
Optimal Delegation with Information Manipulation

Yichuan Lou∗

Feb 28, 2021

Abstract

A principal delegates a decision to an agent, who has the capacity to process the relevant

information. The principal cannot process information herself, but can jointly control

the actions and the information available to the agent. I provide sufficient conditions

under which the optimal mechanism (i) attains a perfect alignment of incentives—

subject to the constraints on discretion and information, the agent plays exactly as

the principal would want him to; and (ii) belongs to a simple class of delegation and

disclosure rules, called monotone partitional rules, which specify a finite set of allowable

actions from which the agent chooses his preferred one, and moreover, partition the

state space into finite intervals so that the agent only learns to which interval the

true state belongs. I then turn to the uniform-quadratic case which permits an explicit

characterization of optimal mechanisms and clear comparative statics. Finally, I discuss

two applications: the regulation of a monopolist, and the self-control of a dynamically

inconsistent individual.
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1 Introduction

Consider a principal who grants decision-making authority to an agent who is potentially

better informed but has different objectives. Previous work has explored two ways for the

principal to influence the agent’s behavior in order to improve decision-making in this envi-

ronment. The first way is by specifying a permissible set of actions (a delegation set) from

which the agent may choose, which has been analyzed as a delegation problem (Holmström,

1977, 1984). The second way is by limiting the access to information to the agent, which

has been analyzed as a persuasion problem (Kamenica and Gentzkow, 2011). In this paper,

I combine these two ways of influencing behavior and ask how to simultaneously constrain

discretion and information of the agent. The main result identifies a strong form of incentive

compatibility: the principal’s and the agent’s incentives are fully aligned under the optimal

joint restriction on discretion and information. In addition, the optimal mechanism belongs

to a simple class of delegation and disclosure rules, called monotone partitional rules, that

feature a finite set of actions and a monotone partitional information structure. Conse-

quently, the agent only learns which partition element the true state lies in and then chooses

from the delegation set an action that best serves his interests.

There are many environments that share the modeling features described above. For

instance, a monopolist may collect and use consumer behavior data to segment the market

and to make targeted offers. To prevent excessive discrimination and to protect consumer

welfare, a regulator can adopt policy tools such as price control which limits the prices that

can be charged, and data protection which limits the use of consumer data for discrimi-

nation. Similarly, in jury trial procedures, judges enforce detailed rules on what evidence

can and cannot be presented to jurors, and additionally jurors are delegated a particular

set of decisions they can make (e.g., the set of charges they can decide on). Finally, in the

context of congressional oversight, congressional committees have the power only to inquire

into matters and to make decisions within the scope of the authority delegated to them by
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their parent bodies. In all these settings, a principal delegates a permissible set of actions to

an agent and additionally designs what information the agent has access to. The purpose of

this paper is to provide an in-depth analysis for the joint control of actions and information.

I develop a stylized model in which a principal (she) relies on an agent (he) to make an

informed decision and cannot use contingent transfers.1 I begin my analysis by assuming

that the principal can jointly commit to a delegation set and an information structure. The

delegation set is a set of permissible actions from which the agent can freely choose. The

information structure is modeled as a Blackwell experiment similar to that of Kamenica and

Gentzkow (2011): a probability distribution over signal realizations as a function of the state

of nature. After privately observing a signal realization, the agent then takes an action from

the delegation set. I focus on the following question: what is an optimal mechanism as a

combination of delegation and disclosure rules from the principal’s perspective?

I begin by establishing two important results that greatly simplify the analysis. First,

I show that the optimal mechanism is characterized by an alignment principle—subject to

the constraints on discretion and information, the agent plays as if he shared the principal’s

preferences. More specifically, if the signal realization were publicly observed, the two par-

ties would choose the same action from the delegation set. In fact, they may disagree about

their most preferred actions, but given the well-adjusted noise of the signal and the moderate

sparsity of the delegation set, both agree upon how to play optimally. An immediate impli-

cation is that the optimal delegation set must be finite, as the alignment property requires

the implemented actions to be isolated far away from each other (relative to the preference

divergence of the two parties).

Second, I show that the optimal mechanism features a finite delegation set and a mono-

tone partitional information structure. Although the principal’s choice of signals is not

restricted a priori, in the optimal mechanism she partitions the state space into a finite dis-

joint union of intervals and pools each interval into a single signal realization. The principal,

1There are many situations in practice, like those described above, that transfers are infeasible.
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in effect, introduces noise into the signal by letting the agent observe only which partition

element the true state actually lies in. This feature greatly simplifies the characterization of

the optimal mechanism by allowing me to focus on a finite-dimensional optimization problem

over the cutoffs of intervals and the associated delegated actions.

Then, I explicitly characterize optimal mechanisms in a leading case of the model—the so-

called uniform-quadratic case. This allows me to explicitly solve for the optimal mechanism

and in turn to perform a comparative analysis of the optimal discretion and information

bestowed on the agent. I show that the principal would always provide more discretion and

more information to a less-biased agent. Also, the principal necessarily obtains higher welfare

if the agent is less biased. In Section 6, I further investigate to what extent the comparative

statics results that hold in the leading case can be generalized beyond the uniform-quadratic

specification.

I next apply my results to two specific economic settings. First, I study the regulation of a

monopolist who engages in both quality and price discrimination. In this context, a welfare-

maximizing regulator jointly restricts prices (i.e., price control) and consumer information

(i.e., data protection) available to a profit-maximizing monopolist. The information about

consumer characteristics can be used to offer different quality levels and prices to different

segments of the market. I provide conditions under which the optimal joint regulatory policy

takes the form of a finite set of prices and a finite market segmentation. Specifically, the

aggregate market is divided into finite segments in such a way that in each segment, the

monopolist freely sets a quality level and chooses a price (from the delegated set of prices)

so as to maximize his profits. The optimality of finite market segmentations implies that

consumer privacy should be moderately preserved.

Next, I apply my results to a self-control problem. In the primary environment I study,

the principal and the agent represent distinct individuals with conflict of interests. However,

my model also captures a behavioral setup in which the principal and the agent represent

the same individual at two points in time, who overweighs instantaneous rewards relative
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to future payoffs (e.g., hyperbolic discounting). As is well known, sophisticated, yet time-

inconsistent individuals value commitment power (Strotz, 1995). Within a consumption-

externality environment (Carrillo and Mariotti, 2000), I suppose that the current self pos-

sesses not only hard commitment power in that she can restrict the consumption choices

available to the future self, but also soft commitment power in that she can restrict informa-

tion (about the extent of the externality) available to the future self. I establish that people

may choose to tie their hands by reducing the set of available consumption choices and to

remain partially ignorant about the magnitude of the externality.

2 Related Literature

Since the paper studies the joint design of delegation and disclosure rules, it brings together

the literatures on optimal delegation and Bayesian persuasion. The delegation literature

begins with Holmström (1977, 1984), who considers a setting in which a principal faces a

privately informed but biased agent and in which contingent transfers are infeasible. The

agent is then given discretion over actions (in the form of a set of permissible actions)

because his private information is valuable to the principal; the principal limits the degree

of discretion because of preference misalignment. A key goal in this literature has been to

identify sufficient conditions under which the principal optimally defines the permissible set

as an interval. Melumad and Shibano (1991) solve the optimal delegation problem with

quadratic preferences and a uniform distribution for the state. Following that, Martimort

and Semenov (2006), Alonso and Matouschek (2008), and Amador and Bagwell (2013) extend

the analysis by allowing for more general preferences and distributions, and provide optimal

conditions for interval delegation. Most of these studies consider the agent’s information

as exogenous, whereas my work contributes by considering the information structure as an

endogenous component. I am able to explore how the qualitative features of the optimal

delegation set are altered in the presence of information manipulation.
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Also, my work is related to the literature on Bayesian persuasion (Rayo and Segal 2010;

Kamenica and Gentzkow 2011), where a sender chooses a signal and a receiver takes an

action after observing a realization from this signal. The choice of a signal is isomorphic

to my modeling of a disclosure rule, although the interpretation is different: my principal

controls the information but does not observe the realization. Within this literature, several

papers have also identified sufficient conditions for the optimality of monotone partitional

signals in various settings; see, for example, Kolotilin (2018), Dworczak and Martini (2019),

Ivanov (2021), and Mensch (2021).

The behavioral formulation captured by my model relates this paper to the literature

on optimal provision of commitment devices for individuals with low self-control due to

time-inconsistent preferences. Amador, Werning, and Angeletos (2006) study the problem

of commitment through the restrictions on actions. In the context of a consumption-savings

problem, they find that imposing a minimum level of savings (i.e., interval delegation) is

always a feature of the optimal solution. On the other hand, Carrillo and Mariotti (2000)

and Bénabou and Tirole (2002) study the problem of commitment through the manipulation

of information. Both papers show that, in the presence of time inconsistency, Blackwell

garbling of future self’s information may increase the current self’s payoff. My paper thus

provides the first study of optimal joint provision of hard and soft commitment devices in

self-control problems.

3 Model

3.1 Environment

There are two parties in the model on which I focus: a principal (she) and an agent (he).

The principal has a payoff function uP (y, θ) = θy − CP (y), while the agent has a payoff
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function uA(y, θ) = θy − CA(y).
2 The value of y represents an action, and the value of θ

represents a state.

I assume that θ has an absolutely continuous distribution µ0 with bounded support

Θ ≡ [θ, θ] ⊂ R. The action y is chosen from a large compact interval Y ⊂ R. For the

remaining of the paper, I impose the following conditions on the primitives:

Assumption 1. The following hold:

(i) Both the functions CP : Y → R and CA : Y → R are continuously differentiable and

strictly convex in y;

(ii) The functions cP ≡ C ′
P and cA ≡ C ′

A satisfy cP > cA.

Condition (i) in Assumption 1 ensures that the principal’s preferred action yP (θ) ≡ c−1
P (θ)

and the agent’s preferred action yA(θ) ≡ c−1
A (θ) are both continuous and strictly increasing

in θ ∈ Θ. Condition (ii) in Assumption 1 guarantees that the agent is always biased towards

higher actions relative to the principal. Note that for each θ ∈ Θ, the principal’s and the

agent’s payoff functions, uP (·, θ) and uA(·, θ), are single-peaked, respectively, around yP (θ)

and yA(θ).

As I focus on decision-making with incomplete information, it is useful to identify the

players’ preferences over actions when the state is unknown. Let µ be a posterior belief and

m = Eµ[θ] be the associated posterior mean. Since uP and uA are linear in the state θ,

both players’ expected payoffs depend on µ only through m. With slight abuse of notation,

I will write uP (y,m) = my − CP (y) and uA(y,m) = my − CA(y) as the principal’s and the

agent’s expected payoffs given y and m, respectively. Thus, given the posterior mean m, the

principal’s preferred action is yP (m) = c−1
P (m) and the agent’s is yA(m) = c−1

A (m).

An interpretation. The model can be interpreted as follows. The two parties equally

2In fact, one can extend the analysis to more general payoff functions. Suppose that uP (y, θ) = B(θ)y −
CP (y)+DP (θ) and uA(y, θ) = B(θ)y−CA(y)+DA(θ), where B(·) is strictly increasing. First, I can discard
DP (θ) and DA(θ) without loss of generality because these two terms do not enter into the players’ strategic
considerations. Moreover, I can simply redefine the state as ω ≡ B(θ).
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share the benefits generated by an action y for any given state θ, which is equal to θy. The

action y, however, renders different levels of cost to the principal and the agent: CP (y) and

CA(y), respectively. Moreover, the agent incurs a lower marginal cost from higher actions,

i.e., cA(y) < cP (y), and is thus biased toward actions that are too high from the principal’s

perspective.

Two specifications. The set of preferences described above entails two particular specifica-

tions. The first specification is the case of quadratic preferences with a constant bias, which

is widely-studied in the literature on cheap talk and delegation (for example, Crawford and

Sobel 1982; Melumad and Shibano 1991; Alonso and Matouschek 2008). In this specification,

the principal’s payoff is − (y−θ)2

2
and the agent’s payoff is − (y−θ−b)2

2
, where y represents the

action taken by the agent and b > 0 represents the agent’s positive bias. This formulation

is equivalent to letting uP (y, θ) = θy − 1
2
y2 with yP (θ) = θ, and uA(y, θ) = θy − (1

2
y2 − by)

with yA(θ) = θ+ b, and is therefore a special case. I explicitly solve for optimal mechanisms

in this specification in Section 5.

The second specification considers the temptation and self-control problem of consump-

tion with time-inconsistent preferences due to hyperbolic discounting, analyzed by Carrillo

and Mariotti (2000). There is an individual with a horizon of three periods t = 0, 1, 2.

At period t = 1, before taking a consumption decision x which generates an instantaneous

utility u(x), self -1 (the agent) learns about the probability ω of a negative externality e(x)

on the welfare of self -2. The welfare for self -1 from periods t = 1, 2 with externality prob-

ability ω is then u(x) − βωe(x), where 0 < β ≤ 1. In contrast, the welfare for self -0 (the

principal) from periods t = 1, 2 is u(x) − ωe(x). The discounting parameter β reflects the

salience of the present.3 The formulation is equivalent to uP (y, θ) = θy − e(u−1(y)) and

uA(y, θ) = θy − βe(u−1(y)) by setting θ = 1
ω
and y = u(x), and hence is a special case as

3This setup represents a three-period version of quasi-hyperbolic discounting where benefits precede the
cost, generating an intrapersonal conflict between selves. Examples include smoking, drinking, spending
freely, etc., in which individuals tend to excessively satiate immediate gratification at the expense of future
welfare.
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well. I consider this specification in greater detail in Section 8.

3.2 The game

Prior to the realization of θ ∈ Θ, the principal can jointly commit herself to a delegation

set and an information structure. The delegation set is denoted by D, which can be either

countable, finite or infinite, or uncountable. The information structure σ consists of a signal

realization space S and a measurable mapping σ : θ → ∆(S) that assigns to each state θ a

probability distribution dσ(·|θ) over S. The cost of every information structure is identical

and set equal to zero.

The timeline of the game is as follows:

(i) The principal publicly selects a delegation set D ⊂ Y and an information structure σ.

(ii) A pair (θ, s) is drawn according to the distributions µ0 and σ, respectively.

(iii) The agent privately observes s and chooses an action y ∈ D.

3.3 Obedient recommendation mechanisms

Fix a delegation set D. In general, the principal could follow any rule for generating the

agent’s private information. However, a revelation principle-type argument establishes that

I can restrict attention to information structures in which signal realizations are action rec-

ommendations that will be obeyed by the agent. It is therefore immediate that, instead of

choosing a delegation D and an information structure σ separately, the principal can without

loss of generality choose an obedient recommendation mechanism M, which consists of a del-

egation set D ⊂ Y , and an action recommendation function (also an information structure)

σ : Θ → ∆(D), and moreover, satisfies the obedience constraint (OB). In particular, OB is

the requirement that when the agent is recommended to take action y ∈ D according to σ,
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he would follow his recommendation y rather than choose any other available action ŷ ∈ D.4

I describe the condition formally as follows.

Given a recommendation mechanism M = (D, σ) and the prior belief µ0, every action

recommendation y ∈ D induces a posterior belief µσ
y and the associated posterior mean

mσ
y = Eµσ

y
[θ]. A recommendation mechanism M = (D, σ) is said to be obedient if

uA(y,m
σ
y ) ≥ uA(ŷ, m

σ
y ) ∀y, ŷ ∈ D.

The principal’s problem is thus

Maximize

ˆ
Θ

ˆ
Y

uP (y, θ) dσ(y|θ) dµ0(θ)

among all obedient recommendation mechanisms. M is said to be optimal if it solves the

above problem.

All proofs are relegated to the Appendix.

3.4 Remarks

A key feature of my model is that the principal fully controls the quality of the agent’s private

information without learning its content. One might wonder why the principal relies on a

biased agent to process the information and to make a biased choice subsequently. Why can’t

the principal simply assigns herself an information structure that informs herself perfectly

and then chooses her first-best action? After all, there is no cost to adopt a particular

information structure. To address this question, I offer three scenarios in which a principal

may not be able to become informed herself. She therefore relies on some agent to gather,

process, and use the information.

In the first scenario, the principal indeed has unlimited access to information but lacks

4The notion of obedience here is weaker than that in Bergemann and Morris (2016), which imposes no
action restrictions, and therefore the agent is free to choose any action.
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the time and resources to acquire information herself. Such a scenario fits in well with the

application to organizations in which top management has formal authority over data access

and usage, but is often too busy to have the time to process every piece of information.

Top management thus relies on lower management to analyze data and to make informed

decisions.

In the second scenario, the principal has unlimited access to information as well but faces

technological constraints to observe the realization of information. In the earlier temptation

and self-control problem of consumption, the current self can self-restrict information gath-

ering about the unknown consumption externality, but cannot observe it herself because it

is realized in the future.

In the third scenario, the principal not only has no access to information but also has no

control over what information may be available to the agent. Instead, the principal has the

ability to limit the degree of information the agent’s action can effectively condition on. In

the example of regulating a monopolist, considered in Section 7, even the regulator does not

directly possess consumer data, she can impose limits, by law, on the monopolist’s use of

consumer data for discrimination. As a result, the monopolist might obtain excessive infor-

mation on consumers himself, but by law, he is prohibited from using it for discriminatory

offers.

4 Characterizing Optimal Mechanisms

In this section, I derive a general structure of optimal mechanisms and use it to simplify the

principal’s problem into a finite variable optimization problem. In particular, Section 4.1

states that local OB is sufficient to imply full OB. Section 4.2 provides a sufficient condition

under which the principal finds it optimal to fully align the agent’s incentives. I then use

this insight to prove the optimality of a monotone partition in Section 4.3.

For the clarity of analysis, I assume for now that the delegation set D is finite and consists
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of N actions. I label it by {y1, . . . , yN} ⊆ Y with yi < yi+1. Later I will show that this

finiteness restriction can be dropped without loss of generality. A mechanism M = (D, σ)

is called finite if D is finite.

4.1 Preliminary observations

Recall that the agent’s interim preference over actions depends solely on the posterior mean of

the state. Therefore, the single-peakedness property of uA(y, θ) with respect to y is inherited

by the interim preference. Taking advantage of this observation, I can show (Lemma 1 below)

that local OB is sufficient to establish full OB.

Lemma 1. Let M = (D, σ) be a recommendation mechanism that implements N actions.

Then local OB is sufficient to imply full OB.

Lemma 2 (optimality of compromises). Let M = (D, σ) be an optimal obedient recommen-

dation mechanism that implements N actions. Then it must satisfy

yP (mi) ≤ yi ≤ yA(mi) ∀i = 1, . . . , N.

Lemma 2 says that the implemented action in the optimal mechanism is always a com-

promise—it lies between the principal’s preferred action and that of the agent. The logic is

roughly as follows. Suppose that an action y is implemented outside the compromise region

[yP (m), yA(m)] for a given posterior mean m. Then a shift of action y in the direction closer

to [yP (m), yA(m)] will strictly benefit the principal without violating OB. An implication

of Lemma 2 is that the agent’s local downward OB must be slack. This is because yi−1 is

farther to the left of the peak yA(mi) than yi. Then single-peakedness of uA with respect to

y implies that action yi is strictly preferred by type yi to action yi−1. As a consequence, the

principal does not need to consider such downward deviation by the agent.

This set of results from Lemma 1 and Lemma 2 allows me to focus on the relaxed program

with only the local upward OB:
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max
(D,σ)

ˆ
Θ

[
N∑
i=1

uP (yi, θ)σ(yi|θ)

]
dµ0(θ)

subject to

uA(yi,mi) ≥ uA(yi+1,mi) ∀i = 1, . . . , (N − 1). (OBi,i+1)

An equivalent, yet convenient, way of writing (OBi,i+1) is

mi ≤
CA(yi+1)− CA(yi)

yi+1 − yi
∀i = 1, . . . , (N − 1),

which says that the agent’s marginal benefit of higher actions is smaller than his average

rate of change of cost from implementing action yi to action yi+1. Hence a type yi agent has

no incentive to deviate to take action yi+1.

4.2 Alignment principle

In this subsection, I introduce an incentive compatibility notion of aligned mechanisms. In

an aligned mechanism, all relevant agent types play exactly as if they were maximizing the

principal’s payoff. An immediate implication is that the principal would also find it optimal

to be obedient if she observed the mechanism’s recommendation. The formal definition of

aligned mechanisms is as follows.

Definition 1. An obedient recommendation mechanism M = (D, σ) is called aligned if, for

any type y ∈ D,

y ∈ argmax
ŷ∈D

uP (ŷ, my) ∩ argmax
ŷ∈D

uA(ŷ, my).
5

In an aligned mechanism, the players’ incentives are fully aligned. Given the optimal

action restriction together with the information restriction, there is no way to improve the

decision-making procedure—a reallocation of decision authority from the agent back to the

5The notion of aligned mechanism in this paper is similar to that in Frankel (2014), who considers the
scenario where a principal delegates multiple decisions to an agent.
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principal would not affect actions that are implemented.

Due to the single-crossing property of preferences and the agent’s upward bias, the fol-

lowing result ensures that only local downward OB is effectively needed for the principal to

be obedient.

Lemma 3. Let M = (D, σ) be an obedient recommendation mechanism that implements N

actions. Then it is aligned if and only if

uP (yi,mi) ≥ uP (yi−1,mi) ∀i = 2, . . . , N. (4.1)

Likewise, (4.1) can be equivalently written as

mi ≥
CP (yi)− CP (yi−1)

yi − yi−1

∀i = 2, . . . , N. (4.2)

Let ∆CP
(y, ŷ) ≡ CP (y)−CP (ŷ)

y−ŷ
denote the principal’s average rate of change of cost from action

ŷ to y. From the principal’s perspective, (4.2) thus requires that the marginal decrease in

benefit is greater than the marginal decrease in cost from action yi to yi−1.

Let CDiff ≡ CP−CA denote the difference in costs. The next assumption provide sufficient

conditions under which optimal mechanism is aligned.

Assumption 2. The following hold:

(i) The agent’s cost function CA satisfies C ′′′
A ≤ 0;

(ii) The cost difference function CDiff satisfies C ′′
Diff ≥ 0.

Condition (i) in Assumption 2 ensures that the agent’s preferred action yA(θ) = c−1
A (θ) is

convex for all θ ∈ [θ, θ]. Condition (ii) in Assumption 2 together with C ′
Diff = C ′

P − C ′
A > 0

implies that the cost difference between Principal and Agent increases faster for higher

realizations of the state.

The following is a sufficient result:
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Proposition 1. Let M = (D, σ) be an optimal obedient recommendation mechanism that

recommends N actions. M is aligned if Assumption 2 holds.

Proposition 1 indicates that it is always optimal for the principal to design a mechanism

that completely align the agent’s incentives with her own and hence avoid any interim con-

flict. The players may disagree about their preferred actions, but given the informational

and discretionary constraints of the mechanism they agree on how to play optimally.

The optimality of aligned mechanisms turns out to be depending on the curvature of

players’ preferred actions. To see the intuition, suppose by contradiction that the mechanism

is not aligned. By (4.2) there must exist an action recommendation yi conditional on which

the principal strictly prefers action yi−1 over yi. In this case, the principal may wish to

coarsen the original mechanism by collapsing the two recommendations yi−1 and yi into

a single recommendation ŷ which takes a moderately small value (hence desirable to the

principal). In turn, the modification reduces the informativeness of the mechanism and

consequently the actions implemented become less responsive to the state, but at the same

time, it mitigates the agent’s incentive to take undesirable actions (specifically in this case,

yi) and hence improves efficiency in the allocation of actions from the principal’s perspective.

By requiring C ′′′
A ≤ 0 and C ′′

Diff ≥ 0, I ensure that the agent’s preferred action yA(θ) = c−1
A (θ)

is convex in θ, and that Agent is less biased for lower states. As an implication, the agent’s

incentive to deviate to higher actions (specifically, yi+1) will be greatly mitigated when the

posterior mean drops from mi down to m̂. By combining the two recommendations yi−1 and

yi, the principal is thus able to implement an action ŷ small enough without violating OB,

which delivers a welfare improvement for the principal.

Assumption 2 will be maintained for the remainder of the paper.

4.3 Monotone partitional mechanism

In practice, information disclosure often takes the form of monotone partitional signals—

pooling, if present, is only between adjacent states. For example, schools adopt grading
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policies that contain only letter grades. Financial rating agencies also classify assets into

different categories according to their riskiness.

Formally, a recommendation mechanism M = (D, σ) is called monotone partitional if

the state space Θ = [θ, θ] is partitioned into a finite number N of intervals {(θi−1, θi]}Ni=1

with θ0 = θ and θN = θ, and the agent observes only the interval that contains the realized

state θ.

One apparent benefit of a monotone partitional mechanism is that it can be identified

by two simple components: (i) the cutoffs 0 = θ0 < θ1 < · · · < θN−1 < θN = 1; (ii)

the delegated actions y1 < · · · < yN . For a given realized state θ, a monotone partitional

mechanism M = {(θi)Ni=1, (yi)
N
i=1} recommends the agent to take action yi with probability

1 if θ ∈ (θi−1, θi].

The following two theorems play an important role in my analysis. They establish that

it is without loss of generality in focusing on mechanisms that partition the state space

into a finite set of intervals and recommend different actions in different intervals. These

features greatly simplify the characterization of the optimal mechanism by reducing it to a

finite dimensional optimization problem over the cutoffs of intervals and the corresponding

actions.

Theorem 1. For any obedient recommendation mechanism that implements N actions, there

exists another obedient recommendation mechanism M = (D, σ), such that M is a monotone

partition and entails a weakly higher payoff for the principal.

The result that the optimal mechanism (in the class of finite mechanisms) is a monotone

partition stems from the fact that both parties in my setting prefers to take higher actions

for higher realizations of the state of nature. Since the two parties’ incentives are fully

aligned in the optimal mechanism, intuitively there is no reason for the principal to induce

“mismatched pairs” of states and actions.

I have so far restricted the mechanism to be finite. Below, I augment the space of

mechanisms to allow for information structures with an arbitrary number of realizations, and
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show that an optimal mechanism exists and it is finite. Using this together with Theorem

1, I can now restrict attention to the class of finite monotone parititional mechanisms.

Theorem 2. An optimal obedient recommendation mechanism exists and it is finite.

The main idea of the proof follows from the approximation argument in Proposition 1 of

Bergemann and Pesendorfer (2007), that the principal’s payoff from any given mechanism

with an arbitrary number of delegated actions can be approximated arbitrary well by a finite

mechanism. In fact, it can be shown that the principal’s set of payoffs generated by finite

mechanisms is dense in the set of payoffs generated by all arbitrary mechanisms.
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5 Uniform-Quadratic Case

The results in the previous section tell us a great deal about optimal mechanisms but do

not fully describe them. In this section I first provide an explicit characterization of optimal

mechanisms for the case of quadratic preferences mentioned in Section 3.1, under a further

assumption that µ0 is uniform on Θ = [0, 1]. I then use this result, together with the bias

parameter b, to discuss comparative statics on the agent’s discretion and information in

Section 5.2. Finally I conclude this section by analyzing the welfare effects of information

manipulation on this delegation problem in Section 5.3.

5.1 Optimal partitional structure

I now turn to the study of optimal mechanisms for the uniform-quadratic case. As noted in

Section 3.1, the quadratic formulation can be equivalently expressed as uP (y, θ) = θy − 1
2
y2

with yP (θ) = θ, and uA(y, θ) = θy − (1
2
y2 − by) with yA(θ) = θ + b. Moreover, since

CA(y) =
1
2
y2 − by and Cdiff (y) = by ensure that C ′′′

A = 0 and C ′′
Diff = 0, Assumption 2 holds

here and therefore Proposition 1 and Theorem 1 apply.

The following property will play an important role in the analysis.

Definition 2. Amonotone partitional mechanismM = {(θi)Ni=1, (yi)
N
i=1} features alternating

symmetry if

θi − θi−1 = θj − θj−1 and yi − θi−1 = yj − θj−1

for both odd (even) i, j ∈ {1, 2, . . . , N}.

An illustration of this property is illustrated in Figure 1. It can be seen that all odd-

numbered (even-numbered) elements are essentially “symmetric”, in the sense that they have

the same interval length, and the respective actions are located at the same positions relative

to the associated intervals. The next lemma shows that the property indeed holds in the

uniform-quadratic case.
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θi−1 θi θi+1 θi+2yi yi+2

Figure 1: Alternating symmetry.

Lemma 4. In the uniform quadratic specification, the optimal mechanism satisfies the prop-

erty of alternating symmetry.

Lemma 4 significantly simplifies the characterization of the optimal mechanism, because

it allows me to restrict attention to the first two elements; the rest of elements are merely

“replications” of the first two. Moreover, the alternating symmetry structure also helps

identify a finite upper bound, denoted N(b), on the size of an aligned monotone partitional

mechanism. To see it, combining (4.1) and (4.2), and rearranging terms yields

yi+1 − yi−1 ≥ 2b ∀i = 2, . . . , (N − 1). (5.1)

Together, (5.1) and the property of alternating symmetry imply N(b) ≡
⌊

1
2b

⌋
+
⌈

1
2b

⌉
.6

I am now ready to give an explicit characterization of optimal mechanisms in two steps.

First, building on the previous observation that one only needs to focus on the first two

elements, I obtain the suboptimal mechanism {(θi)Ni=1, (yi)
N
i=1} for each size from one through

N ≤ N(b) by solving a simple linear program.7 Second, the size of the optimal mechanism,

denoted N∗(b), can be determined by simply comparing the principal’s expected payoffs

under the resulting suboptimal mechanisms for each size N ≤ N(b). The explicit expression

of the optimal mechanism is summarized by the following proposition.

Proposition 2. Suppose that M = {(θi)Ni=1, (yi)
N
i=1} is an optimal obedient recommendation

mechanism.

6⌊x⌋ (⌈x⌉) is the largest (smallest) integer that is smaller (greater) than or equal to x.
7See Appendix.
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(1) If N is odd, then

θi =


(i−1)+(N−i)θ1

N−1
, for i odd,

i(1−θ1)
N−1

, for i even,

yi =


b+ (i−2)+(N−i+1)θ1

N−1
, for i odd,

b+ (i−1)−(i−1)θ1
N−1

, for i even,

with θ1 =
1−(N2−1)b+

√
(N+1)2(N−1)2b2+1

N+1
.

(2) If N is even, then

θi =
i

N
, yi = b+

i− 1

N
∀i = 1, . . . , N.

Figure 2 displays the sizes N∗(b) of optimal mechanisms together with the corresponding

upper bounds N(b) for different values of b > 0. The figure indicates that the principal

does not always prefer the partition with the largest possible number of elements, which,

as previously noted in the Introduction, reflects the principal’s trade-off between amount of

information and efficiency of action allocations. The reason behind is that the mechanism

with the highest number of elements, in spite of the most amount of information it generates

in the first place, can result in the distortion of decision-making at the later stage. Indeed,

the principal has to compromise between the two conflicting objectives of providing the

agent with precise information and implementing actions sufficiently close to her optimal

ones. It turns out that this trade-off, as illustrated in Figure 2, is resolved in favor of using

mechanisms with intermediate sizes of partitions.
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Figure 2: Optimal size of partitions
and upper bounds.
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Figure 3: Informativeness of optimal
mechanisms.

5.2 Comparative statics

In search for the optimal mechanism, the principal’s problem is twofold: how much infor-

mation the agent should possess, and how much discretion the agent should have. In this

subsection, I examine comparative statics on these two features with respect to the diver-

gence of the principal’s and the sender’s preferences.

Comparative statics on information. I measure informativeness as the expected residual

variance of the state: E[variance(θ|µ)]; a lower value of E[variance(θ|µ)] implies more precise

posterior beliefs in expectation. Formally, a mechanism M = {(θi)Ni=1, (yi)
N
i=1} is said to be

more informative than another M̂ = {(θ̂i)N̂i=1, (ŷi)
N̂
i=1} if

N∑
i=1

ˆ θi

θi−1

(θ −mi)
2 dθ ≤

N̂∑
i=1

ˆ θ̂i

θ̂i−1

(θ − m̂i)
2 dθ.

This measure of informativeness is a natural one given the partitional information structure

and the uniform prior assumption, because the posterior distribution of the state now is fully

characterized by its mean and variance.
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Figure 3 depicts a monotonic relationship between the agent’s constant bias b and the

informativeness of the corresponding optimal mechanism. In particular, it shows that a

principal prefers to provide a greater amount of information if the agent’s bias parameter b is

smaller. This result might seem obvious in the uniform-quadratic specification. However, the

impact of preference divergence on amount of information can be ambiguous in the general

environment. On the one hand, the expected residual variance might not be an appropriate

measure of informativeness when the prior distribution is not uniform. On the other hand,

when preferences are less divergent the principal might also provide less information and still

be able to steer the agent’s incentives toward her own favor.

Comparative statics on discretion. I measure discretion by the cardinality of delegation

sets. Formally, a mechanism M = {(θi)Ni=1, (yi)
N
i=1} is said to grant more discretion than

another mechanism M̂ = {(θ̂i)N̂i=1, (ŷi)
N̂
i=1} if N > N̂ . Figure 2 illustrates the comparative

statics on the agent’s discretion: there is less discretion when the bias parameter b is bigger.

This result confirms the standard intuition that an agent gets more discretion the more

congruent he is with the principal.

5.3 Value of Information Manipulation

What is the value of limiting the agent’s information in delegation problems? In this subsec-

tion I address this question and compare the players’ payoffs in optimal delegation with and

without information manipulation. When there is no information manipulation, the agent is

assumed to have complete information about the state of nature. In this case, the principal

simply faces a perfectly-informed agent.

Figure 4 displays the payoffs to the principal under optimal delegation with information

manipulation compared to that without information manipulation. It is obvious that the

payoffs are higher with information manipulation, because a full information structure can

be viewed as a special informational policy under information manipulation. The value of
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keeping the agent partially informed simply reflects the aforementioned trade-off between

quality of information and efficiency of action allocations.

It is interesting to note that the principal’s gain from information manipulation is non-

monotonic in the degree of bias. Clearly, for b small, the principal’s payoff is close to

her first-best level and the gains from information manipulation are small. As b increases,

distorted action allocations become more severe and there is more scope for information

manipulation to fix this incentive problem by aligning preferences. However, as b becomes

sufficiently large, resorting to information manipulation improves this situation, but the cost

of aligning incentives through limited information also increases. When b ≥ 1
2
, the ability

of limiting information is of no value whatsoever as the principal then optimally takes an

uninformed action.

Figure 5, on the other hand, compares the payoffs to the agent in the two cases. It illus-

trates that in general the agent does not always achieve more information rents by possessing

more private information. In fact, there are some regions of sufficiently large bias b in which

an imperfectly-informed agent (possessing principal-optimal partitional information) is bet-

ter off than a perfectly-informed agent.8 As an implication, ignorance may generate strategic

benefits for the agent even though private information guarantees the agent a positive rent

under the optimal delegation scheme. Intuitively, when the agent’s bias becomes sufficiently

large (as long as b ≤ 1
2
), by restricting his information in a manner that increases the distance

between posterior means, it is possible to reduce the agent’s incentive to take higher actions

for intermediate types, and thus increase the principal’s willingness to delegate more high

actions.

To illustrate, consider the case where b ∈ (2
5
, 1
2
). It follows from Proposition 2 that, with

information manipulation, the principal optimally selects a binary partitional information

structure with cutoffs {1
2
, 1}, and a delegation set of {b, b + 1

2
}. The reader can easily

verify that the agent’s expected payoff is 1
2
(b2 + b + 1

4
). In contrast, without information

8This phenomenon is also confirmed by Roesler and Szentes (2017) in the setting of static monopoly
pricing.
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manipulation, the principal’s optimal delegation set takes the form of an interval: [b, 1− b],9

which delivers expected payoff 1
2
(−8

3
b3 + b2 + b + 1

3
) to the agent. These imply, as Figure

5 shows, that the agent strictly prefers the binary partitional information structure under

which the principal offers a delegation set including a sufficiently high action b + 1
2
, which

allows the agent to respond to higher states.
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Figure 4: Principal’s payoffs.
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Figure 5: Agent’s payoffs.

9In the uniform-quadratic case with perfectly-informed agent, the optimal delegation set takes the form
D∗ = [b, 1 − b] if b ≤ 1

2 and D∗ = { 1
2} if b > 1

2 . This characterization was first given by Melumad and
Shibano (1991).
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6 General Comparative Statics

It is natural to ask at this point to what extent the comparative statics results that hold in

the uniform-quadratic case can be generalized. This section establishes that the comparative

statics on discretion and on the principal’s payoffs still carry over to the general model.

To do so, I introduce the concept of an agent A with CA being uniformly less-biased than

another agent Ã with CÃ if cA(y) ≥ cÃ(y) for each y ∈ Y . Recall that yA(θ) = c−1
A (θ) and

yÃ(θ) = c−1

Ã
(θ). It is straightforward to see that yÃ(θ) ≥ yA(θ) > yP (θ); namely, yA(·) lies

between yÃ(·) and yP (·). Note that this notion of preference divergence encompasses that of

the uniform-quadratic case, which is captured by a single parameter b.

I am now ready to generalize the comparative statics results on the agent’s discretion

and the principal’s payoffs.

Theorem 3. The principal always grants more discretion to the agent who is uniformly

less-biased than another agent.

Theorem 3 extends the observation in Section 5.2 that the principal optimally offers finer

partitions to a more congruent agent, and as a result, offers more discretion. (I use “finer”

informally here.)

Next, it is easy to establish that the principal necessarily obtains higher payoffs if the

agent is less biased. Consider moving from CÃ to a uniformly less-biased CA. Letting

M = {(θi)Ni=1, (yi)
N
i=1} denote an recommendation mechanism, it is immediate that

mi ≤
CÃ(yi+1)− CÃ(yi)

yi+1 − yi
⇒ mi ≤

CA(yi+1)− CA(yi)

yi+1 − yi
∀i = 1, . . . , (N − 1).

This means the feasible set of obedient mechanisms with CA is a superset of that with CÃ,

so the principal’s expected optimal payoff is weakly higher facing agent CA than agent CÃ.

This result is stated formally in the next theorem.

Theorem 4. The principal always prefers the agent who is uniformly less-biased.
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7 Application: Monopoly Regulation

In this section, I apply my results to the classic problem of regulating a monopolist who is pri-

vately informed (Baron and Myerson 1982). In contrast to the standard literature, I suppose

that (i) contingent transfers between the regulator and the monopolist are not feasible; (ii)

in addition to restricting prices (price control policy) as in Alonso and Matouschek (2008),

the regulator can restrict the monopolist’s access to private information about consumers

(data protection policy).

I solve for the optimal joint regulatory policy using the results of Theorem 1 and 2. I

show that (i) the optimal price control policy takes the form of a finite set of prices, which is

strikingly different from the price cap regulation, as is commonly observed in practice and in

theory (see, e.g., Alonso and Matouschek 2008; Amador and Bagwell 2020); (ii) the optimal

data protection policy takes the form of monotone partitions: adjacent consumer types are

pooled together in the same market segments.

I then compare the qualitative features of optimal joint regulatory policy with two bench-

marks: one where there is only price control, and one where there is only data protection.

7.1 Joint regulation

A monopolist sells a good to a consumer.10 The monopolist can choose a quality level a

and a unit price y to the consumer, who, in turn, chooses a quantity level q to maximize a

quadratic utility function:

u(y, a, q, θ) = (θ + λa)q − yq − 1

2
q2,

which yields consumer demand q(y, a, θ) = θ + λa − y. One can interpret θ ∈ [0, 1] as the

baseline willingness to pay for the first unit of the product and henceforth refer to θ as the

10This framework of price-quality discrimination is also adopted in Argenziano and Bonatti (2020), who
provide a microfoundation for consumers’ privacy preferences in a dynamic environment.
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consumer’s type. The parameter λ represents the monopolist’s marginal value of the quality

of the product.

The monopolist has a constant marginal cost of producing quantity q that I normalize to

zero and a fixed per-consumer cost of producing quality a. The monopolist seeks to maximize

his profit uA(y, a, θ) = yq− 1
2
a2. Fix a price y, the monopolist’s optimal quality level can be

written as a∗(y) = λy. Substituting a∗ into uA yields the monopolist’s payoff

uA(y, θ) = θy − 1

2
(2− λ2)y2,

where yA(θ) =
1

2−λ2 θ is the profit-maximizing price.

The regulator’s payoff, then, is the sum of the profit and the consumer surplus

uP (y, θ) = λ2θy − 1

2
(1 + λ2 − λ4)y2 +

1

2
θ2,

where yP (θ) =
λ2

1+λ2−λ4 θ is the welfare-maximizing price. To ensure that yA(·) > yP (·) I as-

sume that λ ∈ (0, 1). Observe that a monopolist with λ is uniformly less-biased than another

monopolist with λ′ if λ ≥ λ′. Therefore, the parameter λ fully measures the monopolist’s

upward bias.

The regulator and the monopolist share a prior µ0 about θ. I suppose the regulator

can employ two regulatory policies at the same time: one is price control, which specifies a

set of prices D available to the monopolist; the other is data protection, which is formally

an information structure (equivalently, a randomized price recommendation function) σ :

[0, 1] → ∆(D) that provides the monopolist with information about the consumer’s private

type. The monopolist privately observes a realization from σ, and then he chooses a quality

level a, and sets a price y from D to maximize profit uA(y, θ).

By Theorem 1 and 2, the optimal joint regulatory policy (D, σ) features a monotone

partition. That is, the optimal price control D is a finite set of prices; and the optimal data

protection policy partitions the state space [0, 1] into finite intervals and the monopolist only
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observes which interval the consumer’s type actually lies in.

Notice that the monopolist’s pricing problem is essentially a problem of third-degree price

discrimination, where different realizations of the information play the role of market seg-

ments. Thus, the single-consumer setup introduced above is equivalent to a setup where

there is a continuum of consumers, each of whom has a private type θ, which is drawn

independently according to µ0. With this interpretation, an information structure σ then

corresponds to a market segmentation which is a division of the aggregate market into differ-

ent markets. To see why, observe that any information structure σ must lead to a distribution

τ over posteriors µ ∈ ∆([0, 1]) satisfying
´
µ dτ(µ) = µ0. Thus, a probability measure τ can

be viewed as a market segmentation, with the interpretation that τ(µ) is the proportion of

the population in market segment µ.

As a result, with a continuum of consumers, I can reexpress the regulator’s data protection

policy as a market segmentation. Accordingly, a monotone partition corresponds to a “finite

monotone segmentation”, which splits consumers into finite groups and each group only

consists of consumers with similar types. The monopolist then offers different quality levels

and different prices to different segments. One implication of the optimality of finite market

segmentations is that the consumers’ privacy is protected moderately, which is between no

protection (i.e., perfect segmentation with each segment containing consumers of a single

type) and full protection (i.e., no segmentation with a uniform quality level and a uniform

price).11

7.2 Comparing Regulatory Policies

I compare the key features of optimal joint regulatory policies with two benchmarks: one

with only price control and one with only data protection.

Pure price control (full information). In this benchmark, the regulator imposes no

11For the privacy implications of consumer data collection, I refer the reader to the survey by Acquisti,
Taylor, and Wagman (2016).
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restrictions on the monopolist’s access to consumer privacy, and thus the monopolist is

perfectly informed about each consumer’s type. The regulator’s search for the optimal

price control policy can then be formulated as an optimal delegation problem in which the

agent (monopolist) has perfect information. Most of the delegation literature has focused

on characterizing sufficient conditions for interval delegation to be optimal. For instance,

in the present regulatory environment, it follows immediately from Proposition 4 in Alonso

and Matouschek (2008) that there exists a λ∗ ∈ (0, 1) such that for all λ ∈ (λ∗, 1), i.e., the

monopolist’s bias is sufficiently small, the optimal price control policy is a price cap, below

which the monopolist can set any prices.

Pure data protection (full discretion). In this benchmark, the regulator imposes no

restrictions on prices so the monopolist has full discretion. The regulator’s seaerch for the

optimal data protection policy can then be formulated as a Bayesian persuasion problem.

Following Kamenica and Gentzkow (2011), I can then easily solve for the optimal information

structure by representing the regulator’s (sender’s) payoff as a function of the monopolist’s

(receiver’s) beliefs. It can be shown that when λ ∈ (
√

3−
√
5

2
, 1), full disclosure is optimal, i.e.,

there is quality and price discrimination against each consumer type and hence no protection

of consumer privacy. When λ ∈ (0,
√

3−
√
5

2
), no disclosure is optimal, i.e., there is no quality

and price discrimination and hence full protection of privacy.12

Qualitative differences. By comparing the optimal joint regulatory policy with the two

benchmarks, I obtain two striking qualitative insights. First, with additional data protection,

significantly less pricing flexibility is delegated to the monopolist. Specifically, the regulator

optimally grants only a finite set of prices in the presence of data protection, rather than

an interval of prices (i.e., a price cap) in the full information benchmark. Second, when the

marginal value of the quality λ is sufficiently large, i.e., the monopolist’s bias is sufficiently

12For the welfare effects of third-degree price discrimination, see, for instance, Pigou (1920), Robinson
(1933), Schmalensee (1981), Varian (1985), Aguirre, Cowan, and Vickers (2010), Cowan (2016).
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small, the social welfare is enhanced when the regulator moderately protects consumer pri-

vacy, but that cannot happen without controlling prices at the same time.

8 Application: Temptation, Information, and Discre-

tion

In this section, I examine the consumption decision of a dynamically inconsistent individual

for goods that provide an immediate benefit and a delayed cost, and ask how self-restricting

information and discretion can serve as complementary commitment devices and alleviate

the effects of temptation.

Consider an individual who lives for three periods t ∈ {0, 1, 2}. In period 1 he decides the

amount x of good he is going to consume. Consumption generates an instantaneous utility

equal to u(x). However, it also exerts a negative externality in period 2 by an amount e(x)

with magnitude ω. I assume that the individual’s preferences exhibit time-inconsistency, due

to quasi-hyperbolic discounting. The intertemporal payoffs from the perspective of self -0

and self -1 from periods t = 1, 2 with externality shock ω are respectively given by

U0(x, ω) = β[δu(x)− δ2ωe(x)] and U1(x, ω) = u(x)− βδωe(x),

where u is a concave utility function, e is a convex externality function, and both are strictly

increasing and continuously differentiable. The value of δ represents the standard discount

factor. Since the main focus here is on the impacts of time inconsistency, I assume that

δ = 1. The value of β is the hyperbolic adjustment that reflects the momentary salience

of the present. When β is lower, the temptation for current consumption is higher. To

highlight the demand for commitment devices, I assume β ∈ (0, 1]. As a result, self -1’s

excessive preference for the present leads to overconsuming from self -0’s perspective. For

analytical tractability I restrict attention to a specific class of functional forms.
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Assumption 3. The following hold:

(i) The utility of consumption satisfies u(x) = x1−γ

1−γ
for 0 ≤ γ ≤ 1

2
;

(ii) The externality of consumption is linear, i.e., e(x) = x.

Letting y = u(x), self -0’s and self -1’s payoffs can be re-written as

U0(y, θ) = θy − (1− γ)
1

1−γ y
1

1−γ and U1(x, θ) = θy − β(1− γ)
1

1−γ y
1

1−γ , (8.1)

where θ is defined to be the inverse of ω.13

As is well known, a sophisticated and dynamically inconsistent individual values commit-

ment power (Strotz, 1995). I consider two commitment devices that are commonly studied

in the literature. A hard commitment device ties the hands of self -1 by reducing the set

of available consumption choices; a soft commitment device keeps self -1 ignorant about the

magnitude of the externality through selective exposure to information.

I analyze the optimal combination of the hard and the soft commitment devices. One can

easily examine that the utility specification in (8.1) satisfies Assumption 1 and 2, and hence

can be formally captured by the general analysis in Section 4. In particular, the alignment

principle from Proposition 1 implies that self -0 would optimally eliminate the disagreement

with self -1 under self-restricted consumption and information. Moreover, I can easily use

Theorem 2 to show that the optimal joint commitment features a finite consumption set and

a monotone partitional information structure.

9 Conclusion

I have studied an optimal delegation problem in which the principal has full control over the

agent’s information environment. The principal’s problem is to jointly select a delegation

set and an information structure that maximize her expected payoffs.

13I have removed β in the expression of U0(y, θ) without loss of generality.
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Notable features of the optimal mechanism include: (i) the players act as if they shared

identical preferences given the chosen information and discretion; (ii) the optimal information

structure takes the form of monotone partitions.

For future research it would be interesting to extend my model by allowing for the pos-

sibility of contingent monetary transfers. In the design of static decision-making processes,

there are roughly three incentive schemes available to align players’ interests: delegation,

persuasion, and monetary transfers. By employing all the three incentive instruments, I

would be able to analyze the three-way interaction among allocation of authority, provision

of information, and commitment to transfers in optimal mechanisms, and moreover, to study

the extent to which players’ conflicts can be reduced.
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A Appendix

A.1 Proof of Lemma 2

Let M = (D,σ) be an optimal obedient mechanism that implements N actions. I first show that

yP (mi) ≤ yi for all i = 1, . . . , N . Suppose instead that there exists an action yi ∈ D such that

yi < yP (mi). I split the analysis into two cases, depending on whether type yi+1’s local downward

OB is binding.

Case 1. Suppose uA(yi+1,mi+1) > uA(yi,mi+1). It then follows that mi+1 > CA(yi+1)−CA(yi)
yi+1−yi

=

∆CA
(yi+1, yi). Consider now a perturbation in which the principal replaces yi with a slightly bigger

action y↑i = yi + ε with ε > 0, while keeping all other delegated actions fixed. I argue that

the principal must be strictly better off and hence a contradiction to optimality. To see this, let

pi =
´ 1
0 σ(yi|θ) dµ0(θ) denote the absolute probability of realization yi. The perturbation only

changes the principal’s payoff for type yi. The change in payoff is

∆Uσ
P = −pi[miyi − CP (yi)] + pi

[
miy

↑
i − CP (y

↑
i )
]
= pi(y

↑
i − yi)

[
mi −∆CP

(y↑i , yi)
]
> 0

given that ε > 0 is small and yi < yP (mi). The only thing left to verify is that OB is preserved. By

Lemma 1 I only need to check type yi−1’s (OBi−1,i), type yi’s (OBi,i−1) and (OBi,i+1), and type

yi+1’s (OBi+1,i), that is,

mi−1 ≤ ∆CA
(y↑i , yi−1), (OBi−1,i)

∆CA
(y↑i , yi−1) ≤ mi ≤ ∆CA

(yi+1, y
↑
i ), (OBi,i−1 + OBi,i+1)

∆CA
(yi+1, y

↑
i ) ≤ mi+1. (OBi+1,i)

Since y↑i > yi, both (OBi−1,i) and (OBi,i+1) are automatically satisfied. As for (OBi,i−1) and

(OBi+1,i), observe that they must be slack due to the fact that ∆CA
(y↑i , yi−1) < C ′

A(yi) < C ′
P (yi) <

mi, and ∆CA
(yi+1, yi) < mi+1, respectively.
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Case 2. Suppose uA(yi+1,mi+1) = uA(yi,mi+1). It then follows that mi+1 = ∆CA
(yi+1, yi).

Consider now a small increase in yi and a small decrease in yi+1 by setting y↑i = yi + ε and

y↓i+1 = yi+1 − δ with ε, δ > 0 and ∆CA
(y↓i+1, y

↑
i ) = ∆CA

(yi+1, yi). The change in the principal’s

payoff is then

∆Uσ
P =− pi[miyi − CP (yi)] + pi

[
miy

↑
i − CP (y

↑
i )
]

− pi+1[mi+1yi+1 − CP (yi+1)] + pi+1

[
mi+1y

↑
i+1 − CP (y

↑
i+1)

]
=pi(y

↑
i − yi)

[
mi −∆CP

(y↑i , yi)
]
+ pi+1(y

↓
i+1 − yi+1)

[
mi+1 −∆CP

(y↓i+1, yi+1)
]
> 0

given that ε > 0 is small, mi > C ′
P (yi), and mi+1 = ∆CA

(yi+1, yi) < ∆CP
(y↓i+1, yi+1). I am

left to verify type yi−1’s (OBi−1,i), type yi’s (OBi,i−1) and (OBi,i+1), type yi+1’s (OBi+1,i) and

(OBi+1,i+2), and type yi+2’s (OBi+2,i+1):

mi−1 ≤ ∆CA
(y↑i , yi−1), (OBi−1,i)

∆CA
(y↑i , yi−1) ≤ mi ≤ ∆CA

(y↓i+1, y
↑
i ), (OBi,i−1 + OBi,i+1)

∆CA
(y↓i+1, y

↑
i ) ≤ mi+1 ≤ ∆CA

(yi+2, y
↓
i+1), (OBi+1,i + OBi+1,i+2)

∆CA
(y↓i+1, yi+2) ≤ mi+2. (OBi+2,i+1)

Observe that (OBi−1,i), (OBi,i+1), (OBi+1,i), and (OBi+2,i+1) still hold by the construction of y↑i

and y↓i+1. Moreover, (OBi,i−1) and (OBi+1,i+2) are slack because ∆CA
(y↑i , yi−1) < ∆CA

(y↑i ) <

∆CP
(y↑i ) < mi, and mi+1 = ∆CA

(yi+1, yi) < ∆CA
(yi+2, y

↓
i+1).

Proceeding in a similar fashion as above, I can also show that yi ≤ yA(mi) for all i = 1, . . . , N .

A.2 Proof of Proposition 1

Let M = (D,σ) be an optimal obedient mechanism that implements N actions. Assume the

contrary, i.e., that there exists a type yi with 2 ≤ i ≤ N such that uP (yi,mi) < uP (yi−1,mi), or

equivalently, mi < ∆CP
(yi, yi−1).

First, I must have i ̸= N . Otherwise the principal can derive a net benefit from joining the

type yi−1 and type yi into a single type associated with action yi−1.
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Second, I claim that (OBi−1,i) must be binding, that is,

mi−1 = ∆CA
(yi, yi−1). (A.1)

Suppose not. Then I can perturb the information structure σ by subtracting a small portion from

realization yi, and adding it to realization yi−1. More formally, the perturbed information structure

σ′ is the same as σ except that

σ′(yi|θ) = (1− ε)σ(yi|θ),

σ(yi−1|θ) = σ′(yi−1|θ) + εσ(yi|θ).

By doing so, the principal is strictly better off since she prefers action yi−1 over yi, conditional on

realization yi. Moreover, (OBi−1,i) is still satisfied given the hypothesis and that ε > 0 is small. A

contradiction.

Before proceeding to the contradiction argument, note that type yi’s (OBi,i+1) can be written

as

mi + δi = ∆CA
(yi+1, yi) (A.2)

with δi ≥ 0. With this notation, the contradiction assumption mi < ∆CP
(yi, yi−1) can be rewritten

as ∆CP
(yi, yi−1) > ∆CA

(yi+1, yi)− δi, or equivalently,

∆CDiff
(yi, yi−1) > ∆CA

(yi+1, yi)−∆CA
(yi, yi−1)− δi. (A.3)

Moreover, define action ȳ ∈ Y as the solution to

ρmi−1 + (1− ρ)mi + (1− ρ)δi = ∆CA
(yi+1, ȳ),

where ρ = pi−1

pi−1+pi
.

Now consider a modification M̂ = (σ̂, D̂) of the mechanism M as follows:
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(i) The realization space (delegation set) D̂ is given by

D̂ = {y1, . . . , yi−1, ŷ, yi+2, . . . , yN},

where the value of ŷ will be specified later.

(ii) σ̂ is described by

σ̂(y|θ) =


σ(yi−1|θ) + σ(yi|θ), if y = ŷ,

σ(y|θ), if y ∈ D̂ \ {ŷ}.

There are two exhaustive cases to consider:

Case 1: ȳ ≤ yi−1. In this case, let ŷ = yi−1. To check the obedience of M̂, it suffices to verify

that type ŷ’s local upward OB constraint holds,

m̂ = ρmi−1 + (1− ρ)mi = ∆CA
(yi+1, ȳ)− (1− ρ)δi ≤ ∆CA

(yi+1, yi−1).

It follows that the principal is strictly better off under M̂ by the hypothesis that she strictly prefers

action yi−1 over yi on the support of realization yi. A contradiction.

Case 2: ȳ > yi−1. In this case, let ŷ = ȳ. To verify obedience, it is sufficient to verify that both

type yi−2 and type ŷ are upwardly obedient. For type yi−2, I have

mi−2 ≤ ∆CA
(yi−1, yi−2) < ∆CA

(ŷ, yi−2).

For type ŷ, I have

m̂+ (1− ρ)δi = ρmi−1 + (1− ρ)mi + (1− ρ)δi = ∆CA
(yi+1, ȳ) = ∆CA

(yi+1, ŷ). (A.4)
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Additionally, replacing mi−1 by ∆CA
(yi, yi−1) and mi by ∆CA

(yi+1, yi)− δi in (A.4), I obtain

∆CA
(yi+1, ŷ) = ρ∆CA

(yi, yi−1) + (1− ρ)∆CA
(yi+1, yi) (A.5)

Since I have assumed ȳ > yi−1, it follows that ρ ∈ (0, yi−yi−1

yi+1−yi−1
). And I must have ŷ → yi from

below as ρ → 0, and ŷ → yi−1 from above as ρ → yi−yi−1

yi+1−yi−1
.

To prove that the modification makes the principal better off, I begin by expressing the differ-

ence in the principal’s payoff between the original mechanism M and the modified mechanism M̂

(normalized by pi−1 + pi) as

UP (M̂)− UP (M)

pi−1 + pi
=[m̂ŷ − CP (ŷ)]− ρ[mi−1yi−1 − CP (yi−1)]− (1− ρ)[miyi − CP (yi)]

=m̂ŷ − ρmi−1yi−1 − (1− ρ)miyi

− ρ[CP (yi)− CP (yi−1)]− [CP (yi+1)− CP (yi)] + [CP (yi+1)− CP (ŷ)]

=m̂ŷ − ρmi−1yi−1 − (1− ρ)miyi

− ρ∆CP
(yi, yi−1)(yi − yi−1)−∆CP

(yi+1, yi)(yi+1 − yi) + ∆CP
(yi+1, ŷ)(yi+1 − ŷ).

(A.6)

Using the OB constraints (A.1), (A.2), (A.4) to substitute in for mi−1,mi, m̂, and further replacing

∆CP
with ∆CA

+∆CDiff
, (A.6) simplifies to

UP (M̂)− UP (M)

pi−1 + pi
=[∆CA

(yi, yi−1)−∆CA
(yi+1, yi)]ρ(yi+1 − yi)

−∆CDiff
(yi, yi−1)ρ(yi − yi−1)

−∆CDiff
(yi+1, yi)(yi+1 − yi)

+ ∆CDiff
(yi+1, ŷ)(yi+1 − ŷ)

− (1− ρ)δiŷ + (1− ρ)δiyi.
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Substituting with the contradiction assumption (A.3) yields

UP (M̂)− UP (M)

pi−1 + pi
>−∆CDiff

(yi, yi−1)ρ[yi+1 − yi−1] + CDiff (yi)− CDiff (ŷ)

− (1− ρ)δiŷ + (1− ρ)δiyi − ρδi(yi+1 − yi)

(A.7)

I next show that the RHS of (A.7) is weakly positive. Note that by the previous steps, limρ→0+ ŷ =

yi and limρ→[(yi−yi−1)/(yi+1−yi−1)]− ŷ = yi−1. Using this and (A.7), I obtain

lim
ρ→0+ or

[(yi−yi−1)/(yi+1−yi−1)]
−

UP (M̂)− UP (M)

pi−1 + pi
= 0.

Implicitly differentiating (A.5) with respect to ρ, I get that

ŷ′(ρ) = −∆CA
(yi+1, yi)−∆CA

(yi, yi−1)
∆CA

(yi+1,ŷ)

∂ŷ

, and

ŷ′′(ρ) =

∂2∆CA
(yi+1,ŷ)

∂ŷ2
ŷ′(ρ)[∆CA

(yi+1, yi)−∆CA
(yi, yi−1)]

(∆CA
(yi+1, ŷ))2

.

(A.8)

Recall that by Condition (i) in Assumption 1, ŷ′(ρ) < 0, and by Condition (i) in Assumption 2,

ŷ′′(ρ) ≥ 0. Consider the second derivative of (A.7) with respect to ρ:

−C ′′
Diff (ŷ

′)2 − C ′
Diff ŷ

′′ + δi[ŷ
′ − (1− ρ)ŷ′′].

This second derivative is weakly negative given the fact that ŷ′(ρ) < 0, ŷ′′(ρ) ≥ 0, C ′
Diff > 0,

C ′′
Diff ≥ 0 (Condition (ii) in Assumption 2). Hence, the RHS of (A.7) is concave, and therefore,

together with (A.8), is weakly positive. This result implies that UP (M̂)−UP (M)
pi−1+pi

> 0 and thus yields

a contradiction.

Notice that the finiteness restriction does not play any role in the above argument. So the

alignment principle holds generally in the class of discrete mechanisms (i.e., D is discrete).
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A.3 Proof of Theorem 1

Let M = (D,σ) be an optimal obedient mechanism that implements N actions. Suppose by

contradiction that M is not a monotone partition. It follows that there must be two actions

yj < yk in D and a cutoff x ∈ θ such that the conditional probabilities of the lower and upper

segment have strictly positive probabilities, i.e.,

ˆ x

θ
dµσ

j > 0,

ˆ θ

x
dµσ

j > 0,

ˆ x

θ
dµσ

k > 0,

ˆ θ

x
dµσ

k > 0.

I consider two exhaustive cases separately.

Case 1: Type yk’s (OBk,k+1) is binding for any 2 ≤ k ≤ (N − 1). In this case, consider a local

perturbation in the information structure σ:

(a) On the interval [θ, x), subtract an absolute weight ε proportionally from recommendation yk,

and distribute the weight ε proportionally to recommendation yj . Specifically, for each state

θ ∈ [θ, x), the conditional probability switching from recommendation yk to yj is given by

σ(yk|θ)ε´ x
θ σ(yk|θ) dµ0

.

(b) On the interval (x, θ], subtract an absolute weight ε proportionally from recommendation yj ,

and distribute the weight ε proportionally to recommendation yk. Specifically, for each state

θ ∈ (x, θ], the conditional probability switching from recommendation yj to yk is given by

σ(yj |θ)ε´ θ
x σ(yj |θ) dµ0

.

(c) On the interval [θ, θ], subtract an absolute weight ν proportionally from recommendation

yk−1, and distribute the weight ν proportionally to recommendation yk. Specifically, for each

state θ ∈ [θ, θ], the conditional probability switching from recommendation yk−1 to yk is
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given by

σ(yk−1|θ)ν´ θ
θ σ(yk−1|θ) dµ0

,

where the value of ν is determined by restoring the binding (OBk,k+1) under the perturbed

mechanism.

To simplify, the perturbed mechanism M̂ = (σ̂, D̂) can be described as

(i) the delegation set D̂ is the same as D.

(ii) σ̂ satisfies

σ̂(y|θ) =



σ(y|θ), if y ∈ D̂ \ {yj , yk},

σ̂(yj |θ), if y = yj ,

σ̂(yk|θ), if y = yk,

where

σ̂(yj |θ) =


σ(yj |θ) + σ(yk|θ)ε´ x

θ σ(yk|θ) dF (θ)
− σ(yj |θ)ν´ θ

θ σ(yj |θ) dF (θ)
, if θ ∈ [θ, x),

σ(yj |θ)− σ(yj |θ)ε´ θ
x σ(yj |θ) dF (θ)

− σ(yj |θ)ν´ θ
θ σ(yj |θ) dF (θ)

, if θ ∈ (x, θ],

and

σ̂(yk|θ) =


σ(yk|θ)− σ(yk|θ)ε´ x

θ σ(yk|θ) dF (θ)
+

σ(yj |θ)ν´ θ
θ σ(yj |θ) dF (θ)

, if θ ∈ [θ, x),

σ(yk|θ) +
σ(yj |θ)ε´ θ

x σ(yj |θ) dF (θ)
+

σ(yj |θ)ν´ θ
θ σ(yj |θ) dF (θ)

, if θ ∈ (x, θ].

(iii) the value of ν is set to be

ν =
mH

j −mL
k

mk −mj
ε,

where mL
k =
´ x
0 θ dµσ

k denotes the posterior mean conditional on the lower segment of signal

yk, and mH
j =

´ 1
x θ dµσ

j denotes the posterior mean conditional on the upper segment of

signal yj .

First, OB remains to hold under M̂. To see this, notice that for i ̸= j, k, type yi’s (OBi,i+1)

is automatically satisfied, which is directly inherited from that of M. For type yj , the conditional

40



posterior mean

m̂j =

´ θ
θ θσ̂(yj |θ) dµ0´ θ
θ σ̂(yj |θ) dµ0

=
(pj − ν)mj + εmL

k − εmH
j

pj − ν
= mj +

mL
k −mH

j

pj − ν
ε

is smaller than yet close to mj for ε > 0 small enough. Hence, (OBj,j+1) is satisfied. For type yk,

the conditional posterior mean

m̂k =

´ θ
θ θσ̂(yk|θ) dµ0´ θ
θ σ̂(yk|θ) dµ0

=
pkmk − εmL

k + εmH
j + νmj

pk + ν
= mk

stays the same by construction. An immediate implication of the above equality is that type yk’s

(OBk,k+1) is still binding under M̂.

Second, I argue that the perturbed mechanism M̂ strictly improves the principal’s payoff. In

order to see this, I can represent the principal’s change in payoff by

UP (M̂)− UP(M) =

ˆ x

θ
[uP (yj , θ)− uP (yk, θ)]

σ(yk|θ)ε´ x
θ σ(yk|θ) dµ0

dµ0

+

ˆ θ

x
[uP (yk, θ)− uP (yj , θ)]

σ(yj |θ)ε´ θ
x σ(yj |θ) dµ0

dµ0

+

ˆ θ

θ
[uP (yk, θ)− uP (yj , θ)]

σ(yj |θ)ν´ θ
θ σ(yj |θ) dµ0

dµ0

=ε
mH

j −mL
k

mk −mj
{mk(yk − yj)− [CP (yk)− CP (yj)]}

=ε
mH

j −mL
k

mk −mj
[uP (yk,mk)− uP (yj ,mk)]

≥0,

(A.9)

where the inequality follows from the fact that the optimal mechanism must be aligned from

Proposition 1. If uP (yk,mk)−uP (yj ,mk) > 0, (A.9) yields UP (M̂)−UP(M) > 0, which contradicts

the optimality ofM. If uP (yk,mk)−uP (yj ,mk) = 0, then the value of j must be equal to (k−1) due

to the alignment principle. In this case, consider an alternative perturbation M̃ by pooling type

yj (= yk−1) and type yk into a single type associated with some action ŷ. Analogous arguments to

those used in the proof of Proposition 1, the perturbation would weakly increase Principal’s payoff.
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Case 2: Either type yk’s (OBk,k+1) is not binding for 2 ≤ k ≤ N , or k = N . This case can be

treated by solely applying the “swapping” procedure (a)–(b) from Case 1. It is straightforward to

see that OB is satisfied in the perturbed mechanism M̂ = (D, σ̂) given that ε > 0 is small enough.

Doing so, the principal’s marginal payoff change can be expressed as

lim
ε→0

UP (M̂)− UP (M)

ε
=[uP (yj ,m

L
k )− uP (yk,m

L
k )]− [uP (yk,m

H
j )− uP (yj ,m

H
j )]

=(yk − yj)(m
H
j −mL

k ) > 0,

which, again contradicts the hypothesized optimality of M.

Combining Case 1 and Case 2, I obtain that the principal can without loss focus on the class

of monotone partitions.

A.4 Proof of Theorem 2

I prove the theorem in two steps. In the first step, I show that in the class of discrete mechanisms

(i.e., D is discrete), the optimal mechanism exists and it is a finite monotone partition. In the

second step, I prove that the finite monotone partitional mechanism is also maximal in the class of

mechanisms with an arbitrary number of delegated actions.

First, using an argument analogous to the one used by Theorem 1, I obtain that the monotone

partitional mechanism (not necessarily finite) is also maximal within the discrete class. To prove

existence, invoking Theorem 1 and Lemma 5 below allows me to focus on the space of finite mono-

tone partitional mechanisms and denote by z = (x1, . . . , xN , y1, . . . , yN ) ∈ [θ, θ]N × [yP (θ), yA(θ)]
N

a typical element of this space. Here N is the upper bound established in Lemma 5. It is easy to see

that the space is compact under the Euclidean metric. By continuity of uP (y, θ) and Weierstrass’

theorem, an optimal mechanism exists.

Second, to prove the optimality of finite monotone partitional mechanisms in the class of mech-

anisms with an arbitrary delegation space, it suffices to show that for any payoff generated by

an arbitrary obedient mechanism, I can construct a sequence of finite mechanisms such that the

associated payoff sequences converges to the given one (proof postponed in Lemma 6). To see the

sufficiency, suppose instead no finite mechanism obtains the payoff supremum. Then by Lemma
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6, there exists a sequence of finite obedient mechanisms {(Dn, σn)}∞n=1 such that |Dn| < |Dn+1|,

UP (Dn, σn) < UP (Dn+1, σn+1), and limn→∞ UP (Dn, σn) attains the supremum. But by the first

step, there must exist n∗ < ∞ and |Dn∗ | ≤ N such that for all n > n∗, UP (Dn, σn) ≤ UP (Dn∗ , σn∗),

a contradiction.

Lemma 5. Let M = (D,σ) be an optimal obedient mechanism that is discrete. Then, it must be

finite.

Proof of Lemma 5. Let yi−1, yi, yi+1 be three adjacent actions induced in the mechanism. By obe-

dience condition, it follows that mi ≤ ∆CA
(yi+1, yi). By the alignment principle, it follows that

mi ≥ ∆CP
(yi, yi−1). Combining the two inequalities and using the fact that cP > cA yields

∆CP
(yi+1, yi)− δ ≥ ∆CA

(yi+1, yi) ≥ mi ≥ ∆CP
(yi, yi−1),

where δ ≡ infy∈[yP (θ),yA(θ)] cP (y) − cA(y) > 0. Then by the mean value theorem, there exist

yl ∈ (yi−1, yi) and yh ∈ (yi, yi+1) such that

cP (yh)− cP (yl) = ∆CP
(yi+1, yi)−∆CP

(yi, yi−1) ≥ δ.

Since c′P > 0 is continuous, this gives an upper bound K to the value of c′P attainable on

[yP (θ), yA(θ)]. Thus, the above inequality yields

K ≥ cP (yh)− cP (yl)

yh − yl
≥ δ

yh − yl
,

which then implies

yi+1 − yi−1 > yh − yl >
δ

K
≡ ε > 0.

Using the fact that the delegation set is bounded by yP (θ) and yA(θ) from Lemma 2, this in-

equality implies that the size of any aligned and discrete mechanism must be bounded above by

2
⌈
yA(θ)−yP (θ)

ε

⌉
+ 1, which completes the proof.

Lemma 6. Suppose that M = (D,σ) is an obedient mechanism with an arbitrary D. Then, there
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exists a sequence of finite mechanisms such that

lim
n→∞

UP (Dn, σn) = UP (D,σ).

Proof of Lemma 6. Because the principal’s payoff depends on posterior beliefs only through the

posterior mean, her expected payoff from an arbitrary mechanism M = (D,σ) can be written as

UP (D,σ) =

ˆ θ

θ
uP (y(m),m) dG(m),

where G is the cumulative distribution over posterior means, and y(m) ∈ D is the corresponding

action recommendation that induces m. Thus, every pair (D,σ) can be equivalently described by

the corresponding pair (G, y), which I use for the rest of the proof.

Take an arbitrary positive integer n. Let {Bn
1 , B

n
2 . . . , Bn

n} be a partition of the posterior mean

space [θ, θ] such that

Bn
k = (bnk−1, b

n
k ] ∀k = 1, . . . , n,

with bnk = n−k
n θ+ k

nθ and bn0 = θ. Let M denote the support of distribution G and define a sequence

of posterior means {mn
j }J

n

j=1 by

mn
j =

´
Bn

k(j)
mdG(m)´

Bn
k(j)

dG(m)

such that k(j) is the jth partition element Bn
k(j) that satisfies Bn

k(j) ∩ M ̸= ∅. By construction, I

can define a discrete distribution Gn by

Gn(m) =



0 for m ∈ [θ,mn
1 ),

G(bnk(j)−1) for m ∈ [mn
j−1,m

n
j ),

1 for m ∈ [mn
Jn , θ].

Let mn
j and mn

j denote respectively the lower bound and the upper bound of Bn
k(j) ∩ M . Define
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yn : M → Y as

yn(m) =


y(mn

j ) if m ∈ [mn
j−1,m

n
j ) or [m

n
Jn , θ] and UA(y(m

n
j )|mn

j ) ≥ UA(y(m
n
j )|mn

j ),

y(mn
j ) if m ∈ [mn

j−1,m
n
j ) or [m

n
Jn , θ] and UA(y(m

n
j )|mn

j ) < UA(y(m
n
j )|mn

j ).

The above construction allows me to obtain a sequence of finite mechanisms {(Gn, yn)}∞n=1. Notice

that (Gn, yn) satisfies the obedience condition. Also, both Gn and yn(·) are simple functions which

uniformly converge to G and y(·), respectively.

Now I am ready to show that the sequence of principal’s expected payoffs from {(Gn, yn)}∞n=1

converges to that from (G,m). To see this, notice that both uP (y
n(m),m) and Gn(m) are uniformly

bounded, and converge uniformly to uP (y(m),m) and G(m), respectively. By bounded convergence

theorem, it then follows that

lim
n→∞

ˆ θ

θ
uP (y

n(m),m) dGn(m) =

ˆ θ

θ
uP (y(m),m) dG(m),

which completes the proof.

A.5 Proof of Lemma 4

Proof of Lemma 4. This is an immediate consequence of Lemma 7 and 8 below.

Lemma 7. Let M = {(θi)Ni=1, (yi)
N
i=1} be an optimal mechanism in the uniform-quadratic case.

Then, the following must hold

yi − θi = yj − θj ∀i, j = 1, . . . , N. (A.10)

Proof. Notice that I only need show that (A.10) holds for any two consecutive intervals. To see

this, consider the following modified mechanism M(ε):

(a) If ε > 0, then replace action recommendation yi+1 with yi throughout states θ ∈ [θi, θi + ε];

if ε < 0, replace action recommendation yi with yi+1 throughout states θ ∈ [θi + ε, θi].
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(b) Replace action yi+1 from D with ŷi+1 = yi+1 + ε.

It follows that obedience is satisfied by construction. Moreover, the principal’s incremental change

in payoff can be written as

UP (M(ε))− UP (M) =

ˆ θi+ε

θi

[
(θyi −

1

2
y2i )− (θyi+1 −

1

2
y2i+1)

]
dθ

+

ˆ θi+1

θi+ε

[
(θŷi+1 −

1

2
ŷ2i+1)− (θyi+1 −

1

2
y2i+1)

]
dθ

=
ε

2

[
(yi+1 − θi+1)

2 − (yi − θi)
2
]
+

ε2

2
[(yi − θi) + (yi+1 − θi+1)].

(A.11)

Provided that M is optimal, I must have

(yi+1 − θi+1)
2 = (yi − θi)

2 ∀i = 1, . . . , (N − 1). (A.12)

Otherwise, I can take the limit of ε to zero, and obtain

lim
ε→0+

UP (M(ε))− UP (M)

ε
= (yi+1 − θi+1)

2 − (yi − θi)
2,

or

lim
ε→0−

UP (M(ε))− UP (M)

ε
= (yi − θi)

2 − (yi+1 − θi+1)
2,

contradicting the optimality of M.

Also, observe that the second term of (A.11) must be weakly negative, i.e., (yi − θi) + (yi+1 −

θi+1) ≤ 0 due to the optimality of M. This observation, combined with (A.12), leads to

yi − θi = yi+1 − θi+1 ∀i = 1, . . . , (N − 1).

An immediate implication of the above proof is that any optimal mechanismM = {(θi)Ni=1, (yi)
N
i=1}

must satisfy yi ≤ θi for all i = 1, . . . , N , which I will use later. Notice also that, by Lemma 7,

an optimal mechanism {(θi)Ni=1, (yi)
N
i=1} (with an abuse of notation) can be equivalently expressed

as {(θi)Ni=1, d}, where d = θi − yi for all i = 1, . . . , N . Fix M = {(θi)Ni=1, d} and denote by
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∆θi = θi − θi−1 the length of the ith interval. The principal’s ex-ante payoff from M is

UP (M) =

N∑
i=1

ˆ θi

θi−1

(θyi −
1

2
y2i ) dθ

=
N∑
i=1

ˆ θi

θi−1

(θyi −
1

2
y2i −

1

2
θ2) dθ +

N∑
i=1

ˆ θi

θi−1

1

2
θ2 dθ

=
N∑
i=1

1

2
(θi − θi−1)

[
d(θi − θi−1)− d2 − 2

3
(θi − θi−1)

2

]
+

1

6

=

N∑
i=1

ϕ(∆θi, d) +
1

6
,

(A.13)

where ϕ(x, d) = −1
6x

3 + 1
2dx

2 − 1
2d

2x is strictly concave in x for x > 0.

Before proceeding to Lemma 8, let me first introduce the majorization relation and the ma-

jorization inequality. A sequence {xi}Ni=1 majorizes another sequence {x̂i}Ni=1 if

x1 + · · ·+ xi ≥ x̂1 + · · ·+ x̂i ∀i = 1, . . . , N − 1.

and

x1 + · · ·+ xN = x̂1 + · · ·+ x̂N .

Karamata’s inequality. Let sequences {xi}Ni=1 and {x̂i}Ni=1 be non-increasing and ϕ(·) denote

a real-valued, concave function. If {x̂i}Ni=1 majorizes {xi}Ni=1, then

N∑
i=1

ϕ(x̂i) ≤
N∑
i=1

ϕ(xi).

I am now ready to state and prove Lemma 8.

Lemma 8. Let M = {(θi)Ni=1, (yi)
N
i=1} be an optimal mechanism in the uniform-quadratic case.

Then, the local upward OB is binding.

Proof. There are two distinct cases: either N is odd, or N is even. I now show that the binding

condition is necessary for optimality in both cases.
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Case 1. N is odd. Let M̂ = {(θ̂i)Ni=1, (ŷi)
N
i=1} be an obedient mechanism that satisfies d = θ̂i− ŷi

for some d ≥ 0. Then I can construct another mechanism M = {(θi)Ni=1, (yi)
N
i=1} which satisfies d =

θi−yi, and moreover, features binding local upward OB. It can be shown that θi = 1−(b+d)(N−i)

for odd i, and θi = (b+ d)i for even i, which implies that ∆θi = 1− (b+ d)(N − 1) for odd i, and

∆θi = (b+d)(N +1)−1 for even i. Denote by {xi}Ni=1 the non-increasing permutation of {∆θi}Ni=1.

Consider next the mechanism M̂. For even i, OB condition implies θ̂i ≥ θi−2+2(b+d) ≥ · · · ≥

(b+ d)i = θi. For odd i, OB condition implies θ̂i ≤ θ̂i+2 + 2(b+ d) ≤ · · · ≤ 1− (b+ d)(N − i) = θi.

I thus obtain ∆θ̂i = θ̂i − θ̂i−1 ≥ θi − θi−1 = ∆θi for even i and ∆θ̂i ≤ ∆θi for odd i. Likewise, I

denote by {x̂i}Ni=1 the non-increasing permutation of {∆θ̂i}Ni=1.

It can be shown that {x̂i}Ni=1 majorizes {xi}Ni=1, and hence, by Karamata’s inequality and

(A.13), I obtain UP (M) =
∑N

i=1 ϕ(xi, d) +
1
6 ≥

∑N
i=1 ϕ(x̂i, d) +

1
6 = UP (M̂).

Case 2. N is even. In this case, consider a mechanism M = {(θi)Ni=1, (yi)
N
i=1} which satisfies

θi = 1
N , yi = b + i−1

N for all i = 1, . . . , N . One can easily verify that M features binding local

upward OB. The next step is to show that the mechanism M is indeed payoff superior to all

obedient mechanisms of the same size N , and hence the claim in Lemma 8 follows.

To see this, consider an obedient mechanism M̂ = {(θ̂i)Ni=1, (ŷi)
N
i=1} that satisfies d̂ = θ̂i − ŷi

for some d̂ ≥ 0. The OB condition is equivalent to requiring θ̂i+1− θ̂i−1 ≥ 2(b+ d̂), which, together

with the fact that
∑N−1

i=1 (θ̂i+1 − θ̂i−1) = 1, implies d̂ ≤ 1
N − b. Now consider another mechanism

M̂′ = {{(θ̂i
′
)Ni=1, (ŷ

′
i)
N
i=1} with θ̂i = 1

N and ŷ′i = 1
N − d̂. It follows that M̂′ is obedient. Then

an analogous majorization argument to that used to prove Case 1 can be applied to show that

UP (M̂′) ≥ UP (M̂). The argument is similar and hence omitted.

So all it needs to show is then that M yields a higher payoff than M̂′. Note that by (A.13),

UP (M) =
∑N

i=1 ϕ(
1
N , 1

N − b) + 1
6 ≥

∑N
i=1 ϕ(

1
N , d̂) + 1

6 = UP (M̂′) due to the fact that d̂ ≤ 1
N − b

and ϕ(x, d) is increasing in d.
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A.6 Proof of Proposition 2

It follows from Lemma 4 that one only needs to focus on the first two partition elements. The

problem of finding the suboptimal mechanism for each size N ≤ N(b) reduces to one of the following

two trivial programs:

(1) If N is an odd number, then

max
θ1,θ2,y1,y2

N + 1

2

ˆ θ1

0
uP (y1, θ) dθ +

N − 1

2

ˆ θ2

θ1

uP (y2, θ) dθ (A.14)

subject to (i) y1 − θ1 = y2 − θ2, and (ii) N+1
2 θ1 +

N−1
2 θ2 = 1.

(2) If N is an even number, then

max
θ1,θ2,y1,y2

N

2

ˆ θ1

0
uP (y1, θ) dθ +

N

2

ˆ θ2

θ1

uP (y2, θ) dθ (A.15)

subject to (i) y1 − θ1 = y2 − θ2, and (ii) N
2 θ1 +

N
2 θ2 = 1.

Therefore, it is straightforward to verify that (2) and (2) are solutions to programs (A.14)

and (A.15), respectively.

A.7 Proof of Theorem 3

Fix an arbitrary agent Ã with cÃ. Define the associated set of uniformly less-biased agents by

cÃ = {cA : cA(y) ≥ cÃ(y), ∀y ∈ Y }, where cÃ is endowed with the sup norm ∥ · ∥∞. The induced

metric is then d(cA, cA′) = ∥cA − cA′∥∞ for any cA, cA′ ∈ cÃ.

Let M∗
Ã
of size N∗

Ã
and M∗

A of size N∗
A be the optimal mechanisms with cÃ and cA, respectively.

It follows from Theorem 4 that M∗
A achieves a weakly higher expected payoff than M∗

Ã
, i.e.,

UP (M∗
A) ≥ UP (M∗

Ã
).

To prove N∗
A ≥ N∗

Ã
for any cA ∈ cÃ, note that it suffices to check “local monotonicity”, i.e.,

N∗
A ≥ N∗

Ã
for ∥cA−cÃ∥∞ sufficiently small. Suppose by contradiction that N∗

A < N∗
Ã
. Take M∗

Ã,N∗
A

as the optimal mechanism of size N∗
A with agent cÃ and it is obvious that UP (M∗

Ã
) > UP (M∗

Ã,N∗
A

).
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Let FeasN (cA) be the set of all obedient mechanisms of arbitrary size N with agent cA:

{
M = {(θi)Ni=1, (yi)

N
i=1} :

θi−1 + θi
2

≤ CA(yi+1)− CA(yi)

yi+1 − yi

}
.

By definition, it follows that FeasN (cA) is compact and continuous in cA. Since UP : [θ, θ]N ×

[y, y]N → R is continuous, Berge’s Maximum Theorem implies that the optimal expected payoff

function

VN
P (cA) ≡ max

M∈FeasN (cA)
UP (M) (A.16)

is continuous. Take M∗
A,N to be an optimal solution for (A.16) by restricting the partition size to

be N . Thus, for sufficiently small ε > 0 with d(cA, cÃ) < ε, there exists δ > 0 small enough such

that UP (M∗
A,N ) = VN

P (cA) ≤ VN
P (cÃ) + δ = UP (M∗

Ã,N
) + δ. Setting N = N∗

A, one then obtains

UP (M∗
A) ≤ UP (M∗

Ã,N∗
A

) + δ < UP (M∗
Ã
). A contradiction.
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