, i.e., he reaches the final round (round 7) and

wins. A player ranked 2 has R̃ = 7, i.e., he reaches the final round and loses. A player ranked 4 has

R̃ = 6, i.e., he reaches the semi-final and loses, and so on. A player ranked 128 has R̃ = 1, i.e., he

enters the tournament and does not advance to the next round.
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6 Statistical Power and a Re-evaluation

In this section we use Monte Carlo simulations to study the properties of the KS test

of the joint hypothesis of equality of winning probabilities. We show that the test

is valid when the empirical c.d.f. is generated from the Pearson goodness of fit test

p-values, so long as the number of point games is not too large (as it was in WW). If,

however, the number of points games is large, then the same test rejects the null even

when it is true, and is thus not valid. We show, by contrast, that if the empirical

c.d.f. is generated from the randomized Fisher exact test t-values as we propose, then

the test is valid even when the number of point games is large.

We show further that our KS test based on the randomized Fisher t-values is more

powerful than the two tests used in the prior literature: the KS test based on the

Pearson goodness of fit p-values and the Pearson joint test.30 A more powerful test

has the potential to reverse the conclusions from WW (for men) and HHT (for men,

women, and juniors) that the win rates in the serve and return play of professional

tennis players are consistent with equilibrium. We show that the conclusions of WW

and HHT for men are robust. However, the more powerful test does not support

HHT’s finding that the serve and return play of female professional tennis players

and of players in junior matches is consistent with theory.

The Power of Our Test

To evaluate the power of the KS test based on the randomized Fisher exact test

t-values, we frame our discussion in terms of the hypothetical point game in Figure

2. Recall that in the game’s mixed-strategy Nash equilibrium, the receiver chooses L

with probability 2/3. Denote by θ the probability that the receiver chooses L. Our

null hypothesis H0 that pL = pR can equivalently be viewed as the null hypothesis

that θ = 2/3, i.e., the receiver follows his equilibrium mixture, thereby equalizing the

server’s winning probabilities. Denote by Ha(θ) the alternative hypothesis that the

receiver chooses L with probability θ. Then the server’s winning probabilities are

pL(θ) = .58θ + .79(1− θ)

and

pR(θ) = .73θ + .49(1− θ).

We conduct Monte Carlo simulations to compare the power of our test, i.e., the

30See, for example, Table 1 and Figure 2 in WW.
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probability that H0 is rejected when Ha(θ) is true, to the tests used in the prior

literature.

Since we have data for 7198 points games for men, we first simulate data for 7000

points games with payoffs as given above. In the simulated data every point game

has 30 serves, and serves in each direction are equally likely.31 Table 6 shows, as θ

varies near its equilibrium value of 2/3, the probability that the joint null hypothesis

H0 : piL = piR ∀i ∈ {1, . . . , 7000} is rejected at the 5% significance level when Ha(θ) :

piL = pL(θ) and piR = pR(θ) ∀i ∈ {1, . . . , 7000} is true, for several different tests.

True θ KS based on t’s KS based on p’s Pearson joint test

0.65 0.850 1.00 0.692

0.66 0.221 1.00 0.650

2/3 0.047 1.00 0.654

0.67 0.089 1.00 0.643

0.68 0.662 1.00 0.682

Table 6: Rejection rate for H0 at the 5% level, N = 7000

The first column of Table 6 shows the probability of rejecting the null when using

the KS test based on the randomized Fisher exact test t-values. Note that the test

is valid. Specifically, if the null is true, i.e., θ = 2/3, then the null is rejected

with probability approximately 0.05. By contrast, if the null is false, e.g., Ha(.65)

is true, i.e., the server’s true winning probability is pL(.65) = .6535 for serves left

and pR(.65) = 0.6460 for serves right, then H0 is rejected at the 5% level with

probability .850. The second column of Table 6 shows that the KS test based on the

Pearson goodness of fit p-values is not valid: it rejects the null hypothesis at the 5%

significance level with probability 1 when the null is true. The third column shows

that the Pearson joint test (see WW, p. 1527, for a description of this test) is also

not valid.

Figure 14(b) shows the power of KS test based on the randomized Fisher exact

test t-values for all values of θ. It shows that our test, coupled with a large dataset,

yields a powerful test of the joint null hypothesis of equality of winning probabilities.

The power functions for the Pearson joint test and the KS test based on the p-values

from the Pearson goodness of fit test are omitted since, as shown in Table 6, neither

31Simulating the data with the hypothetical point game’s 8/15 equilibrium mixture probability

on left has no impact on the results.
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test is valid.

Figure 14(a) compares the power of the three tests discussed above for a sample

size of 40 point games, the number of point games in WW’s dataset. It shows that

the probability that the joint null hypothesis H0 : piL = piR ∀i ∈ {1, . . . , 40} is rejected
at the 5% significance level when Ha(θ) : piL = pL(θ) and piR = pR(θ) ∀i ∈ {1, . . . , 40}
is true. The power function in red (the curve at bottom) shows the probability of

rejecting H0 when Ha(θ) is true for the KS test based on the empirical distribution

of the 40 p-values from the Pearson goodness of fit test.32 Importantly, it shows that

this test is valid for the WW sample. The power function in green (middle curve) is

for the Pearson joint test, and is the analogue of the power function shown in Figure

4 of WW. The power function in black (the curve at top) is for the KS test based on

the empirical distribution of 40 t-values from the randomized Fisher exact test. This

last test is, by far, the most powerful. If, for example, Ha(.6) is true, then the KS

test based on the t’s rejects H0 at the 5% significance level with probability 0.131,

while the Pearson joint test and the KS test based on the Pearson goodness of fit

p-values reject H0 with probability 0.085 and 0.055, respectively.

(a) N = 40 (b) N = 7000

Figure 14: Power Functions for KS test based on t-values (black), p-values (red),

and Pearson joint (green)

Re-Analysis of Prior Findings

The KS test we propose, based on the randomized Fisher exact test t-values, is

valid for all sample sizes and is more powerful than the existing tests used in the
32For the power functions reported in Table 6 and Figure 14, the data is simulated 10,000 times

for each value of θ ∈ {0, .01, .02, . . . , .99, 1} and for θ = 2/3.
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literature. Given its greater power, our test has the potential to overturn results in

the prior literature based on less-powerful tests.

Using the KS test based on the Pearson goodness of fit p-values, WW found that

the joint null hypothesis of equality of winning probabilities did not come close to

being rejected. Figure 15(a) shows one realization of the empirical distribution of

Fisher exact test t-values for the WW data. For this realization, the value of the test

statistic is K = .787 and the associated p-value is .565. Figure 15(b) shows that the

KS test p-values after 10,000 trials are concentrated around .6, and hence are far from

the rejection region. The joint null hypothesis of equality of winning probabilities is

not rejected even once at the 5% significance level. Thus the new test confirms the

WW finding that the joint null hypothesis of equality of winning probabilities for first

serves does not come close to being rejected for male professional tennis players.

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (10,000 trials)

Figure 15: KS test of H0 : piL = piR ∀i (WW data)

HHT studies a dataset comprised of ten men’s matches, nine women’s matches,

and eight junior’s matches. The men’s and women’s matches are all from Grand Slam

finals, while the juniors matches include the finals, quarterfinals, and second-round

matches in both tournaments and Grand Slam matches. HHT found, using the KS

test based on Pearson p-values, that the joint null hypothesis of equality of winning

probabilities is not rejected for any one of their datasets, or all three jointly. The KS

statistics are 0.778 for men (p-value .580), 0.577 for women (p-value .893), 0.646 for

juniors (p-value .798), and 0.753 (p-value .622) for all 27 matches or 108 point games

combined. We show that this conclusion is robust for men, but not for women and

juniors, to using the more powerful test based on the t-values.
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Figure 16(a) shows, for the HHT men’s data, a representative empirical c.d.f. of t-

values (left panel) and the empirical distribution of the p-values (right panel) obtained

from 10,000 trials of the KS test based on the randomized Fisher t-values. The joint

null hypothesis is not rejected once at the 5% level. Hence the more powerful test

supports HHT’s findings for men.

Figure 16(a): KS test for Men of H0 : piL = piR ∀i (HHT data)

Figures 16(b) and (c) show for women and juniors, by contrast, the empirical

distributions of p-values are shifted sharply leftward (relative to the one for men)

and the same joint null hypothesis is frequently rejected. For women, for example, it

is rejected in 18.13% of 10,000 trials at the 5% level and in 47% of all trials at the

10% level. The leftward shift of the empirical density of the p-values is even more

striking for juniors. For that data, the joint null is rejected at the 5% level in 49.18%

of the trials and at the 10% level in 77.28% of the trials.
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Figure 16(b): KS test for Women of H0 : piL = piR ∀i (HHT data)

Figure 16(c): KS test for Juniors of H0 : piL = piR ∀i (HHT data)

Thus the greater power of the KS test based on the t-values confirms HHT’s conclusion

for men, but overturns their conclusions for women and juniors.

7 Conclusion

We conclude by quantifying the strategic consequences of the failure of female players

to perfectly equalize the server’s winning probabilities. Recall that in the Hawk-

Eye data, for a sample of 4,108 point games of first serves by women, the KS test

rejects the joint null hypothesis that winning probabilities are equalized in 44.73%
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of the trials (see Figure 6). To quantify the strategic consequences, we exploit the

Illustrative Point Game in Figure 2. We first identify the deviation from equilibrium

play by receivers that is consistent with the 44.73% rejection rate in 4,108 point

games. We then identify the increase in the probability of winning the match a

player can obtain by exploiting the receiver’s departure from equilibrium play when

serving, while continuing to play equilibrium herself when receiving.

We simulate data for 4,108 points games, with 30 serves per point game, under the

hypothesis that servers chooses L with equilibrium probability 8/15, while receivers

chooses L with probability θ. Were all receivers to follow the equilibrium mixture,

choosing L with probability θ = 2/3, then the probability that the server wins the

point is the same for both directions, i.e., pL(2/3) = pR(2/3) = .65, and the KS test

of the joint null hypothesis that piL = piR for i ∈ {1, . . . , 4108} is rejected at the 5%
level in 5% of the trials. The failure of receivers to equalize winning probabilities

implies receivers either underplay or overplay L relative to its equilibrium frequency.

Monte Carlo simulations show that θ′ = .6532 and θ′′ = .6768 are each consistent

with the observed 44.73% rejection rate.

Suppose that all receivers underplay L, following the mixture θ′ = .6532. The

best response for servers is to choose L with probability 1, thereby increasing the

probability of winning a point from .65 to

pL(.6532) = .58(.6532) + .79(1− .6532) = .65283.

In a match of two identical players the probability payoffs in Figure 2 govern the

players’payoffs regardless of which player is serving. Consider such a match, where

(i) one player deviates from equilibrium, choosing θ = .6532 when receiving, and (ii)

his opponent exploits the deviating player when serving (choosing L with probability

1) but follows equilibrium when receiving (choosing θ = 2/3). In such a match,

the exploiting player wins a point with probability .65283 when serving, while the

deviating player wins a point with probability .65 when serving. One can show that

the exploiting player wins increases her probability of winning a three-set match

from .5 to .51393, an increase of 2.786%.33 This appears to be a strategically and

economically significant: obtaining a similar increase in the probability of winning a

match by other means could easily require substantially better coaching, substantially

more practice, or substantially more raw talent.34

33The calculation is performed by https://hiddengameoftennis.com/tennis-calculators-markov-

win/.
34The analogous calculation shows that against a receiver who chooses θ′′ = .6768, a server can
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This back-of-the-envelope calculation overestimates the strategic consequences of

the non-equilibrium play hypothesized. It assumes the server immediately recognizes

a receiver’s departure from equilibrium play. More important, it assumes that servers

can fully exploit (via switching to a pure strategy) receivers who departs from equilib-

rium play, which is surely unrealistic. In practice, a receiver would change his play if

the server adopted a pure strategy. In order to avoid tipping off the receiver, a sophis-

ticated server would exploit receivers by switching to a pure strategy only on the most

important points.35 See https://www.youtube.com/watch?v=ja6HeLB3kwY for An-

dre Agassi’s description of how he exploited Becker by “reading Becker’s tongue.”

8 Appendix A: Data Cleaning

There were several steps in the cleaning the data. The table below shows the numbers

of serves remain after each step. As noted in the text, we first eliminated from our

analysis every game in which the scoreline did not evolve logically. Row (i) shows

the number of first serves, second serves, and point games that remain.36 We then

eliminated those serves in which there is ambiguity regarding which player is serving

(Row (ii)) and those in which there is ambiguity regarding whether the serve is a first

or second serve (Row (iii)). Finally, if a point game has fewer than 10 first serves,

then we drop the point game and also the associated point game of second serves

raise her probability of winning a three-set match to .51195, a 2.39% increase. The benefit of

exploiting a non-equilibrium receiver is even greater in a five-set match, as played in men’s tennis.
35The importance of a point can be measured as the difference in the probability of winning the

match that results from winning rather than losing the current point.
36A point can be played more than once, e.g., after a let, after a successful challenge of the umpire’s

decision (on the serve or later in the rally), or after a member of the audience disturbs play. When

the same point is played more than once, we use only the serve direction of the first play.
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(Row (iv)).37

Female Male

1st 2nd N 1st 2nd N

All 147,000 57,005 4,657 284,109 113,757 7,951

(i) Scoreline 115,014 44,082 4,511 230,305 91,341 7,690

(ii) Server? 113,125 43,387 4,511 228,802 90,739 7,690

(iii) 1st or 2nd? 113,121 42,180 4,511 228,785 87,732 7,690

(iv) ≥ 10 serves 110,886 41,376 4,108 226,298 86,702 7,198

Table A1: Number of serves and point games after data cleaning.

9 Appendix B: A Deterministic Test

Here we describe and study the properties of a deterministic test, suggested by Hirano

(personal communication), of the joint null hypothesis that winning probabilities are

equal for serves to the left and serves to the right. Hereafter we refer to this test as

the “Hirano deterministic test.”While the test is valid (by construction), we show

that it has substantially less power than the KS test based on the randomized Fisher

exact test t values that we develop and employ in the body of the paper. The lower

statistical power of the Hirano deterministic test means that it sometimes fails to

reject a null hypothesis when the same null is rejected by the KS test based on the

randomized Fisher exact test t values, as we show below.

The Test

We test the joint null hypothesis that piL = piR for each point game i ∈ {1, . . . , N}.38

Hirano’s deterministic test is based on the empirical winning frequencies for serves

left and serves right, denoted for point game i by p̂iL = niSL/n
i
L and p̂

i
R = niSR/n

i
R,

respectively. The Hirano test has three steps. Step I is to compute the test statistic

X̂ =
∑N

i=1 |p̂iL − p̂iR|, which is the sum of the absolute differences of the empirical

winning frequencies over N point games. Let nS = (n1S, . . . , n
N
S ), nL = (n1L, . . . , n

N
L ),

and nR = (n1R, . . . , n
N
R ) be the marginals for the N point games. Let F|nS ,nL,nR(X)

37Our results are robust to the choice of restrictions (e.g., more than 10, 20, or 30 serves).
38We drop point games in which either niL = 0 or niR = 0. By comparison, our KS test based

on the randomized Fisher ti values calls for a draw ti ∼ U [0, 1] for such point games, which reflects

that they are not informative about the null.
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denote the distribution ofX, the sum of the absolute values of the differences between

the left and right winning frequencies, conditional on the marginals and under the

null hypothesis. Then the two-sided p-value for X̂ is

p = 2 min(F|nS ,nL,nR(X̂), 1− F|nS ,nL,nR(X̂)).

Since F|nS ,nL,nR(X) is unknown, in Step II we generate B simulated values of the

test statistic under the null hypothesis. Recall that in point game i the probability

of k winning serves to the left, under the null hypothesis that piL = piR and given the

marginals niS, n
i
L, and n

i
R, is given by

f(k|niS, niL, niR) =

(
niL
k

)( niR
niRS

)
(niL+niR

niS

) ,
where niRS = niS − k. Hence f(k|niS, niL, niR) is the probability that p̂iL = k/niL
and p̂iR = (niS − k)/niR are the winning frequencies for serves left and serves right.

Simulating empirical winning frequencies for each of the N point games according to

these distributions, we obtain a simulated value for the test statistic. Let X̂∗|nS ,nL,nR(j)

denote the j-th simulated value of the test statistic. Finally, in Step III, following

MacKinnon (2009), the equal-tailed simulated p-value for X̂ is39

p∗ = 2 min

(
1

B

B∑
j=1

I(X̂∗|nS ,nL,nR(j) ≤ X̂),
1

B

B∑
j=1

I(X̂∗|nS ,nL,nR(j) > X̂)

)
.

Steps I and II were suggested by Hirano, and Step III follows MacKinnon (2009).

Table B1 shows the test statistics, with the associated simulated p-values and

sample sizes, for male and female players and first and second serves, of the test of

39MacKinnon (2009) calls this the equal-tailed “bootstrap”p-value.
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the null hypothesis that winning probabilities are equalized.

Men Women

Sample First Serve Second Serve First Serve Second Serve

All X̂ 1090.5 1890.7 704.5 1098.9∗

p∗ 0.613 0.540 0.252 0.024

N 7,188 6,131 4,095 3,483

With Ranking X̂ 1045.9 1813.5 489.0 784.0

p∗ 0.902 0.618 0.493 0.145

N 6,892 5,856 2,902 2,486

Top Receiver X̂ 539.2 915.4 244.9 385.9

p∗ 0.240 0.536 0.502 0.362

N 3,462 2,926 1,461 1,254

Non-top Receiver X̂ 506.6 898.0 244.1 398.1

p∗ 0.303 0.932 0.766 0.265

N 3,430 2,930 1,441 1,232

Table B1: Deterministic tests of H0 : piL = piR ∀i for various subsamples, B = 1000

For male players, Hirano’s deterministic test reaches the same conclusions as the

KS test based on the randomized Fisher exact test t-values: the joint null hypothesis

that winning probabilities are equalized is not rejected for either the whole sample

or any of the subsamples. For female players, Hirano’s deterministic test rejects the

joint null for second serves, but it does not reject the null for non-top receivers, as did

the KS test based on the Fisher exact test t-values. All these results are consistent

with the smaller statistical power of Hirano’s deterministic test, which we establish

in the next section, compared to the KS test based on the randomized t-values.

The Power of the Test

We now study the power of Hirano’s deterministic test, performing for this test the

same simulations reported in Section 6 for the KS test based on the randomized Fisher

exact test t-values. Figure B1 is the analog of Figure 14 and the power functions in

black (the upper curves) reproduce the power functions for the KS test based on the

randomized Fisher exact test t-values.

The power functions for Hirano’s deterministic test, shown in blue, are generated

as follows. Let θ ∈ [0, 1]. We first simulate a random sample under the alternative hy-

pothesis Ha(θ) : piL = pL(θ) and piR = pR(θ) ∀i ∈ {1, . . . , N}. Let X̂ =
∑N

i=1 |p̂iL− p̂iR|
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be the associated value of the test statistic, and let nS, nL, and nR be the associated

vectors of marginal distributions. We then simulate 1000 values of the test statistic

under the null hypothesis that piL = piR ∀i ∈ {1, . . . , N}. Let F̂ ∗|nS ,nL,nR(X) be the

empirical c.d.f. of the simulated test statistic. The null hypothesis is rejected at the

5% significance level if either F̂ ∗|nS ,nL,nR(X̂) ≤ .025 or 1− F̂ ∗|nS ,nL,nR(X̂) ≤ .025, i.e., if

the realized value of the test statistic for the simulated sample is in the tails of the

c.d.f. of the simulated test statistic. The power function for the deterministic test is

the probability that the null is rejected when Ha(θ) is true.40

It is evident from Figure B1 that Hirano’s deterministic test has substantially less

power, for both small and large samples. These results demonstrate the usefulness

of the test we develop in the body of the paper. Given the lower power of Hirano’s

deterministic test, unsurprisingly it fails to reject the null for some sub-samples for

which the KS test based on the randomized t-values does reject.

N = 40 N = 7000

Figure B1: Power functions for the deterministic test and for the KS test based on t-values

Table B2 shows that Hirano’s deterministic test is especially low powered, in

comparison to our KS test based on the randomized Fisher exact test t-values, in the

40For the power functions reported in Figure B1 and Table B2, when N = 40 and when

N = 7000, the data is simulated 10,000 times and 1,000 times, respectively, for each value of

θ ∈ {0, .01, .02, . . . , .99, 1} and for θ = 2/3.
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neighborhood of the null hypothesis.

True θ KS based on t’s Deterministic X̂ =
∑N

i=1 |p̂iL − p̂iR|
0.65 0.997 0.052

0.66 0.460 0.051

2/3 0.046 0.057

0.67 0.153 0.056

0.68 0.964 0.043

Table B2: Rejection rate for H0 at the 5% level, N = 7000

10 Appendix C: Robustness of Power Simulations

As a robustness check, here we reproduce the simulation results reported in Section 6,

but where now the simulated data matches the characteristics of the observed data,

point game by point game, rather than just in aggregate. Specifically, if point game i

has niR serves to the right, n
i
L serves to the left, and an empirical winning frequency

of p̂i, then the simulated data for point game i has niR serves to the right, n
i
L serves

to the left, and the probability of winning a point is p̂i for serves in each direction

(and hence the null hypothesis that piL = piR is true). The number of winning serves

to the right and left are therefore distributed, respectively, B(niR, p̂
i) and B(niL, p̂

i)

in the simulated data for point game i.

The Power of Our Test

The subsection “The Power of Our Test”in Section 6 provided the power functions

for the Pearson joint test and the KS tests based on the Pearson p-values and the

Fisher exact t-values. It demonstrated that for “small”samples of 40 point games,

the test based on the t-values was substantially more powerful than the other two. In

addition, for “large”samples of 7000 point games, the test based on the t-values was

especially powerful —the joint null hypothesis of equality of winning probabilities is

almost surely rejected for even small departures from equilibrium play.

Figure C1 is the analogue to Figure 14 and shows that the power functions in

Figure 14 are largely unchanged when the data is simulated (under the null hypoth-

esis) to match characteristic of the WW data (Figure C1(a)) or the Hawk-Eye data
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(Figure C1(b)).

(a) N = 40 (b) N = 7198

Figure C1: Power Functions for KS test based on t-values (black), p-values (red),

and Pearson joint (green)

Table C1 is the analogue Table 6. Comparing to the two tables reveals that

the KS test based on the t’s has similar power when the simulated data matches

the characteristics of the Hawk-Eye data. Table C1 shows that the (true) joint null

hypothesis of equality of winning probabilities is rejected, at the 5% significant level,

for sure by the KS test based on the p’s and it is rejected with probability .726 by

the Pearson joint test. These results reaffi rm our conclusion that these tests are not

valid for large samples.

True θ KS based on t’s KS based on p’s Pearson joint test

0.65 0.834 1 0.746

0.66 0.212 1 0.716

2/3 0.051 1 0.726

0.67 0.093 1 0.726

0.68 0.675 1 0.764

Table C1: Rejection rate for H0 at the 5% level, N = 7198

11 Appendix D

This Appendix has three parts. The first part proves that when the null hypothesis

piL = piR is true for point game i, then the randomized Fisher Exact test value t
i is
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distributed U [0, 1]. The second part shows that the randomized Fisher Exact test ti’s

continues to be distributed U [0, 1] even if there is serial correlation in the direction

of the serve. Finally, the third part demonstrates that the KS test, based on the

p-values from the Pearson Goodness of Fit test, will fail when the number of point

games grows large while the number of serves per point game is held fixed.

Proof that ti ∼ U [0, 1] Under the Null

Assume that piL = piR = p. As shown by Fisher (1935), the random variable niLS,

with support {niLS, niLS + 1, . . . , niL} and where niLS = max{niS − niR, 0}, has p.d.f.

f(niLS|niS, niL, niR) =

( niL
niLS

)( niR
niRS

)
(niL+niR

niS

) ,

and c.d.f.

F (niLS|niS, niL, niR) =
∑niLS

k=max{niS−niR,0}
f(k|niS, niL, niR).

Let ti be the random test statistic defined, as described in Section 4, by

ti ∼


U [0, F (niLS|niS, niL, niR)] if niLS = niS − niR

U(F (niLS − 1|niS, niL, niR), F (niLS|niS, niL, niR)] otherwise.

We prove that ti is distributed U [0, 1].

The following claim holds for any discrete random variable, and thus it holds in

our context as well.

Claim: Let X be a discrete random variable with support {x1, . . . , xK}, where x1 <
x2 < · · · < xK , with p.d.f. f(xk) > 0 and associated c.d.f. F (xk). Let t be the random

variable defined by

t ∼


U [0, F (x1)] if X = x1

U(F (xk−1), F (xk)] if X = xk.

Then t is distributed U [0, 1].

Proof: First note that the support of t is the interval [0, 1] since the union of the

intervals [0, F (x1)], (F (x1), F (x2)], . . . , (F (xK−1), F (xK)] is [0, 1]. Furthermore, since

these intervals are disjoint, then any z ∈ [0, 1] is an element of exactly one interval.
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Let z ∈ [0, 1] be arbitrary. We need to show that Pr{t ≤ z} = z. If z ≤ F (x1)

then

Pr{t ≤ z} = Pr{0 ≤ t ≤ z|X = x1}f(x1) =
z

F (x1)
f(x1) = z.

If z > F (x1), then there is a unique k′ > 1 such that z ∈ (F (xk′−1), F (xk′)]. Then

Pr[t ≤ z] = F (xk′−1) + Pr{xk′−1 < t ≤ z}
= F (xk′−1) + Pr{t ≤ z|X = xk′}f(xk′)

= F (xk′−1) +
z − F (xk′−1)

F (xk′)− F (xk′−1)
f(xk′)

= z.

This completes the proof. �

The proof requires that t be drawn from U(F (xk−1), F (xk)] with probability f(xk).

In our context, the c.d.f. of interest is F (niLS|niS, niL, niR). If the null hypothesis that

piL = piR = p is not true, then the probability ti is drawn from

U(F (niLS − 1|niS, niL, niR), F (niLS|niS, niL, niR)]

need not be f(niLS|niS, niL, niR) as niLS need not be distributed according to Fisher’s

formula. The ti value might, for example, be drawn from the interval [0, niLS] with

probability greater than f(niLS|niS, niL, niR).

Serial Correlation and the Randomized Fisher Exact Test

We show that the t-values in the randomized Fisher exact test remain uniformly

distributed even when the server exhibits serial correlation in the direction of the

serve. Hence our test of the null that piL = piR ∀i is not undermined by the presence
of serial correlation in the direction of serve that we find in our data.

We need to show that the formula for the Fisher Exact test

f(nLS|nS, nL, nR) =

(
nL
nLS

)(
nR
nRS

)(
nL+nR
nS

)
continues to hold if the server exhibits serial correlation in the direction of serve.41

Assume that the number of winning serves to the left, conditional on the number of

left serves, is independent of the number of winning serves to the right, conditional

on the number of right serves, i.e.,

P (nLS, nRS|nL, nR) = P (nLS|nL)P (nRS|nR).

41For notational convenience we supress the index i for the point game.
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A simple example of a DGP that would satisfy this assumption is that the server

alternates between serves left and serves right.42 More generally, the assumption

is satisfied if the probability of a serve left or right depends only on the history of

directions of past serves.

We now show that Fisher’s formula holds given the assumption above. We have

that

f(nLS|nS, nL, nR) =
P (nLS, nRS, nL, nR)

P (nS, nL, nR)

=
P (nLS, nRS, nL, nR)

P (nS, nL, nR)

P (nL, nR)

P (nL, nR)

=
P (nLS, nRS|nL, nR)

P (nS|nL, nR)
.

By the conditional independence assumption we have

P (nLS, nRS|nL, nR) = P (nLS|nL)P (nRS|nR)

=

(
nL
nLS

)
pnLS(1− p)nL−nLS

(
nL
nRS

)
pnRS(1− p)nR−nRS ,

where the second equality follows from the null hypothesis that pL = pR = p. Like-

wise, we have

P (nS|nL, nR) =

(
nL + nR
nS

)
pnS(1− p)nL+nR−nS .

Thus
P (nLS, nRS|nL, nR)

P (nRS|nL, nR)
=

(
nL
nLS

)(
nR
nRS

)(
nL+nR
nS

) ,

which completes the proof.

Failure of the KS Test Based on the Pearson p-Values

We show that WW’s test of the equality of winning probabilities, i.e., the KS test

based on the p-values from the Pearson Goodness of Fit test, fails when the number

of point games grows large while, at the same time, the number of serves per point

game is fixed. It fails as, under the null hypothesis, the empirical c.d.f. of p-values

converges to a discrete distribution rather than the U [0, 1] distribution.

We first prove that the test fails in the simpler setting of testing that each coin

in a collection of N coins is fair. In this discussion, a coin is the analogue of a point

game and a toss of the coin is the analogue of a serve in the point game. We consider

42This, of couse, would be inconsistent with equilibrium play.
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coins rather than point games since the probability of a Heads is p(H) = .5 under the

null hypothesis, whereas the probability of winning a point on a serve is unknown.

This simplifies the explanation of why the KS test based on the Pearson p-values

is not valid when N , the number of coins (or point games) grows large, while the

number of coin tosses (or serves) is fixed.

The theoretical c.d.f. of the binomial p-values for the null hypothesis that a single

coin tossed n = 100 times is fair is shown in blue in Figure D1.43 The theoretical

distribution of the Pearson Goodness of Fit p-values when testing the null hypothesis,

after 100 tosses, that the coin is fair is shown in red and is constructed as follows:

Let nH and nT denote the number of heads and tails, respectively, after n tosses of

the coin. The test statistic is

Qn =
(nH − n/2)2

n/2
+

(nT − n/2)2

n/2
,

where n/2 is the expected number of each outcome after n tosses. Under the null

hypothesis, Qn is asymptotically distributed chi-square with 1 degree of freedom

(χ2(1)) as n grows large. Let F (x; 1) denote the c.d.f. of the χ2(1) distribution. If q̂n

is the realized value of Qn, then the associated p-value is 1 − F (q̂n; 1). If nH = 45,

for example, then the binomial p-value is .3628 and Pearson p-value is .3173 (since

q̂100 = 1.0). Figure D1 illustrates that the probability of a Pearson p-value of .3173

43Recall that a p-value is the probability of obtaining a test result at least as extreme as the result

actually observed, when the null hypothesis is true. The theoretical c.d.f. of the binomial p-values is

exact: for each possible realized value x of a p-value, the probability of a p-value less than or equal

to x is itself x. This means that the “steps”on the c.d.f. of binomial p-values fall on the 45-degree

line.
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or less is .3682.

Figure D1: Theoretical c.d.f.’s of Binomial and Pearson p-values for H0 : pH = .5.

Both c.d.f.s in Figure D1 approach the U [0, 1] distribution as n grows large, but

both are discrete for finite n.

Suppose next that we have many independent coins and for each coin i we obtain

a Pearson p-value pi after n = 100 tosses. As the number N of coins approaches

infinity, by the Glivenko-Cantelli theorem the empirical distribution of N Pearson

p-values approaches the (discrete) theoretical distribution of Pearson p-values shown

above. The maximal distance between the theoretical c.d.f. of the Pearson p-values

and the c.d.f. of the uniform distribution approaches .0796.44 Thus as N approaches

infinity the maximal distance between the empirical c.d.f. of Pearson p-values and the

uniform c.d.f. approaches .0796, and the KS test statistic approaches K = .0796
√
N .

By Theorem 1, p. 508, of Mood, Boes, and Graybill (1974) the limiting distribution

44The maximum distance is at the first “jump down”of the Pearson c.d.f. on the right hand side.
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of the KS test statistic is

H(x) = 1− 2
∞∑
j=1

(−1)j−1e−2j
2x2 for x > 0.

Hence, H(.0796
√
N) approaches one as N approaches infinity. The null hypothesis

that each of N coins is fair is rejected at any significance level, even though the null

is true.

Suppose next that we have a pair of coins, a “Left”coin and a “Right”coin, and

the coins have probabilities pL(H) and pR(H), respectively, of coming up heads when

tossed. Testing the hypothesis that pL(H) = pR(H) = p(H), after nL tosses of the

left coin and nR tosses of the right coin, is exactly analogous to testing the hypothesis

that piL = piR = pi, i.e., winning probabilities are equalized, in a single point game i,

after niL and n
i
R serves left and right. As in the example above, the Pearson p-value

has a discrete distribution (which depends on the true, but unknown, value of p(H))

under the null hypothesis.45 As the number of pairs of coins approached infinity, the

empirical distribution of Pearson p-values will approach its theoretical distribution.

The KS test will reject the null hypothesis that pL(H) = pR(H) for every pair of

coins in the collection.

The KS test based on the randomized Fisher exact t-values, by contrast, is a valid

test for any number N of coins and tosses n (or point games and serves). This follows

since, under the relevant null hypothesis —the coins are fair or winning probabilities

are equal for serves in each direction —the randomized Fisher exact t-values are exactly

and continuously distributed U [0, 1], as established at beginning of this appendix. As

N grows large, the empirical c.d.f. approaches the U [0, 1] distribution.

In both examples above, the collections considered were homogeneous under the

null: in the first example, each coin in the collection was fair, while in the second

example each pair of coins had the same probability p(H) of heads. In the Hawk-

Eye data, the point games are heterogenous, with pi varying across i, and hence the

theoretical distribution of the Pearson p-value will vary with i as well. Nonetheless,

there is no reason to expect under the null hypothesis piL = piR ∀i that the empirical
distribution of Pearson p-values will approach the U [0, 1] distribution as the number

of point games grows large.

The Monte-Carlo simulations reported in Appendix C study the behavior of the

KS test when point games are heterogenous, with winning probabilities that match

45See Section 4 (subsection on Comparing Tests) for a description of the Pearson test.
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those of the Hawk-Eye data. The results reported there show that when there are 7000

point games, the KS test based on the Pearson p-values rejects the null hypothesis

that winning probabilities are equalized for serves in different directions, even when

the null is true.

12 Appendix E: Ball Bounces

Figure E1 below shows actual and imputed ball bounces for male second serves from

the deuce court.

Figure E1: Ball Bounces for Deuce Court Second Serves by Men
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Figure E2: Ball Bounces for Ad Court First Serves by Men

Figure E3: Ball Bounces for Ad Court Second Serves by Men

Ball bounces for first and second serves by women are below.
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Figure E4: Ball Bounces for Deuce Court First Serves by Women

Figure E5: Ball Bounces for Deuce Court Second Serves by Women
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Figure E6: Ball Bounces for Ad Court First Serves by Women

Figure E7: Ball Bounces for Ad Court Second Serves by Women
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