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Abstract

We examine innovation as a market-entry timing game with complete in-
formation and observable actions, allowing for heterogenous players and
for multi-peaked and non-monotonic leader payoffs. Assuming that the
follower’s payoff is non-increasing with the time of the leader’s entry, we
characterize all pure-strategy subgame perfect equilibria for the two-player
asymmetric model, showing that there are at most two equilibria. Moreover,
firm heterogeneity allows for equilibria with different types of characteris-
tics than previously examined in the literature. For example, anticipating
that it will be preempted by its rival, a firm may opt to enter even earlier,
effectively blocking entry. Our general framework also allows us to analyze
comparative statics relating to the timing of entry. In a tale of caution for
policy makers, unlike with symmetric firms, our results indicate that with
heterogenous firms the timing of entry (and the technology adopted) could
respond ambiguously to changes in payoffs.
Key words: timing games, entry, leader, follower, process innovation, prod-
uct innovation.
JEL classifications: C72, L13, O31, O33.

1 Introduction

When should a firm innovate or launch a new product? Sometimes it is better to be
first into a market. Reinganum (1981a,b) shows that when firms can observe their
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rival’s actions (in an open-loop equilibrium), the leader can receive a higher payoff
than the follower. Moreover, the second entrant might end up entering much later
than the leader, even though the duopolists are ex ante identical. The conventional
business-press wisom of a first-mover advantage does not universally hold; that is,
a market leader need not always be better off. Fudenberg and Tirole (1985) show
that when rivals’ actions are observable (in a closed-loop equilibrium) the incentive
to preempt can dissipate all potential gains from entering first, equalizing rents to
both firms in the process. Moreover, in many situations it can be advantageous
to enter the market second, rather than first, as the market pioneer might need to
incur set-up or R&D costs on which its rival can free-ride.

Several themes run through this existing literature. Firstly, the presence of a
rival(s) complicates a firm’s entry decision, given the potential strategic interac-
tion. Secondly, this interaction can induce inefficient entry (Fudenberg and Tirole,
1985). Drawing on these themes we study a novel duopoly model of innovation
that allows for: (i) heterogeneous firms; and (ii) the possibility that alternative
technologies become available (at a later date) if a firm delays entry. We provide
a general solution method and completely characterize all pure-strategy subgame
perfect equilibria. In this framework we show that new inefficiencies can arise; not
only is it the case that firms can choose to enter the market at the wrong time,
they can also choose to enter the market with the wrong technology.

The basic features of our model are as follows. Two firms can make an irre-
versible and one-off decision to enter a market. Time is continuous and all previous
actions (entry or not) are observable; consistent with this, we focus on closed-loop
equilibria. In Fudenberg and Tirole (1985) and others, the entrants are ex ante
identical and have access to the same potential innovation. But usually firms are
not all the same. Drawing inspiration from Katz and Shapiro (1987), we study
two heterogenous firms that can have different payoffs from entering at a given
time.1 This assumption of heterogeneity is widely applicable. Firms might differ
in their ability to exploit market opportunities, for instance. The expected pay-
offs could differ between two rivals considering launching a new phone handset or
tablet (with equivalent functionality) given their existing reputation or network.
It could also depend on the other tie-in products they have to offer. The same
can be said for a process (cost-saving) innovation – its payoff depends on access
to markets, how the new technology meshes with a firm’s existing practices, and

1Katz and Shapiro (1987) analyze an innovation game with heterogenous firms when there is
licensing (by the leader) and imitation (by the follower). They find that industry leaders (who
are more efficient) need not be the firm that innovates, as it may prefer to free ride on the public
good provided by its rival. Riordan (1992) uses a similar framework to examine the impact of
regulation of technological adoption. Also see Galasso and Tombak (2014), who adapt Katz and
Shapiro (1987) to study the take-up of green technologies that have both a private and public
good benefit by asymmetric firms.
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so forth.
As noted above, firms often also have to choose which technology to implement

when they enter the market. Returning to the smartphone example, Samsung
made a choice to switch its cell phone operating system from its own in-house
system to an Android platform. Sony also made an equivalent choice. Despite
its closed system, in many ways Apple faces a similar tradeoff when it considers
the introduction of iOS for its devices. Implicit in this is that not all technologies
are available immediately; rather, some technologies are only available (or worth
considering) later. To capture this, unlike in Katz and Shapiro (1987), we allow
the leader’s payoff to be multi-peaked with respect to its entry time. This payoff
structure, generated by the choice between multiple technologies, combined with
the asymmetric payoffs between players, creates a new strategic entry environment
not previously analyzed.

While we place effectively no restrictions on the leader’s payoff function other
than continuity, in a similar way to Hoppe and Lehmann-Grube (2005) and Argen-
ziano and Schmidt-Dengler (2012, 2013, 2014), we assume that the payoff of the
follower is non-increasing with leader’s time of entry. This could be the case, for
instance, when later entry by the leader (conditional on it still being first) affords
it to enter the market with a better (less costly) production technology or product,
or possibly both, which in turn exerts greater competitive pressure on the second
entrant.

Adapting the solution technique of Smirnov and Wait (2015) to asymmetric
firms, we characterize all pure-strategy subgame perfect equilibria. In any entry
game in our setting we find that there can be zero, one or two pure-strategy equi-
libria. Just like in Fudenberg and Tirole (1985) and Katz and Shapiro (1987), we
show that there can be a preemption equilibrium, in which a firm enters before the
stand-alone entry time.2 It is also possible that there is a second-mover advantage
equilibrium.3 In this type of equilibrium, while both firms would prefer to enjoy
the spoils of being second, one of the two needs to self sacrifice and enter first.
Firm heterogeneity, however, allows for another, even more nuanced, possibility.
As it turns out, with asymmetric payoffs it is feasible that one of the firms wishes
to be a leader while, at the same time, the other would prefer to be a follower. In
this way, firm asymmetries can allow leader and follower advantages to co-exist in
equilibrium.

Given its generality, our model incorporates equilibria highlighted in the pre-

2This terminology follows Katz and Shapiro (1987), in which the stand-alone entry time is
time of entry a firm would choose if it faces no threat of entry by a rival.

3Theoretically, second-mover advantages with observable actions have been studied by Dutta
et al. (1995), Hoppe (2000), Hoppe and Lehmann-Grube (2001), Hoppe and Lehmann-Grube
(2005) and Smirnov and Wait (2007, 2015). Also see the empirical findings of Tellis and Golder
(1996), who show that early imitators often outperform market pioneers.
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vious literature, such as the preemption and second-mover advantage equilibria.
However, heterogeneity of firm payoffs allows for equilibria with novel yet empiri-
cally relevant characteristics. In our analysis we show that it is not only possible
that the timing of entry is inefficient, but that the leader enters with less efficient
technology. This arises under plausible economic scenarios when, for example, a
firm anticipating that it will be preempted by its rival, opts to enter even earlier
(with the less efficient technology). This blocking entry equilibrium is only possible
with heterogeneous firms, and could result in multiple inefficiencies, with respect
to the type of technology adopted, the timing of entry and even which of the firms
enters as the market leader. Our model is also a tale of caution for policy makers
who wish to influence the timing (and technology chosen) in a particular market.
Unlike the symmetric case where the direction of change is clear, with heterogenous
firms we show that when the leader and follower entry payoffs change (perhaps
due to a subsidy or tax break), the effect on the timing of entry is ambiguous.

Our blocking entry outcome is potentially empirically relevant. It also has
links to the blocking/accommodation literature, as summarized in Tirole (1988),
in which a firm (the incumbent) invests in the first period (in R&D, development
of patents, production capacity, investment to reduce costs, advertising, and so
on) in anticipation of its effect on the ex post competition. In this setup, an
incumbent might wish to invest in order to block entry by a potential rival, staying
as a monopolist in the market. Alternatively, the incumbent might be better not
blocking but accommodating entry by its rival, but it will still strategically invest
with an eye on its returns in the duopoly market.4

Adapting this theoretical framework, Gil et al. (2015) empirically investigate
preemption in the US drive-in cinema market, and find a non-monotonic rela-
tionship between market size and preemption; whilst early entry will have little
impact on the final market structure in either very small or very large markets,
it is the mid-sized markets in which there is the greatest incentive to preempt a
rival.5 Similarly, Schmidt-Dengler (2006) apply a timing-game framework to study
preemption and business stealing in relation to the adoption of MRI technology
by US hospitals. As in these two empirical studies, the timing of entry in our
model depends on the strategic interaction between the firms and, in particular,
the threat of entry by a rival can induce early entry by a firm. This sorts of
strategic issues are also discussed in the business press. The fierce rivalry between
Apple and Samsung in the smartphone market, for instance, manifests itself in

4The subtly in these models comes from the interaction between the incumbents investment
and the nature of ex post competition. See Tirole (1988) and Fudenberg and Tirole (1984), for
example.

5Also see Ellison and Ellison (2011) for an application to blocking and accommodating in-
vestment by pharmaceutical companies relating to drugs coming off patents.
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no small way in the launch dates for new versions of the iPhone or the Galaxy.6

Our blocking entry equilibrium suggests that the threat of preemption can induce
a firm to enter so much earlier than its preferred time that it requires launching
an inferior product or technology, or one that is really not ready for market.

This paper draws on an extensive literature on innovation timing games.7

Our analysis of an irreversible investment decision with complete information and
observable actions (closed-loop equilibria) follows Fudenberg and Tirole (1985),
Dutta et al. (1995), Hoppe and Lehmann-Grube (2005) and Smirnov and Wait
(2015). This framework has been used to study a range of applications. For ex-
ample, Argenziano and Schmidt-Dengler (2012, 2013, 2014) adopt a variant of
Fudenberg and Tirole (1985) to examine the order of market entry, clustering and
delay. They show that with many potential entrants the most efficient firm need
not be the first to enter the market and that delays are non-monotonic with the
number of firms. In addition, they suggest a new justification for clustering of
entry. Others have studied similar issues. Anderson et al. (2017) studies delays
and rushes into a market in a stopping game with a continuum of players.8

While we assume that previous actions of a rival are observable, an alternative
approach to study innovation is to assume players’ actions are unobservable as in
Reinganum (1981a,b), where unobservable actions are equivalent to each firm being
able to pre-commit. Reinganum shows that in the open-loop equilibria there will
be diffusion in the sense that firms adopt the technology at different dates, even
though all firms are ex ante identical. Similarly, Park and Smith (2005) develop an
innovation game with unobservable actions that permits any firm (in terms of the
order of entry) to receive the highest payoff. This allows for a war-of-attrition, with
higher payoffs for late movers, a pre-emption game with higher payoffs for early
movers, and a combination of both. An important point of comparison is that in
our model firms use feedback rules to determine their strategy at any particular
point in time; this means that they are unable to commit to their strategy at the
beginning of the game.

Information also plays a key role in the players’ entry strategies. Bloch et al.
(2015) show that when two potential rivals are uncertain about their entry costs,
competition leads to inefficient entry that is too early. Other authors consider
inefficiencies in innovation when there is asymmetric information. For example,
Bobtcheff and Mariotti (2012), Hendricks (1992) and Hopenhayn and Squintani
(2011) assume that a firm’s capability to innovate is private information. In these
models, delay allows a firm to get better information about the potential innovation

6See, for example, ‘Phone tag; Apple v Samsung’ in The Economist, September 16 2017.
7See Hoppe (2002) or Van Long (2010, Chapter 5) for a survey of the literature. Further,

Fudenberg and Tirole (1991) consider innovation when the firms make one irreversible decision
(to enter) in a simple timing-game framework (see Sections 4.5 and 4.12).

8See also Riordan (1992) and Alipranti et al. (2011, 2015).
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(its costs, value, and so on), but waiting runs the risk that a rival will innovate
first, capturing the lion’s share of the returns.

2 The model

Assume two firms (i = 1, 2) are in a continuous-time stopping game starting at
t = 0 until some terminating time T ∈ (0,∞]. Firm i’s one-off decision to stop
(that is, ‘enter’ the market) at ti ≥ 0 is irreversible and observable immediately
by the other firm. The game ends when one of two firms has stopped/entered the
market. The payoff to each firm depends on the stopping time. If the game ends
with player i stopping at time ti, the payoffs of the leader and the follower are
Li(ti) and Fj(ti), respectively, where i, j = 1, 2 and i 6= j.

We make the following assumptions.

Assumption 1. Time is continuous in that it is ‘discrete but with a grid that is
infinitely fine’.

Assumption 2. Firms always choose to stop earlier rather than later in payoff-
equivalent situations.

Assumption 3. If more than one firm chooses to stop (enter) at exactly the same
time, one of these firms is selected to stop (each with an ex ante probability of 1

2
).

Entry models in the literature adopt equivalent assumptions. Assumption 1
invokes Simon and Stinchcombe (1989) who show that under certain conditions a
continuous-time strategy profile is the limit of a discrete-time game with increas-
ingly fine time grids. It also replicates A1 of Hoppe and Lehmann-Grube (2005).9

Assumption 2, which is similar to A3 in Hoppe and Lehmann-Grube (2005), allows
us to focus on just one (payoff-equivalent) equilibrium in the case of indifference
between early and late entry.10 This simplifies our analysis so as to focus on the
timing of entry rather than on issues of equilibrium selection.

Assumption 3 – part of A3 in Hoppe and Lehmann-Grube (2005) and Assump-
tion 5 in Dutta et al. (1995) – avoids potential coordination failures involving
simultaneous entry. Given its importance, the intuition underlying this assump-
tion warrants further discussion. In some situations, as a practical matter, if two
firms try to enter the market at the same time there might be some capacity
constraint or institutional requirement that prevents joint entry – consequently,
one firm becomes the leader and the other firm is relegated to the role of second

9See Hoppe and Lehmann-Grube (2005), footnote 4 for a further discussion.
10Hoppe and Lehmann-Grube (2005) assume that if the follower is indifferent between two

alternative entry times, it chooses the earliest time of entry.
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entrant. For instance, in a particular market there could be a bureaucratic rule
that requires the leadership role be allocated to the firm that has the first email
registered in a designated inbox. Even if both firms simultaneously send their mes-
sages, only one email can arrive first. As a consequence, with simultaneous moves,
each firm has some probability of being the leader. Equivalent intuition applies to
any (bureaucratic) tie-breaking rule that determines the winner in what seems to
be a dead heat. Dutta et al. (1995) present a similar rationale for this assumption,
suggesting there could be small random delays between when a decision is made
and when a new technology is adopted, meaning that there is a positive probability
that either firm is first in the event of joint adoption. Here, Assumption 3 gives
both firms an equal chance of being first when there is simultaneous entry.

The following two assumptions ensure that the leader stops in finite time.11 The
first element of this is that leaders’ payoff functions reach their respective global
maxima at a finite point in time; this means that both firms will not delay entry
indefinitely. Dutta et al. (1995) (Assumption 3), Fudenberg and Tirole (1985)
(Assumption 2(ii)) and Smirnov and Wait (2015) (Assumption 4) all make equiv-
alent assumptions. Secondly, we assume that entering provides a higher payoff
than each firm’s respective outside option of zero, thus ensuring that our analysis
is not unnecessarily complicated by having to consider whether one or both firms
never enter the market. Again, this mirrors assumptions made previously in the
literature, such as Assumption 2(ii) in Fudenberg and Tirole (1985), Assumption 4
in Dutta et al. (1995) and Assumption 5 in Smirnov and Wait (2015).

Assumption 4. There exists a finite T̂i < T , which is the earliest time at which
Li(t) attains its global maximum. Specifically, Li(T̂i) > L(τ) ∀ τ < T̂i, and

Li(T̂i) ≥ L(τ) ∀ τ ≥ T̂i where i = 1, 2.

Assumption 5. Each firm’s outside (non-entry) payoff is normalized to 0, and
Li(t) ≥ 0 and Fi(t) ≥ 0 i = 1, 2.

Finally, we assume that the advantage of being second is non-increasing with
the leader’s time of entry. This follows Hoppe and Lehmann-Grube (2005) who
employ a similar assumption. In addition, this assumption incorporates the sce-
nario studied in Argenziano and Schmidt-Dengler (2012, 2013, 2014), in which the
payoff of the follower is constant with respect to the leader’s entry time.12

There are several possible explanations for why the follower’s payoff would
be non-increasing in the leader’s entry time. If either cost fall or there is an

11When there is no ambiguity, we refer to payoffs as a function of t rather than t1.
12It is worth noting that here we assume one potential innovation implemented by the market

leader. In Argenziano and Schmidt-Dengler (2014), on the other hand, they model explicitly both
firms entering the market. In equilibrium in their model entry by the follower always occurs at
some later fixed date, resulting in a constant payoff for the follower.
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improvement of the quality of the product with time, later entry by the leader
could place the follower at a relative disadvantage; any delay in the initial entry
time could help make the leader a stronger competitor, other things equal, hurting
the firm that enters the market second. It is worth noting that this assumption is
not crucial; rather, our key results hold in a more general environment. Assuming
that the follower’s payoff is non-increasing in the leader’s time of entry, however,
helps highlight the key economics insights of the model. We discuss this issue
further in Section 5.

To aid in exposition, we restrict our analysis to continuous leader and follow
payoff functions. A detailed analysis solving entry games with discontinuous (but
symmetric) payoffs can be found in Smirnov and Wait (2015).

This discussion is summarized in following assumption.

Assumption 6. Li(t) is continuous, while Fi(t) is continuous and non-increasing
for i = 1, 2.

In summary, the first five assumptions are standard in the market-entry timing
game literature with complete information and observable actions; see for exam-
ple Smirnov and Wait (2015). Our last assumptions is similar to Argenziano and
Schmidt-Dengler (2012, 2013, 2014) and Hoppe and Lehmann-Grube (2005), how-
ever we allow for more generality in the structure of payoffs.

To conclude this subsection, we outline two useful definitions. Firstly, provided
Li(t) and Fi(t) cross at least once, following Katz and Shapiro (1987), we define

T̃i to be the earliest time the payoff functions intersect.

Definition 1. If Li(t) and Fi(t) intersect, T̃i ≤ T is the earliest time at which
Li(t) = Fi(t).

Secondly, we will use the following definition.

Definition 2. Define T̄2 ≤ T̃2 to be the earliest time at which L2(t) attains its

maximum for t ∈ [0, T̃2].

2.1 Equilibrium concept

Following Fudenberg and Tirole (1985), we use subgame perfection. A history ht
is defined as the knowledge of whether or not firm i = 1, 2 previously stopped at
any time τ < t, and if so when. A strategy of firm i, denoted by σi(ht), indicates
at each history ht whether firm i stops at t (σi(ht) = 1) or does not stop at t
(σi(ht) = 0). A strategy pair (σ1, σ2) maps every history to an outcome, which
is the minimum of stopping times t1 and t2. As usual, a strategy profile (σ∗1, σ

∗
2)

constitutes a subgame perfect equilibrium (SPE) if the strategies are sequentially
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rational after every history. Note here that with this representation we only need
to specify the strategies when there has been no entry in the history of the game,
because we assume that once one firm has entered, the game ends (Katz and
Shapiro, 1987). This allows us, for ease of exposition, to refer to each firm’s entry
strategy as a function of time only, σi(t).

3 Characterization of equilibria

In this section we first describe equilibria in the case of symmetric firms, before ex-
ploring market entry when the firms potentially have different payoffs (Section 3.2).

3.1 Symmetric firms

To outline a benchmark for the analysis that follows, first assume that both firms
are the same in terms of their potential payoffs. The proposition below describes
the method for determining the entry time of the leader in the symmetric case.

Proposition 1. [Smirnov and Wait (2015)] The equilibrium of the symmetric
model is always unique. The first firm’s stopping time t∗ is given by

t∗ = min arg max
t

min[L(t), F (t)]. (1)

As outlined in Smirnov and Wait (2015), this algorithm takes the minimum of
the payoff functions for the leader and the follower, respectively. If the leader’s
payoff at the start of the game exceeds (or is equal to) the follower’s payoff, given
the follower’s payoff is non-increasing, immediate entry (t∗ = 0) maximizes the
minimum of the two payoff functions (or is the earliest time to do so). In this case
there is a first-mover advantage (or rents are equalized if L(0) = F (0)). Consider
now the case when at the start of the game the follower’s payoff exceeds that of
the leader. Given that the follower’s payoff is non-increasing, the first intersection
between the two payoff functions (T̃ ) is the only intersection that is economically

relevant. If the leader’s payoff is at its historical maximum at T̃ , entry occurs
at this time (equalizing rents). This situation is illustrated in Figure 1(a). The
bold line traces out the minimum of the leader and follower payoff functions. On
the other hand, consider the situation when the leader’s payoff at T̃ is not at its
historical maximum; see Figure 1(b). In this case there are two second-mover
advantage equilibria in which one of the firms enters at t∗, while the other enjoys
a higher payoff as the follower. Finally, when there is no intersection between L(t)
and F (t), and F (t) always exceeds L(t), the leader enters at the time that L(t)

attains its global maximum (T̂ ). Again, there are two pure-strategy equilibria
with a second-mover advantage, which entail either one of the firms acting as the
market leader.
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Figure 1: Preemption and second-mover advantage with symmetric firms
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3.2 Asymmetric firms

As noted previously, firms are more often than not different from one another.
In this section we develop a method of determining the leader’s entry time in all
pure-strategy SPE, allowing for asymmetric payoff functions. Firstly, to find the
pure-strategy SPE we note that any equilibrium with player i entering at time ti
must satisfy two necessary conditions:

Condition 1. No preemption by the leader i (NPL): Li(ti) > Li(τ), ∀ τ ∈ (0, ti).

Condition 2. No preemption by the follower j (NPF): Fj(ti) > Lj(τ), ∀ τ ∈
(0, ti) and Fj(ti) ≥ Lj(ti).

If the NPL does not hold, the leader (player i) will deviate by entering earlier.
Similarly, the NPF must hold in any SPE, otherwise the follower (player j) has
an incentive to preempt and enter slightly earlier than the leader, as in Fudenberg
and Tirole (1985).13 Even if these conditions hold, they do not in of themselves
guarantee that a specific entry time is part of an SPE, because both only compare
payoffs at a particular time relative to their historic values. These conditions, by
definition, do not make any comparisons with future potential payoffs. Of course,
such a consideration is necessary when determining any SPE.

To solve for the leader’s entry time, let us eliminate all points that do not
satisfy either of these conditions (the NPL and the NPF ) by constructing sets
A1(t

′, t′′) and A2(t
′, t′′). For each firm i ∈ {1, 2}, j 6= i and t′′ > t′ ≥ 0, define the

following set:

Ai(t
′, t′′) = { t ∈ (t′, t′′] | Li(t) > Li(τ) & Fj(t) > Lj(τ) ∀ τ ∈ (t′, t) & Fj(t) ≥ Lj(t)}.

(2)
By definition, a point belongs to set Ai(t

′, t′′) if it satisfies both NPL and NPF.
By way of comparison, to solve the symmetric-player entry game Smirnov and
Wait (2015) construct one set that is applicable to both firms. Here, asymmetry
requires the construction of a set Ai(.) for each firm and for any truncated game
played on interval [t′, t′′].

For each firm i ∈ {1, 2} define the following time

t∗i =

{
arg max

t
Ai(0, T ) when Ai(0, T ) 6= ∅,

0 when Ai(0, T ) = ∅.
(3)

In addition, assume without loss of generality that t∗1 ≥ t∗2. Moreover, for the
truncated game played on [0, t∗2] define the following time

t∗∗1 =

{
arg maxA1(0, t

∗
2) when A1(0, t

∗
2) 6= ∅,

0 when A1(0, t
∗
2) = ∅. (4)

13Argenziano and Schmidt-Dengler (2014) adopt similar conditions, which they refer to as the
Leader Preemption Constraint and the Follower Preemption Constraint.
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Now we are in the position to characterize all SPE of the game with asymmetric
payoff functions, as summarized in the following proposition.

Proposition 2. Consider the SPE of the two-player asymmetric timing game. If

1. A1(t
∗
1, T ) = ∅ and L1(t

∗
1) > F1(t

∗
1), the SPE involves firm 1 entering at t = t∗1;

2. A1(t
∗
1, T ) = ∅ and L1(t

∗
1) ≤ F1(t

∗
1), there are two SPE, one with firm 1

entering at t = t∗1 and the other with firm 2 entering at t = t∗2;

3. A1(t
∗
1, T ) 6= ∅

(a) t∗2 < T̄2 and A2(t
∗
2, t
∗
1) = ∅, there is no SPE;

(b) t∗2 = T̄2 and A2(t
∗
2, t
∗
1) = ∅, there is a unique SPE with firm 2 entering

at t = t∗2;

(c) A2(t
∗
2, t
∗
1) 6= ∅, there is a unique SPE involving firm 1 entering at t = t∗∗1 .

Proof: See Appendix A.

To help in outlining the intuition underlying Proposition 2, consider the follow-
ing series of corollaries, first starting with the simplest scenario when the leader
payoff functions are monotonically increasing until their global maxima T̂i, for
i = 1, 2, respectively.

Corollary 1. Assume that for i = 1, 2: Li(t) and Fi(t) cross at least once; Li(t)

is a monotonically increasing function for t ∈ [0, T̂i]; and T̂1 ≥ T̃1. In the SPE of
the two-player asymmetric timing game:

1. if t∗1 > t∗2 the SPE is unique and involves firm 1 entering at t = t∗1;

2. if t∗1 = t∗2 there are two SPE that involve either firm entering at t = t∗1.

When: (i) both leader curves intersect with their corresponding follower curves;
(ii) the leader functions are monotonically increasing functions until they reach
their global maxima; and (iii) the maxima occur after the first intersections, there
are three possible equilibrium outcomes. As explained below, all three involve
preemption by firm 1. The first possibility is illustrated in Figure 2.14 In this case
the global maxima for both leader payoff functions are at an entry time after t∗2.
Given the incentive to preempt, entry will occur at a time before either of these
maxima. Rather, firm 1 enters at t∗1 = T̃2 (where L2 crosses F2) so as to just
preempt entry by its rival.15

14Both in this example and in most of the examples that follow we make the simplification
that F1 = F2 for illustrative purposes.

15Note that by construction T̃1 < T̃2.
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Figure 2: Both leader’s payoffs are monotonically increasing functions

Now consider the case when T̃1 < T̂1 < T̃2. Firm 1 will enter at the time that
maximizes its leader payoff, T̂1. Again there is a unique time of entry – t∗1 – but
in this case firm 1 has a first-mover advantage whereas firm 2 prefers to be the
second mover.

Finally, there is also the possibility that the first intersection between either
leader payoff functions and the follower payoff curve occurs at the same time –
that is T̃1 = T̃2. In this case both firms are in a preemption game. There are two
equilibria with either firm entering at t = T̃1 = T̃2. Notably, in each of these three
scenarios, there is either one equilibrium (with firm 1 entering) or two equilibria
(with the same entry time).

Next, let us consider an intermediate scenario where both leader’s payoff curves
are concave. While similar to the scenario considered in Katz and Shapiro (1987),
our Assumption 5 guarantees that one of the firms always (eventually) enters the
market.

Corollary 2. Consider the SPE of the two-player asymmetric timing game when
both L1(t) and L2(t) are concave (hump-shaped) functions. If

1. A1(t
∗
1, T ) = ∅ and L1(t

∗
1) > F1(t

∗
1), there is a unique SPE with firm 1 entering

at t = t∗1.

2. A1(t
∗
1, T ) = ∅ and L1(t

∗
1) ≤ F1(t

∗
1), there are two SPE, one with firm 1

entering at t = t∗1 and the other in which firm 2 enters at t = t∗2.

3. A1(t
∗
1, T ) 6= ∅

13
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Figure 3: Example of Corollary 2(2) when both leader’s payoffs are concave func-
tions, L1(t

∗
1) ≤ F1(t

∗
1) and A1(t

∗
1, T ) = ∅: entry occurs at either t∗1 or t∗2

(a) and t∗2 < T̂2, there is no pure-strategy SPE.

(b) and t∗2 = T̂2, there is a unique pure-strategy SPE, in which firm 2 enters
at t = t∗2.

With the concave leader payoff functions described in Corollary 2, the SPE
need not just involve a preemption equilibrium, which was the case in Corollary 1.
Note, first, Corollary 2(1) includes the case covered in Corollary 1(1). This is the
case, presented in Figure 3, when both firms have an incentive to preempt, however
firm 1 has an advantage in terms of payoffs (L1(t

∗
1) > F1(t

∗
1)). Corollary 2(1) also

includes the ‘mixed’ case scenario in which firm 1 prefers to be a leader, entering at
t∗1 = T̂1 (as L1(t

∗
1) > F1(t

∗
1) and A1(t

∗
1, T ) = ∅, meaning that there is no advantage

waiting for a higher payoff later), whereas firm 2 prefers to be a follower at t∗1
rather than entering as a leader at t∗2, because L2(t

∗
2) < F2(t

∗
1).
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The strategies firms adopt in this SPE are:

σ1(t) =

{
1 if [A1(t, T ) = ∅ & L2(t) ≤ F2(t)] & [L1(t) > F1(t) & L2(t) > F2(t)],
0 otherwise;

σ2(t) =

{
1 if L2(t) > F2(t),
0 otherwise.

These strategies require that firm 1 enters in two distinct situations. Firstly, firm 1
opt to be the leader when it has no further incentive to wait in the hope of a higher
return later (A1(t

∗
1, T ) = ∅) and firm 2 prefers to be a follower, as L2(t) ≤ F2(t).

The second situation resembles the classic preemption game outlined in Fudenberg
and Tirole (1985), as both firms prefer to be a leader rather than a follower when
both L1(t) > F1(t) & L2(t) > F2(t). On the other hand, considering the strategy
of firm 2, it will only enter the market at t if doing so dominates waiting. This
holds when L2(t) > F2(t), remembering that F2(t) is a non-increasing function.

Corollary 2(2) corresponds to two distinct scenarios. Firstly, as in Corol-
lary 1(2), if A1(t

∗
1, T ) = ∅, t∗1 = t∗2 and Li(t

∗
1) = Fi(t

∗
1) there are two preemption

equilibria, with either firm acting as the leader, t∗1 = t∗2. This is illustrated in the
top panel of Figure 3. In one of the equilibria firm 1 enters at t∗1, while firm 2
waits. Alternatively, firm 1 plays the role of the follower, and firm 2 enters as the
market pioneer. In either of the equilibria entry occurs at the same time.

The second scenario covered by in Corollary 2(2) is illustrated in the example
shown in the bottom panel of Figure 3. Note that L1(t

∗
1) ≤ F1(t

∗
1) and L2(t

∗
2) <

F2(t
∗
2). In this case there are two SPE, each with a second-mover advantage. In

each of these equilibria either firm enters when they attain their highest leader
payoffs T̂i (and the other firm always waits, unless entering strictly dominates
waiting).

Explicitly, for SPE in Corollary 2(2) where firm i is the leader and firm j is the
follower, the firms’ strategies in each of the SPE are:

σi(t) =

{
1 if [Ai(t, T ) = ∅ & Lj(t) ≤ Fj(t)] & [L1(t) > F1(t) & L2(t) > F2(t)],
0 otherwise;

σj(t) =

{
1 if Lj(t) > Fj(t),
0 otherwise.

These strategies generalize the outlined for Corollary 2(1) above. Consider
the equilibrium when firm 2 enters, so it plays the role of firm i. Its strategy
involves it waiting until its leader payoff is maximized, and then entering at this
time. If, somehow, a preemption subgame is reached in which [L1(t) > F1(t) and
L2(t) > F2(t), entering dominates waiting, so firm 2 would enter. Conversely,
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Figure 4: Example of SPE in Corollary 2(3b), when A1(t
∗
1, T ) 6= ∅ and t∗2 = T̂2:

firm 2 is the market leader, entering at t∗2
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Figure 5: Example of no pure strategy SPE in Corollary 2(3a): A1(t
∗
1, T ) 6= ∅ and

t∗2 < T̂2

firm 1 plays the role of follower in this cae. It will always wait, unless its leader
payoff exceeds the return from being a follower.

Now consider Corollary 2(3). This part captures a very different type of sce-
nario than the equilibria described above. To garner the intuition for these cases,
with the help of Figure 4, first consider Corollary 2(3b). As illustrated in the top
panel of the Figure, if the game reaches t∗1 without entry, firm 1 would not enter

at this time; rather it has an incentive to wait and enter at T̂1. Understanding
firm 1’s incentive, as L2(t

∗
1) is below its historical maximum, firm 2 has an incen-

tive to preempt and enter at t∗2.
16 Consequently, there is a unique equilibrium with

firm 2 entering at t∗2.
Note that this example satisfies the condition L1(t

∗
1) < F1(t

∗
1). However, in

general any sign between L1(t
∗
1) and F1(t

∗
1) is possible. To illustrate this, consider

the example shown in Figure 4(b), in which firm 1 has a leader advantage (after T̃1)
whereas there is a second-mover advantage for firm 2. This example is equivalent
to the example presented in Figure 2C in Katz and Shapiro (1987). Employing the
same logic as in the example in Figure 4(a), if the game were to reach t∗1 without

entry, firm 1 would have an incentive to wait and only enter at T̂1. At this time
in the game, there is no credible way firm 2 can prevent firm 1 from waiting, as
firm 2’s follower payoff exceeds its return as a leader. Anticipating this, firm 2 has
an incentive to preempt; there is a unique equilibrium with firm 2 entering at t∗2
(its historical maximum payoff as leader). As noted by Katz and Shapiro (1987),

16In Figure 4(a) A1(0) = (0, t∗1], where t∗1 is determined by historical maximum of L2. On the
other hand, A2(0) = (0, t∗2].
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Figure 6: Example of blocking entry when both leader’s payoffs can be multi-
peaked functions

however, there is a complication that there does not exist an equilibrium with pure
strategies for a truncated subgame on [T̃1, T

∗∗
2 ]. This issue is discussed in Katz and

Shapiro (1987), in footnote 15. One solution is to resort to mixed strategies over
this range. Another possibility is to augment the equilibrium concept so as to
require that either firm does not play dominated strategies. This caveat ensures
entry by firm 2 at t∗2, regardless of the strategy adopted by firm 1 after this time.

This issue of non-existence of equilibria is exacerbated further in Corollary 2(3a),
illustrated in Figure 5. In this case is no pure-strategy SPE. Critical to this non-
existence outcome is that t∗2 < T̂2. The intuition for this result is as follows. In
this scenario, recall that A1(t

∗
1, T ) 6= ∅. This means that if the game reaches t∗1

without entry, firm 1 will have an incentive to delay entry further. Anticipating
this, firm 2 would consider preemption; a candidate for preemption would be at
a time at which its leader payoff is maximized, T̂2. But in this example t∗2 < T̂2,

which raises the problem of existence. At T̂2 firm 1’s best response to entry by
firm 2 is to preempt, as L1(T̂2) > F1(T̂2). Firm 2 would prefer to follow if firm 1
enters, but if it does so, firm 1 would also have an incentive to wait, as its leader
payoff is increasing at this time. Hence, there is no combination of best-response
pure strategies, as formally captured by Corollary 2(3a).

Before leaving Corollary 2, it is worth noting that if any equilibrium exists,
entry by the market leader always occurs at t∗1 or at t∗2, or at both times (which
could of course coincide). While not ensuring uniqueness, it does indicate that at
most there are two entry times feasible in equilibrium.

To finish our discussion in this Section, consider the full set of possibilities
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covered in Proposition 2. The above discussion of Corollaries 1 and 2 centres the
cases captured by Proposition 2(1), (2), (3a) and (3b). A novel element of our
analysis relates to Proposition 2(3c). Let us highlight the intuition of this case
with the assistance of the following example, illustrated in Figure 6. Firstly, in
Figure 6 note that A1(0) = (0, t∗∗1 ]∪ (t3, t

∗
1]. On the other hand, A2(0) = (0, t∗2]. To

determine the equilibrium entry time, we iterate backwards from the latest possible
candidate entry date. If game has reached t∗1 without entry, firm 1 would rather

wait and enter later at T̃2 than to lead at t∗1. Anticipating this incentive for firm 1
to delay at t∗1, firm 2 would prefer to preempt this outcome; from A2(0) = (0, t∗2],
a candidate entry time is t∗2. However, note the structure of payoffs at t∗2; as
F1(t

∗
2) > L1(t

∗
2) waiting dominates entry for firm 1, whereas firm 2’s leader payoff

is also increasing if it waits (t∗2 < T̄2). Consequently, if the game reaches t∗2 without
entry, firm 2 would prefer to wait and only at T̄2. Of course, firm 1 will anticipate
its fate if the game reaches t∗2, giving it an incentive to preempt by entering even
earlier at t∗∗1 . This is because its payoff as a follower between t∗2 and T̄2 is less than
L1(t

∗∗
1 ). In this scenario, anticipating that it will be preempted, firm 1 enters even

early in order to block its rival’s preemption attempt. That is, anticipating that
it will be preempted by firm 2 (T̃2), firm 1 blocks preemption by entering even
earlier, in this case at t∗∗1 .

This is a new result, and we denoted such a situation as a blocking entry equi-
librium. As noted in the introduction, this could relate to a firm prematurely
launching a new smartphone, or cobbling together an updated release, in an at-
tempt to block a rival’s future entry that would have itself been, in its own right,
a preemptive market entry. The blocking entry equilibrium is possible only in a
mixed case covered in Proposition 2(3), in which the incentive to leader or follow
reverses between the firms due to non-monotonic leader payoff functions. This ex-
ample also illustrates that in the general case covered by the Proposition 2, entry
times in equilibrium can differ from t∗1 and t∗2.

3.3 Example of two cost-decreasing technologies

To provide some further intuition for the main results in the paper, and to allow
for a closer comparison with the previous literature, we construct the following
modification of Katz and Shapiro (1987). Essentially, we augment their example
to allow for more than one potential innovation that firms can put into practice.
As noted in the Introduction, firms are often faced with the choice between two
or more alternative technologies. Examples of competing technologies for tablets,
phone handsets and computer hardware come to mind, but a similar choice of-
ten has to be made when considering adopting cost-reducing technologies. Each
technology will typically come with its own advantages. Moreover, technologies
do not necessarily get developed at the same time or mature at the same rate.
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Consequently, one technology might be preferred at by an early adopter, but a
later entrant might well opt for an alternative as the relative advantages of the
technologies change over time.

Here, we completely characterize all SPE of this two-innovation game using the
algorithm outlined in this paper. By doing so, we show how an augmented exam-
ple of Katz and Shapiro (1987) can provide micro-foundations for non-monotonic
leader payoff functions, non-increasing follower payoffs, and for the equilibrium
with blocking entry, as illustrated in Figure 6 and discussed above.

Consider the case when two firms are contemplating when to upgrade to a new
technology, which they can implement at some time ti ∈ [0,∞), for i = 1, 2. Each
firm can choose to implement one of the two options k = 1, 2 available. For each
firm, the old (null) technology generates a flow of profit normalized to zero; that
is, π0

i = 0, i = 1, 2. After adoption, the new technology k affords firm i a flow of
profit πiik > 0. Subsequent to firm i adopting technology k, firm j’s earns a flow
profits of πijk > 0. Finally, after firm i’s adoption of k, industry profits are given
by πik = πijk + πiik.

The payoffs are discounted by a common discount factor e−rt, so that the net-
present value of profits for the leader (firm i) entering at ti with technology k
is:

Li(ti, k) =

∫ ∞
ti

e−rtπiikdt−KL(ti, k) =
e−rti

r
πiik −KL(ti, k). (5)

Here, we use the exponentially declining development cost function, K(ti, k) =
K0e

λkti +Kik, with λk > r.
Similarly, the payoff to firm i if firm j enters with technology k at tj is:

Fi(tj, k) =
e−rtj

r
πjik −K

F (ti, k). (6)

As firm i maximizes its payoff, the net-present value of profits for the leader
(firm i) entering at ti with the best technology available is:

Li(ti) = max
k=1,2

[
e−rti

r
πiik −KL(ti, k)

]
. (7)

For simplicity, let us assume that the payoff to firm i if firm j wins with
technology k is independent of k; that is,

Fi(tj) = Fi(tj, 1) = Fi(tj, 2). (8)

This means that for both firms πji1 = πji2 and KF (ti, 1) = KF (ti, 2); a follower
earns the same level of profit, regardless as to the technology adopted by the
market leader.
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The market demand in each period is 1 unit at a constant price of 1. We
assume that firms share the market equally; the profits before and after entry are

π0
i = (1− c0i )/2, πiik = (1− ciik)/2, π

j
ik = (1− cjik)/2,

where c0i , c
i
ik and cjik are the costs corresponding to the old and new technology

cases, respectively.
Several points are worth noting here in relation to this example and the analysis

of the model above. Firstly, the follower’s payoff function Fi(tj) is a decreasing
function of the leader’s entry and the parameters ensure that the payoffs are always
positive. This means that Assumptions 5 and 6 are satisfied, and that we can apply
our framework. Secondly, the three curves – L1(t), L2(t), and F1(t) = F2(t) – in
Figure 6 are all constructed using equations (7) - (8). In this way, we are able to
construct an entry game with the characteristics of our model, with only a slight
augmentation of an example in the literature. Thirdly, this example illustrates the
case in which there is a unique pure-strategy SPE with blocking entry – a situation
not previously considered. �

4 Impact of innovation policies

Proposition 3. As a result of improvement of leader payoff (follower payoff), in
the new SPE of the two-player symmetric timing game, the entry time can only
stay the same or decrease (increase).

Payoffs from innovation can be influenced by small (exogenous) changes in the
environment. Policy makers regularly try to influence the incentive to innovate
through subtle adjustments in subsidies, concessions or tax breaks for innovators.
Typically the objective of these incentives is to bring forward or to encourage tech-
nological advancement. However, these policies can at times create unexpected or
even perverse incentives in terms of the timing of innovation due to the strate-
gic interaction of asymmetric oligopolists. The analysis in this section highlights
the ambiguous and, at times, counter-intuitive impact innovation policy (or more
broadly, changes in the leader and follower payoff functions) can have on techno-
logical advancement. To do so, in this section we consider the effects of changes
to payoff functions.

By way of comparison, first consider the symmetric game in which both firms
have the same potential payoffs, given the leader’s time of entry, as in Smirnov and
Wait (2015). If there is an increase in the return enjoyed by a leader (the leader
curve shifts up), in equilibrium this change can only result in entry occurring at
the same time, or early. To see this, revisit the examples shown in Figure 1. If the
leader payoff function shifts up vertically, entry can never occur at a later time

21



in the new equilibrium, relative to what it would have been without the change.
Entry will occur early if there is a small vertical upwards shift in the L(t) in the
top panel of Figure 1, as the intersection of L(t) and F (t) occurs at an early time
than prior to the change. On the other hand, as illustrated in the bottom of the
Figure, the equilibrium entry time is unchanged if there is a small upwards shift
in L(t), as t∗ still maximizes the leader’s payoff, and this determines when the
leader enters. An analogous argument can be made for a policy that increases
the payoff for the follower over all t. If there is an increase in the follower payoff:
(i) entry time in equilibrium will be unchanged (for example, in the second-mover
advantage equilibrium in which entry is determined by the maximum of the leader
payoff function, which could apply for a small increase in F (t) in the bottom
panel of Figure 1); or (ii) it will be at a later time (in a preemptive equilibrium,
when entry occurs at the first intersection from below of the leader curve with the
follower payoff function, as would be the case for a small constant increase in F (t)
in the top panel of Figure 1). An important driver of this result is the assumption
that the follower’s payoff is non-increasing in the leader’s entry time.

This intuition is summarized in the proposition below.

Proposition 4. As a result of improvement of leader payoff (follower payoff), in
the new SPE of the two-player symmetric timing game, the entry time will be early
(later) or remain unchanged.

It is tempting to let this unambiguous prediction and the underlying intuition
to guide innovation policy. But as it turns out, the more plausible asymmetric
game in which the leader and follower payoff functions can differ between firms is
far more complicated. To analyze the asymmetric game first focus on a change
to the leader payoff curves. Explicitly, consider the situation when firm i costs
KL
i (ti, k) for both k = 1, 2 decrease by ∆, as a result of an unexpected taxation

concession for the market leader.17 As a result, firm i’s new leader net-present
value curve increased by ∆; that is, Lnewi (t1) = Loldi (t1) + ∆. To isolate the impact
of this change assume that all other curves stay the same.

The following result characterizes how the timing of entry is impacted in SPE
of the game with asymmetric payoff functions by an improvement in one of the
leader payoff curves.

Result 1. If there is an improvement in firm 1’s (firm 2’s) leader payoff, the
time of entry in the new SPE of the two-player asymmetric timing game will be
unchanged, or it will be at a later (early) date.

Proof: See Appendix A.

17A change in the leader’s payoff like this could also arise due to an exogenous advance in
technology.
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As shown previously, there are at most two equilibria of our timing game –
which will involve entry at either t∗2 to t∗1, or both.18 In this case, increasing L1(t)
can only switch entry from t∗2 or t∗1. The converse is true for a vertical shift up of
L2(t); such a change can only cause a switch in the equilibrium time of entry from
t∗1 to t∗2. Consequently, shifting one or other of the leader payoff functions through
a policy or tax break can have opposite affect on the time of entry.

Consider now the impact of small exogenous changes to the follower payoff
curves. Specifically, consider the situation when firm i costs KF

i (ti, k) for both
k = 1, 2 are decreased by ∆ (as a result of a tax concession, a technological
improvement, and so on). This means firm i’s new follower net-present value
curve has increased by ∆; that is, F new

i (t1) = F old
i (t1) + ∆. As before, to aid in

our analysis all other curves remain unchanged.
The following result characterizes changes in the timing of entry in the pure-

strategy SPE with asymmetric firms that arises as a result of an improvement of
either of the follower payoff functions.

Result 2. An increase in the follower payoff function for firm 1 (firm 2), results
in the entry time in the new SPE with asymmetric firms to remain unchanged or
be early (delayed).

Proof: See Appendix A.

Again, this result relies on the whether or not the timing of entry switches
between one of the two candidate equilibria, or if it remains unchanged. Remember
that there are at most two equilibria of the game; one equilibria involves firm 1
entering, whereas two potential equilibria involve firm 2 entering. Given this,
increasing the follower payoff for firm 1 (firm 2) can only result in a switch in
the entry time from t∗1 to t∗2, or that it remain at t∗1. Using similar reasoning, an
increase in the follower payoff for firm 2 can only resulting in a switch from t∗2 to
t∗1 or, alternatively, that the time of entry remain at t∗2

Herein lies a complication for a policy makers. Any exogenous change, possibly
arising from an innovation policy implemented by the government, in which both
leader payoff curves improve has an a priori ambiguous impact on the time of entry.
A similar point can be made for changes that enhance the returns experienced by
both firms as second entrants – without knowing the specific payoff functions, it is
not possible to ascertain how the time of innovation will be impacted by an policy
that reduces the cost of innovation. This is a cautionary tale for policy makers. It
also is a possible explanation for the invariance or perverse response of a potential
innovator to policies designed to enhance the take-up of new technology. The
analysis of the two Results above are summarized in the following proposition.

18For ease of exposition, let us not consider the case when entry occurs at another time, as in
the blocking entry equilibrium. This restriction is for the discussion only. These result holds for
all equilibria of the game.
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Proposition 5. An improvement in both player’s leader payoffs (follower payoffs)
has an ambiguous impact on the timing of entry in the SPE of the two-player
asymmetric timing game.

In essence, a symmetric innovation policy applied to asymmetric firms has an
ambiguous effect on the timing of entry.

5 Concluding comments

The decision when to launch a product or implement a new production process
is a critical question for many firms; it can help determine profit, firm survival
and the shape of markets. More generally, it drives economic development. Given
its importance, innovation has received a great deal of attention from economists,
notably the seminal paper of Fudenberg and Tirole (1985). The previous literature
has often assumed that firms are symmetric in terms of their potential to exploit
the new technology, and that all relevant technologies are available at the start
of the game. Both of these assumptions are important, as some firms are better
placed to take advantage of an innovative opportunity than others, and not all
technologies (or market entry opportunities) are available immediately. Adapting
Fudenberg and Tirole (1985), Katz and Shapiro (1987) and Smirnov and Wait
(2015), amongst others, we develop a novel market-entry game with asymmetric
payoffs between firms. Moreover, our model allows for the complication that a
new technology might only become available to a firm after some waiting period.
To capture this, we allow the leader’s payoff function to be non-monotonic and
even multi-peaked. Indeed, the main restrictions we place on the payoff functions
is that they are continuous and that the follower’s payoff is non-increasing in the
time of the leader’s entry.

The first contribution of the paper is a technical one. We provide a method
to solve for the equilibrium entry time (or times) in pure strategies. We show
that, provided it exists, there are at most two entry times in equilibrium. Given
its generality, our setup allows us to study several new phenomena associated to
market entry not possible in the previous literature. For example, allowing for
firm asymmetry generates various possibilities, such as first- and second-mover
advantages co-existing at the same time for either of the firms. We also show that
blocking entry is possible, in which a firm, fearing being preempted itself, comes
into the market even earlier, effectively preempting the preemptor. Allowing for
asymmetries between firms also highlights the difficulties of intervening in the
market in order to influence the take-up of new technologies. We show, for example,
that increasing the payoff to both firms to be a market leader has an ambiguous
effect on the timing of entry in equilibrium.
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6 Appendix A

Proof of Proposition 2

This proof consists of five parts: A, B, C, D, and E. In Part A we show that all
SPE with positive entry times must belong to either A1(0, T ) if firm 1 enters first
or A2(0, T ) if firm 2 enters first. In Part B we prove that for i = 1, 2 there exists a
unique t∗i , given by (3), at which either Li(t) is maximized over Ai(0, T ) or t∗i = 0
when Ai(0, T ) = ∅. Part C shows that firm 1 entering at t∗1 is a unique SPE as it
delivers the highest possible equilibrium payoffs to both the leader and the follower
when A1(t

∗
1, T ) = ∅ and L1(t

∗
1) > F1(t

∗
1). Part D proves that if A1(t

∗
1, T ) = ∅ and

L1(t
∗
1) ≤ F1(t

∗
1) then there are two SPE with firm 1 entering at t = t∗1 and firm 2

entering at t = t∗2. Finally, part E considers the scenario when A1(t
∗
1, T ) 6= ∅.

(A) As a preliminary step, let us prove all SPE with positive entry times
must belong to either A1(0, T ) if firm 1 enters first or A2(0, T ) if firm 2 enters
first. Assume, on the contrary, that there is an SPE with a positive entry time
t∗i /∈ Ai(0, T ). It must be the case that both NPL and NPF conditions are satisfied.
If condition NPL is not satisfied, the leader (player i) will have an incentive to enter
earlier at τ . On the other hand, if condition NPF is not satisfied, the follower
(player j) will have an incentive to preempt the leader (player i) and enter slightly
earlier, as in Fudenberg and Tirole (1985). Neither of these situations are possible
in equilibrium. Consequently, there is a contradiction, proving the statement that
all SPE with positive entry times must belong to either A1(0, T ) if firm 1 enters
first or A2(0, T ) if firm 2 enters first.

(B) Next, let us prove that t∗i for i = 1, 2 is given by (3). Specifically, there
exists a unique t∗i at which either Li(t) is maximized over Ai(0, T ) or t∗i = 0 when
Ai(0, T ) = ∅. When Ai(0, T ) = ∅, entering at t∗i > 0 can not be an SPE; so the
only potential entry time for player i is t∗i = 0.

Now consider the situation when Ai(0, T ) is not empty. Let us prove the
existence of the solution to this problem of maximizing Li(t) over Ai(0, T ) when

Ai(0, T ) 6= ∅. Note that set Ai(0, T ) is bounded because T̂i is finite, where T̂i is the
time at which Li(t) reaches its global maximum (Assumption 4). We need to show
that set Ai(0, T ) always contains its supremum. Assume that it does not. This
means that there is a sequence {tk} contained in Ai(0, T ) that converges to some
limit t∗i that is not contained in set Ai(0, T ). This requires that either NPL or NPF
is not satisfied for t∗i . As sequence {tk} belongs to Ai(0, T ), it means that both
NPL and NPF hold for sequence {tk}. As both Li(t) and Fj(t) are continuous
functions, it means t∗i also belongs to Ai(0, T ). This leads to a contradiction,
proving existence.

The uniqueness follows immediately from the way set Ai(0, T ) is constructed.
If two entry times were to maximize Li(t) over Ai(0, T ), then the later time would
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not belong to Ai(0, T ).
Next, let us show that if t∗i = arg max

t∈Ai(0,T )
Li(t), it is also the case that t∗i =

arg max
t
Ai(0, T ) whenAi(0, T ) 6= ∅. Assume the opposite that t∗i 6= arg max

t
Ai(0, T ).

If t∗i < arg max
t
Ai(0, T ), then t∗i does not maximize the leader’s payoff over

Ai(0, T ). If t∗i > arg max
t
Ai(0, T ), t∗i does not belong to Ai(0, T ). Both situa-

tions lead to a contradiction. We have now shown that t∗i = arg max
t
Ai(0, T ),

concluding the proof of Part B.
(C) Next, we prove that firm 1 entering at t∗1 given by (3) is a unique SPE

when A1(t
∗
1, T ) = ∅ and L1(t

∗
1) > F1(t

∗
1). Note that in this case t∗1 > t∗2. First, in

part A we proved that there is no equilibrium with entry time τ > t∗1.
Second, let us prove that firm 1 entering at t∗1 is an SPE. In part B we proved

that t∗1 maximizes L1(t) over A1(0, T ). This means the leader gets the highest
possible equilibrium payoff and has no incentive to deviate. The follower has no
incentive to deviate as well as t∗1 belongs to A1(0, T ) and A1(t

∗
1, T ) = ∅.

Third, let us prove that there is no equilibrium with entry time of firm 1 τ < t∗1.
As t∗1 ∈ A1(0, T ), entering at t < t∗1 is strictly dominated by entering at t∗1.

Third, let us prove that firm 1 entering at t∗1 is an SPE. In part B we proved
that t∗1 maximizes L1(t) over A1(0, T ). This means the leader gets the highest
possible equilibrium payoff and has no incentive to deviate. The follower has no
incentive to deviate as well as t∗1 belongs to A1(0, T ) and A1(t

∗
1, T ) = ∅.

Finally, let us prove that there is no SPE with firm 2 entering at any t. Part
A guarantees that entering at t > t∗2 can not be an SPE. The follower also has
no incentive to enter at t ≤ t∗2 < t∗1 as t∗1 belongs to A1(0, T ), which means NPF
condition is satisfied and for firm 2 waiting dominates entering.

(D) Let us prove that if A1(t
∗
1, T ) = ∅ and L1(t

∗
1) ≤ F1(t

∗
1) then there are two

SPE with firm 1 entering at t = t∗1 and firm 2 entering at t = t∗2. Consider an SPE
where firm i is the leader and firm j is the follower (i, j = 1, 2 and i 6= j).

First, given t∗i ∈ Ai(0, T ), if the follower deviates by entering at some time
τ < t∗i , it will get a payoff of Lj(τ) < Fj(t

∗
i ). If it deviates by entering at t∗i , it will

get a payoff of (Lj(t
∗
i ) + Fj(t

∗
i ))/2, which is less than Fj(t

∗
i ). If the follower enters

at t > t∗i , there will be no change to the equilibrium outcome. Consequently, there
is no profitable deviation for the follower.

Second, in part A we proved that there is no equilibrium with the leader en-
tering at τ > t∗i . Given t∗i ∈ Ai(0, T ), if the leader deviates by entering earlier at
some time τ < t∗i , it will get a payoff of Li(τ) < Li(t

∗). There is no profitable
deviation for the leader.

There is no other equilibria as entering at t∗i dominates entering at any other
time. Consequently, we have proved that there are two equilibria.

(E) Let us first consider case (b) when A1(t
∗
1, T ) 6= ∅, A2(t

∗
2, t
∗
1) = ∅ and t∗2 = T̄2.
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In this scenario in comparison to (D), A1(t
∗
1, T ) 6= ∅. This means firm 1 entering

at t = t∗1 can not be an equilibrium as at t∗1 firm 1 has an incentive to wait; firm 2
will have incentive to block firm 1’s entry. Note also that for the same reason as
in part (D), entering by either firm i at any other time than t∗i can not be an SPE.
Consequently, there is only the remaining SPE with firm 2 entering at t = t∗2.

Consider instead case (c) when A1(t
∗
1, T ) 6= ∅ and A2(t

∗
2, t
∗
1) 6= ∅. In this case

in comparison with case (b), neither entering by firm 1 at t∗1 nor entering by firm
2 at t∗2 can be an equilibrium. Firm 1 has strong incentives to enter even earlier
(and block firm 2’s entry) as firm 2 has incentives to wait at t∗2. Consequently,
there is an SPE with firm 1 entering at t∗∗1 . This equilibrium is unique for the
same reasons as in case (b).

Finally consider 3 (a) when A1(t
∗
1, T ) 6= ∅, A2(t

∗
2, t
∗
1) = ∅ and t∗2 < T̄2. In

this case it must be that t∗2 = T̃1, which in turn imply that L1(T̂2) > F1(T̂2) and

L2(T̂2) < F2(T̂2). There is no pure strategy equilibrium as at T̂2 firm 1’s best
response to entry by firm 2 is to enter slightly earlier. Firm 2 would prefer to
follow if firm 1 enters, but if it does so, firm 1 would also have an incentive to
wait, as its leader’s payoff is increasing at this time. This observation concludes
the proof of the Proposition. �

Proof of Result 1

First, consider the change in firm 1’s leader payoff. If the original SPE satisfies
A1(t

∗
1, T ) = ∅ and L1(t

∗
1) > F1(t

∗
1) then there is a unique SPE with firm 1 entering

at t = t∗1. All technology improvement is collected by the first firm.
If the original SPE is of the second-mover advantage type, A1(t

∗
1, T ) = ∅ and

L1(t
∗
1) ≤ F1(t

∗
1), then the following two situations are possible. If ∆ ≤ L1(t

∗
1) −

F1(t
∗
1) then both original second-mover advantage equilibria still exist. On the

other hand, if ∆ > L1(t
∗
1) − F1(t

∗
1) then only SPE with firm 1 entering at t = t∗1

remains. Neither of these situations lead to decrease in the time of entry.
Consider now the scenario with A1(t

∗
1, T ) 6= ∅.

Second, consider the change in firm 2’s leader payoff.
This concludes the proof of this Result. �

Proof of Result 2

A similar logics applies as in Result 1. �
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