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Background and motivations

Background and motivations

The Japan Residency Matching Program started in 2004.

A number of positions in local hospitals had been left unfilled. (due to
The Rural Hospital Theorem).
In 2008, regional caps introduced.
Under regional caps, the number of matchings in rural hospitals
increased, while the numbers of doctors assigned to their first choice
considerably decreased.

⇒ We would like to increase the number of matchings in local hospitals
without deceasing the welfare of doctors.
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Background and motivations

Background and motivations

In the residency matching, the participants do not negotiate the salaries. It
has been estimated in the United States that the average salary of doctors
is lower than the marginal productivity of labor by more than 2,000 dollars,
which can be viewed as the implicit tuition payed by the doctors.

In order to increase applications to local hospitals, it is reasonable to give
monetary or non-monetary incentives to the participants.

Question : If we subsidize the applicants to local hospitals, what happens
to the outcome of the mechanism? (or if we change the rank-order lists of
doctors in favor of a hospital whose quota is vacant, what happens to the
outcome?)
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Model and definitions

Model ( one-to-one matching problems )

Let F and W be mutually disjoint sets of countably many potential agents.
The former is the set of firms and the latter is the set of workers.

The first component of a matching problem is given by a union F ∪W of
non-empty finite subsets F ⊂ F and W ⊂ W. For each a ∈ F ∪W ,

(F ∪W )a = F and (F ∪W )−a = W if a ∈ F,

(F ∪W )a = W and (F ∪W )−a = F if a ∈ W.

In words, (F ∪W )a is the set of the agents on the same side as a and
(F ∪W )−a is the set of agents on the opposite side of a.
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Model and definitions

Model ( one-to-one matching problems )

Each a ∈ F ∪W has a strict preference ordering ≻a over the set
(F ∪W )−a ∪ {ϕ}, where ϕ is the choice of remaining un-matched and the
associated weak ordering is denoted by ⪰a.

We define
PF = {≻a| a ∈ F}, PW = {≻a| a ∈ W},

and PF∪W = PF ∪ PW . By definition, for each a ∈ F ∪W ,

PF∪W = P(F∪W )a ∪ P(F∪W )−a
.

A matching problem is a pair (F ∪W,PF∪W ).
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Model and definitions

Definitions

E : the set of all matching problems

For a given F ∪W , a matching is a function
µ : F ∪W → F ∪W ∪ {ϕ} such that for each a ∈ F ∪W ,

1 µ(a) ∈ (F ∪W )−a ∪ {ϕ}
2 µ ◦ µ(a) = a if µ(a) ̸= ϕ.

M(F ∪W ): the set of all matchings in F ∪W .
A solution is a correspondence φ defined on E satisfying

∅ ̸= φ(F ∪W,PF∪W ) ⊂ M(F ∪W )

for each (F ∪W,PF∪W ) ∈ E .
A single-valued solution is a function φ defined on E satisfying
φ(F ∪W,PF∪W ) ∈ M(F ∪W ) for each (F ∪W,PF∪W ) ∈ E .
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Model and definitions

Definitions (Properties of matchings)

A matching µ ∈ M(F ∪W ) is individually rational in
(F ∪W,PF∪W ) ∈ E if for each a ∈ F ∪W , µ(a) ⪰a ϕ.

In a given (F ∪W,PF∪W ) ∈ E , a pair (f, w) ∈ F ×W blocks a
matching µ ∈ M(F ∪W ) if w ≻f µ(f) and f ≻w µ(w).
A matching µ ∈ M(F ∪W ) is stable in (F ∪W,PF∪W ) ∈ E if it is
individually rational and has no blocking pair.
A stable matching µ in (F ∪W,PF∪W ) ∈ E is F -optimal if for each
stable matching µ′ and each f ∈ F , µ(f) ⪰f µ′(f).
A stable matching µ in (F ∪W,PF∪W ) ∈ E is W -optimal if for each
stable matching µ′ and each w ∈ W , µ(w) ⪰w µ′(w).
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Model and definitions

Definitions (solutions)

S(F ∪W,PF∪W ): the set of all stable matchings in (F ∪W,PF∪W )

SF (F ∪W,PF∪W ): the F -optimal stable matching in (F ∪W,PF∪W )

SW (F ∪W,PF∪W ): the W -optimal stable matching in
(F ∪W,PF∪W )

The stable solution associates with each problem
(F ∪W,PF∪W ) ∈ E the set S(F ∪W,PF∪W ).
The F -optimal stable solution associate with each problem
(F ∪W,PF∪W ) ∈ E the matching SF (F ∪W,PF∪W ).
The W -optimal stable solution associate with each problem
(F ∪W,PF∪W ) ∈ E the matching SW (F ∪W,PF∪W ).
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Model and definitions

Definitions

Definition 1
For each (F ∪W,PF∪W ) ∈ E , h ∈ F ∪W , and a ∈ (F ∪W )−h, a
preference ordering ≻h

a on (F ∪W )h ∪ {ϕ} is a h-improvement over ≻a if
≻h

a and ≻a determine the same ordering on the set ((F ∪W )h \ {h})∪{ϕ}
and h ≻a h′ implies h ≻h

a h′ for each h′ ∈ (F ∪W )h.

In short, ≻h
a is a h-improvement over ≻a if the order of h is higher in ≻h

a

than in ≻a, while the relative orders among the others stay unchanged.

≻a :
h′4h′3h′2 h h′5 h′6h′1

≻h
a :

h′4h′3h′2 h h′5 h′6h′1
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Model and definitions

Definitions

Definition 2
For a given preference profile PF∪W = {≻a| a ∈ F ∪W} and h ∈ F ∪W ,
a preference profile Ph

F∪W = {≻h
a| a ∈ F ∪W} is a h-improvement over

PF∪W if
(1) ≻h

a is a h-improvement over ≻a for each a ∈ (F ∪W )−h,
(2) ≻h

a=≻a for each a ∈ (F ∪W )h.
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Axioms

Singles Monotonicity

Axiom
Own-side singles monotonicity :
For a given (F ∪W,PF∪W ) ∈ E , suppose that h ∈ F ∪W satisfies
µ(h) = ϕ for each µ ∈ φ(F ∪W,PF∪W ). Then, a solution φ satisfies
own-side single monotonicity if for each h-improvement Ph

F∪W over PF∪W
and each µ ∈ φ(F ∪W,PF∪W ), there exists ν ∈ φ(F ∪W,Ph

F∪W ) such
that,

µ(a) ⪰a ν(a)

for each a ∈ (F ∪W )h \ {h}.

Suppose that h is single at some problem and every agent on the opposite
side of h changes her/his preference in favor of h. The axiom requires that
every agent on the same side of h (except h) should not be made strictly
better off.
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Axioms

Singles Monotonicity

Axiom
Other-side singles monotonicity :
For a given (F ∪W,PF∪W ) ∈ E , suppose that h ∈ F ∪W satisfies
µ(h) = ϕ for each µ ∈ φ(F ∪W,PF∪W ). Then, a solution φ satisfies
other-side singles monotonicity if for each h-improvement Ph

F∪W over
PF∪W and each ν ∈ φ(F ∪W,Ph

F∪W ), there exists µ ∈ φ(F ∪W,PF∪W )
such that,

ν(a) ⪰h
a µ(a)

for each a ∈ (F ∪W )−h.

Suppose that h is single at some problem and every agent on the opposite
side of h changes her/his preference in favor of h. The axiom requires that
every agent on the opposite side of h should not be made strictly worse off
with respect to the ex-post preference.
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Examples

Example 1

Let F = {f1, f2, f3} and W = {w1, w2, w3}. Let PF ∪ PW be given by,

f1 w1 ≻ w2 ≻ ϕ ≻ w3

f2 w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2

w1 f2 ≻ f3 ≻ f1 ≻ ϕ

w2 f1 ≻ f2 ≻ ϕ ≻ f3
w3 ϕ ≻ f3 ≻ f1 ≻ f2

The F -optimal stable matching SF (F ∪W,PF∪W ) is given by

µF = {(f1, w2), (f2, w1), f3, w3},

which is the unique stable matching. Notice that µF (f3) = ϕ.
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Examples

Example 1

f1 w1 ≻ w2 ≻ ϕ ≻ w3

f2 w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2

w1 f2 ≻ f3 ≻ f1 ≻ ϕ

w2 f1 ≻ f2 ≻ ϕ ≻ f3
w3 ϕ ≻ f3 ≻ f1 ≻ f2

Let Pf3
F∪W be the f3-improvement over PF∪W defined as follows.

f1 w1 ≻ w2 ≻ ϕ ≻ w3

f2 w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2

w1 f2 ≻ f3 ≻ f1 ≻ ϕ

w2 f1 ≻ f2 ≻ ϕ ≻ f3
w3 f3 ≻ ϕ ≻ f1 ≻ f2

The F -optimal stable matching S(F ∪W,Pf3
F∪W ) is given by

µf3
F = {(f1, w1), (f2, w2), (f3, w3)}.
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Examples

Example 1

PF∪W :
f1 w1 ≻ w2 ≻ ϕ ≻ w3

f2 w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2

w1 f2 ≻ f3 ≻ f1 ≻ ϕ

w2 f1 ≻ f2 ≻ ϕ ≻ f3
w3 ϕ ≻ f3 ≻ f1 ≻ f2

µF = {(f1, w2), (f2, w1), f3, w3}

Pf3
F∪W :

f1 w1 ≻ w2 ≻ ϕ ≻ w3

f2 w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2

w1 f2 ≻ f3 ≻ f1 ≻ ϕ

w2 f1 ≻ f2 ≻ ϕ ≻ f3
w3 f3 ≻ ϕ ≻ f1 ≻ f2

µf3
F = {(f1, w1), (f2, w2), (f3, w3)}

1 µf3
F (f) ≻f µF (f) for f ̸= f3.

2 µF (w) ≻f3
w µf3

F (w) for w = w1, w2 and µf3
F (w3) ≻f3

w3 µF (w3).
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Examples

Example 1

Since µf3
F (f) ≻f µF (f) for f ̸= f3, every firm other than f3 is made

strictly better off by the f3-improvement, the F -optimal stable
solution SF does not satisfy own-side singles monotonicity.
Since µF (w) ≻f3

w µf3
F (w) for w ̸= w3, there exist workers strictly made

worse off by the f3-improvement, the F -optimal stable solution SF

does not satisfy other-side singles monotonicity. This also shows that
the stable solution S does not satisfy other-side singles monotonicity.
The W -optimal stable matching in (F ∪W,Pf3

F∪W ) is

µf3
W = {(f1, w2), (f2, w1), (f3, w3)}.

Because µF is the unique stable matching in the original problem, it is
also the W -optimal stable matching. Since µF (w) = µf3

W (w) for
w ̸= w3 and µf3

W (w3) ≻f3
w3 µF (w3), the W -optimal stable solution

does not violate own-side singles monotonicity for the f3-improvement
in Example 1.
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Single-valued solutions

single-valued stable solutions

Definition 3
A single-valued solution φ is stable if
φ(F ∪W,PF∪W ) ∈ S(F ∪W,PF∪W ) for each (F ∪W,PF∪W ) ∈ E .

Proposition 1
Let φ be a stable single-valued solution. Then, φ satisfies own-side singles
monotonicity if and only if it satisfies other-side singles monotonicity.
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Single-valued solutions

Proposition 2

There exists no single-valued solution satisfying stability and singles
monotonicity.
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Proof of Proposition 2

Let F = {f1, f2, f3, f4} and W = {w1, w2, w3, w4} and define PF∪W as
below.

f1 w1 ≻ w4 ≻ w2 ≻ ϕ ≻ w3

f2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2 ≻ w4

f4 w2 ≻ ϕ ≻ w1 ≻ w3 ≻ w4

w1 f2 ≻ f3 ≻ f1 ≻ ϕ ≻ f4
w2 f1 ≻ f4 ≻ f2 ≻ ϕ ≻ f3
w3 ϕ ≻ f1 ≻ f2 ≻ f3 ≻ f4
w4 f1 ≻ f2 ≻ ϕ ≻ f3 ≻ f4

In the problem (F ∪W,PF∪W ),

µ = {(f1, w4), (f2, w1), (f4, w2), f3, w3}

is the unique stable matching. Note that µ(f3) = ϕ.
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F∪W be the f3-improvement over PF∪W given below.

f1 w1 ≻ w4 ≻ w2 ≻ ϕ ≻ w3

f2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2 ≻ w4

f4 w2 ≻ ϕ ≻ w1 ≻ w3 ≻ w4

w1 f2 ≻ f3 ≻ f1 ≻ ϕ ≻ f4
w2 f1 ≻ f4 ≻ f2 ≻ ϕ ≻ f3
w3 f3 ≻ ϕ ≻ f1 ≻ f2 ≻ f4
w4 f1 ≻ f2 ≻ ϕ ≻ f3 ≻ f4

The problem (F ∪W,Pf3
F∪W ) has two stable matchings,

µ1 = {(f1, w1), (f2, w4), (f3, w3), (f4, w2)}
µ2 = {(f1, w4), (f2, w1), (f3, w3), (f4, w2)}
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Proof of Proposition 2

PF∪W

f1 w1 ≻ w4 ≻ w2 ≻ ϕ ≻ w3

f2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2 ≻ w4

f4 w2 ≻ ϕ ≻ w1 ≻ w3 ≻ w4

w1 f2 ≻ f3 ≻ f1 ≻ ϕ ≻ f4
w2 f1 ≻ f4 ≻ f2 ≻ ϕ ≻ f3
w3 ϕ ≻ f1 ≻ f2 ≻ f3 ≻ f4
w4 f1 ≻ f2 ≻ ϕ ≻ f3 ≻ f4

Pf3
F∪W

f1 w1 ≻ w4 ≻ w2 ≻ ϕ ≻ w3

f2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2 ≻ w4

f4 w2 ≻ ϕ ≻ w1 ≻ w3 ≻ w4

w1 f2 ≻ f3 ≻ f1 ≻ ϕ ≻ f4
w2 f1 ≻ f4 ≻ f2 ≻ ϕ ≻ f3
w3 f3 ≻ ϕ ≻ f1 ≻ f2 ≻ f4
w4 f1 ≻ f2 ≻ ϕ ≻ f3 ≻ f4

If a stable single-valued solution satisfies own-side singles monotonicity, it
selects µ2 in problem (F ∪W,Pf3

F∪W ).
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Proof of Proposition 2

The problem (F ∪W, P̂F∪W ) given below has the unique stable matching
µ̂ = {(f1, w1), (f2, w4), (f3, w3), f4, w2}, in which µ̂(w2) = ϕ.

f1 w1 ≻ w4 ≻ ϕ ≻ w2 ≻ w3

f2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2 ≻ w4

f4 ϕ ≻ w1 ≻ w2 ≻ w3 ≻ w4

w1 f2 ≻ f3 ≻ f1 ≻ ϕ ≻ f4
w2 f1 ≻ f4 ≻ f2 ≻ ϕ ≻ f3
w3 f3 ≻ ϕ ≻ f1 ≻ f2 ≻ f4
w4 f1 ≻ f2 ≻ ϕ ≻ f3 ≻ f4
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Proof of Proposition 2

P̂F∪W

f1 w1 ≻ w4 ≻ ϕ ≻ w2 ≻ w3

f2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2 ≻ w4

f4 ϕ ≻ w1 ≻ w2 ≻ w3 ≻ w4

w1 f2 ≻ f3 ≻ f1 ≻ ϕ ≻ f4
w2 f1 ≻ f4 ≻ f2 ≻ ϕ ≻ f3
w3 f3 ≻ ϕ ≻ f1 ≻ f2 ≻ f4
w4 f1 ≻ f2 ≻ ϕ ≻ f3 ≻ f4

Let P̂w2
F∪W be the w2-improvement over P̂F∪W given below.

f1 w1 ≻ w4 ≻ w2 ≻ ϕ ≻ w3

f2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2 ≻ w4

f4 w2 ≻ ϕ ≻ w1 ≻ w3 ≻ w4

w1 f2 ≻ f3 ≻ f1 ≻ ϕ ≻ f4
w2 f1 ≻ f4 ≻ f2 ≻ ϕ ≻ f3
w3 f3 ≻ ϕ ≻ f1 ≻ f2 ≻ f4
w4 f1 ≻ f2 ≻ ϕ ≻ f3 ≻ f4

We can see that P̂w2
F∪W = Pf3

F∪W and µ2 is selected in (F ∪W, P̂w2
F∪W ).
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Proof of Proposition 2

P̂F∪W

f1 w1 ≻ w4 ≻ ϕ ≻ w2 ≻ w3

f2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2 ≻ w4

f4 ϕ ≻ w1 ≻ w2 ≻ w3 ≻ w4

w1 f2 ≻ f3 ≻ f1 ≻ ϕ ≻ f4
w2 f1 ≻ f4 ≻ f2 ≻ ϕ ≻ f3
w3 f3 ≻ ϕ ≻ f1 ≻ f2 ≻ f4
w4 f1 ≻ f2 ≻ ϕ ≻ f3 ≻ f4

P̂w2
F∪W

f1 w1 ≻ w4 ≻ w2 ≻ ϕ ≻ w3

f2 w4 ≻ w2 ≻ w1 ≻ ϕ ≻ w3

f3 w3 ≻ w1 ≻ ϕ ≻ w2 ≻ w4

f4 w2 ≻ ϕ ≻ w1 ≻ w3 ≻ w4

w1 f2 ≻ f3 ≻ f1 ≻ ϕ ≻ f4
w2 f1 ≻ f4 ≻ f2 ≻ ϕ ≻ f3
w3 f3 ≻ ϕ ≻ f1 ≻ f2 ≻ f4
w4 f1 ≻ f2 ≻ ϕ ≻ f3 ≻ f4

However, this violates own-side singles monotonicity.
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Restricted Singles Monotonicity

W -singles Monotonicity

In Example 1, we observe that the F -optimal stable solution violates the
requirements of singles monotonicity for f3-improvement, while the
W -optimal solution satisfies the requirements.

Definition 4
For a given (F ∪W,PF∪W ) ∈ E , suppose that w ∈ W satisfies µ(w) = ϕ
for each µ ∈ φ(F ∪W,PF∪W ). Then, a solution φ satisfies own-side
W -singles monotonicity if for each w-improvement Pw

F∪W over PF∪W and
each µ ∈ φ(F ∪W,PF∪W ), there exists ν ∈ φ(F ∪W,Pw

F∪W ) such that

µ(a) ⪰a ν(a)

for each a ∈ W \ {w}.
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Restricted Singles Monotonicity

W -singles Monotonicity

Definition 5
For a given (F ∪W,PF∪W ) ∈ E , suppose that w ∈ W satisfies µ(w) = ϕ
for each µ ∈ φ(F ∪W,PF∪W ). Then, a solution φ satisfies other-side
W -singles monotonicity if for each w-improvement Pw

F∪W over PF∪W and
each ν ∈ φ(F ∪W,Pw

F∪W ), there exists µ ∈ φ(F ∪W,PF∪W ) such that

ν(a) ⪰w
a µ(a)

for each a ∈ F .

Definition 6
A solution φ is W -singles monotonic if it satisfies both own-side and
other-side W -singles monotonicity.
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Restricted Singles Monotonicity

F -singles Monotonicity

Definition 7
For a given (F ∪W,PF∪W ) ∈ E , suppose that f ∈ F satisfies µ(f) = ϕ
for each µ ∈ φ(F ∪W,PF∪W ). Then, a solution φ satisfies own-side
F -singles monotonicity if for each f -improvement Pf

F∪W over PF∪W and
each µ ∈ φ(F ∪W,PF∪W ), there exists ν ∈ φ(F ∪W,Pf

F∪W ) such that

µ(a) ⪰a ν(a)

for each a ∈ F \ {f}.
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Restricted Singles Monotonicity

F -singles Monotonicity

Definition 8
For a given (F ∪W,PF∪W ) ∈ E , suppose that f ∈ F satisfies µ(f) = ϕ
for each µ ∈ φ(F ∪W,PF∪W ). Then, a solution φ satisfies other-side
F -singles monotonicity if for each f -improvement Pf

F∪W over PF∪W and
each ν ∈ φ(F ∪W,Pf

F∪W ), there exists µ ∈ φ(F ∪W,PF∪W ) such that

ν(a) ⪰f
a µ(a)

for each a ∈ W .

Definition 9
A solution φ is F -singles monotonic if it satisfies both own-side and
other-side F -singles monotonicity.
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Restricted Singles Monotonicity

Remark
A solution φ satisfies own-side singles monotonicity if and only if it satisfies
own-side W -singles and F -singles monotonicity. A solution satisfies
other-side singles monotonicity if and only if it satisfies other-side
W -singles and F -singles monotonicity.

Proposition 3
Let φ be a stable single-valued solution. Then, φ satisfies own-side
W -singles monotonicity if and only if it satisfies other-side W -singles
monotonicity.

Proposition 4
Let φ be a stable single-valued solution. Then, φ satisfies own-side
F -singles monotonicity if and only if it satisfies other-side F -singles
monotonicity.
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Restricted Singles Monotonicity

Theorem 1
The F -optimal stable solution SF satisfies W -singles monotonicity.
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Restricted Singles Monotonicity

Proof of Theorem 1

The Blocking Lemma

Let µF be the F -optimal matching and µ an individually rational matching.
If the set

F ′ ≡ {f ′ ∈ F | µ(f ′) ≻f ′ µF (f
′)} ̸= ∅,

there exists a blocking pair (f, w′) of µ such that f ∈ F \ F ′ and
w′ ∈ µ(F ′).
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Restricted Singles Monotonicity

Proof of Theorem 1

Proof.
It suffices to show othe-side W -singles monotonicity. Let µF (w) = ϕ for
some w ∈ W and let µw

F be the F -optimal matching in (F ∪W,Pw
F∪W ),

where Pw
F∪W is a w-improvement over PF∪W . Because µF (f) ̸= w for

each f ∈ F , µF is individually rational in (F ∪W,Pw
F∪W ). Suppose

F ′ ≡ {f ′ ∈ F | µF (f
′) ≻w

f ′ µw
F (f

′)} ̸= ∅.

By the Blocking Lemma, there exists a pair (f, w′) such that f ∈ F \ F ′

and w′ ∈ µF (F
′), and w′ ≻w

f µF (f) and f ≻w′ µF (w
′). Since

w′ ∈ µF (F
′), w′ ̸= w and obviously µF (f) ̸= w. Then, w′ ≻f µF (f),

implying (f, w′) block µF , which is a contradiction. Hence, F ′ = ∅ and
µh
F (f) ⪰w

f µF (f) for each f ∈ F . This shows other-side W -singles
monotonicity.
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Restricted Singles Monotonicity

Theorem 2
The W -optimal stable solution SW satisfies F -singles monotonicity.

own F -S.MON other F -S.MON own W -S.MON other W -S.MON

SF − − + +

SW + + − −
F -S.MON W -S.MON

SF − +

SW + −

Observation
The F -optimal stable solution is not the unique single-valued stable
solution satisfying W -singles monotonicity and the W -optimal stable
solution is not the unique single-valued stable solution satisfying F -singles
monotonicity.
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Multi-valued solutions

For the stable solution S, we may obtain the following result.

Theorem 3
The stable solution S satisfies own-side F -singles (W -singles) monotonicity
and hence own-side singles monotonicity.

Proof.
Let (F ∪W,PF∪W ) ∈ E and suppose that µ(f) = ϕ for each
µ ∈ S(F ∪W,PF∪W ) and Pf

F∪W is an f -improvement over PF∪W . Let
µW and µf

W be the W -optimal stable matchings in (F ∪W,PF∪W ) and in
(F ∪W,Pf

F∪W ), respectively. Because the W -optimal stable matching is
the worst for each firm among stable matchings and the W -optimal stable
solution satisfies own-side F -singles monotonicity, we have

µ(a) ⪰a µW (a) ⪰a µf
W (a)

for each a ∈ F \ {f}, which shows own-side F -singles monotonicity of S.
By the same arguments, S satisfies own-side W -singles monotonicity.
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Multi-valued solutions

own S.MON other S.MON
S + −

own F -S.MON own W -S.MON other F -S.MON other W -S.MON

S + + − −
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Characterizations of the stable solution

Axiomatizations of the stable solution

Axiom
Weak unanimity : For each (F ∪W,PF∪W ) ∈ E , if there exits a
matching µ ∈ M(F ∪W ) such that for each a ∈ F ∪W and each
b ∈ (F ∪W )−a ∪ {ϕ}, µ(a) ≻a b, then φ(F ∪W,PF∪W ) = {µ}.
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Characterizations of the stable solution

Definition 10
For each (F ∪W,PF∪W ) ∈ E , each h ∈ F ∪W \ (F ∪W ), and each
a ∈ (F ∪W ∪ {h})−h, a preference ordering ≻′

a is a h-extension of ≻a if
1 ≻′

a is a strict preference ordering over the set (F ∪W ∪ {h})−a ∪ {ϕ},
2 for each h′, h′′ ∈ (F ∪W )−a ∪ {ϕ}, h′ ≻a h′′ implies h′ ≻′

a h′′.

Definition 11
For each (F ∪W,PF∪W ) ∈ E and each h ∈ F ∪W \ (F ∪W ), a problem
(F ∪W ∪ {h},P ′

F∪W∪{h}) is a h-extension of (F ∪W,PF∪W ) if
1 each preference ordering in P ′

(F∪W∪{h})−h
is a h-extension of its

corresponding preference ordering in P(F∪W ),
2 each preference ordering in P ′

(F∪W∪{h})h\{h} is equal to its
corresponding ordering in P(F∪W ).
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Characterizations of the stable solution

Definition 12
For each (F,W ) ∈ F ×W, each µ ∈ M(F ∪W ), and each
h ∈ F ∪W \ (F ∪W ), let µ+h ∈ M(F ∪W ∪ {h}) be such that

1 for each a ∈ F ∪W , µ+h(a) = µ(a),
2 µ+h(h) = ϕ.

Axiom
Null player invariance : For each (F ∪W,PF∪W ) ∈ E , each
h ∈ F ∪W \ (F ∪W ), and each h-extension (F ∪W ∪ {h},P ′

F∪W∪{h}) of
(F ∪W,PF∪W ) in which h is unacceptable for each a ∈ (F ∪W ∪ {h})−h,
we have {µ+h | µ ∈ φ(F ∪W,PF∪W )} = φ(F ∪W ∪ {h},P ′

F∪W∪{h}).
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Characterizations of the stable solution

Definition 13
For each (F ∪W,PF∪W ) ∈ E , each µ ∈ M(F ∪W ), each F ′ ⊂ F with
F ′ ̸= ∅, and each W ′ ⊂ W with W ′ ̸= ∅, a problem (F ′ ∪W ′,P ′

F ′∪W ′) is
a reduced problem of (F ∪W,PF∪W ) at µ if for each a ∈ F ′ ∪W ′,

1 if µ(a) ̸= ∅, then µ(a) ∈ (F ′ ∪W ′)−a

2 agent a’s preference ordering in P ′
F ′∪W ′ is the restriction of agent a’s

preference ordering in PF∪W onto (F ′ ∪W ′)−a ∪ {ϕ}.

We also define µF ′∪W ′ ∈ M(F ′ ∪W ′) is the the restriction of µ to the set
F ′ ∪W ′.

Axiom
Consistency: For each (F ∪W,PF∪W ) ∈ E and each
µ ∈ φ(F ∪W,PF∪W ), if (F ′ ∪W ′,P ′

F ′∪W ′) is a reduced problem of
(F ∪W,PF∪W ) at µ, then

µF ′∪W ′ ∈ φ(F ′ ∪W ′,P ′
F ′∪W ′).
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Characterizations of the stable solution

Definition 14
For each (F ∪W,PF∪W ) ∈ E , each µ ∈ M(F ∪W ), and each
a ∈ F ∪W , let L(µ,≻a) = {b ∈ (F ∪W )−a ∪ {ϕ} | µ(a) ⪰a b}.

For each (F ∪W,PF∪W ) ∈ E and each µ ∈ M(F ∪W ), a preference
profile P ′

F∪W = {≻′
a| a ∈ F ∪W} is obtained by a monotonic

transformation of PF∪W at µ if for each a ∈ F ∪W ,

L(µ,≻a) ⊆ L(µ,≻′
a).

Axiom
Maskin invariance: For each (F ∪W,PF∪W ) ∈ E and each
µ ∈ φ(F ∪W,PF∪W ), if P ′

F∪W is obtained by a monotonic transformation
of PF∪W at µ, then

µ ∈ φ(F ∪W,P ′
F∪W ).
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Characterizations of the stable solution

Theorem 4

The stable solution is the unique solution satisfying weak unanimity, null
player invariance, own-side singles monotonicity, and consistency.

Theorem 5

The stable solution is the unique solution satisfying weak unanimity, null
player invariance, own-side singles monotonicity, and Maskin invariance.

Remark
All axioms in Theorems 4 and 5 are mutually independent.
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Characterizations of the stable solution

Related literature

“Respecting improvements” of a student’s test scores:
Balinski and Sönmez (1999) (in a “students placement”)

“Regional cap” (distributional constraints):
Kamada and Kojima (2012, 2015), Fragiadakis and
Troyan (2017)
Characterization of the stable solution:
Sasaki and Toda (1992), Toda (2006), Klaus (2011), Can and
Klaus (2013), Nizamogullari and Özkal-Sanver (2014)
Characterization of the “deferred acceptance rule”: Kojima and
Manea (2010), Morrill (2013), Ehlers and Klaus (2014),
Chen (2017)
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