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1 Introduction

This paper proposes a practical method for testing monotone effects in games of complete and

incomplete information. Our method is nonparametric, based on restrictions arising from revealed

preference, and builds on the theory of monotone comparative statics developed in Milgrom and

Shannon (1994) and Quah and Strulovici (2009). These papers identify properties on payoff func-

tions (such as single crossing conditions) that are necessary and sufficient for optimal choices to

be increasing or decreasing with respect to exogenous variables. The empirically relevant followup

question is the following: what kind of observed choice behavior would be necessary and sufficient

for the recovery of payoff functions obeying single crossing or other key properties? This is the

question that we set out to answer, firstly in the context of a panel data set, where the choices of an

agent subject to different exogenous variables are observed, and secondly, in the context of a cross

sectional data set where the econometrician observes the distribution of actions of a population

under different exogenous conditions.

An important area of application of our results is to the study of entry games (as in Bresnahan

and Reiss (1990), Berry (1992), and Ciliberto and Tamer (2009)) and other games that arise in the

empirical IO literature. In the papers cited, firms’ entry decisions are modeled as games of com-

plete information, where each firm’s entry decision in a market is a best response to decisions taken

by other firms. The payoff functions are assumed to depend on observable variables in a specific

parametric fashion while the unobserved component is additively separable. The latter is heteroge-

nous across markets and belong to a known class of distributions. Entry decisions by firms across

many markets are observed, from which one could then estimate firms’ payoff functions. A major

issue in this work concerns the effects of strategic interaction and market characteristics: does the

entry of another firm encourage or deter entry? does an exogenous variable such as market size

encourage or deter the entry for a particular firm? Obviously, these questions are empirically im-

portant in themselves, but imposing sign restrictions on these effects could also facilitate estimation

procedures.1

1This information could be used to build a mapping from specific moments of the data to the identified set
of relevant parameters. For instance, in two-player games the sign of the strategic interaction parameters allows
us to identify outcomes that could occur only as a unique equilibrium; it follows that the probabilities of these
outcomes (conditional on various observable variables) do not depend on any equilibrium selection mechanism and
can be nicely related to payoff relevant parameters. (See, e.g., Tamer (2003) and Kline and Tamer (2016).) In
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Our method allows us to test whether firms are playing pure strategy Nash equilibria, subject

to single crossing restrictions on its payoff functions. For example, we can test the hypothesis that

a firm’s entry into a market is encouraged when the market is large and it is discouraged when

another firm is also entering. Our method works without imposing any parametric assumptions

on payoff functions, without restricting the distribution of unobserved heterogeneity to particular

families, and without assumptions on equilibrium selection. To pass our test means that, with

sufficiently high probability, the data is a sample drawn from a population of markets where firms

with the hypothesized payoff functions play Nash equilibria. Our test requires rationalizability, in

the sense that we can recover a distribution on firms’ payoff functions (strictly speaking on their

preferences) that satisfy the single crossing restrictions we require and agrees with the observations.

Thus, when a data set passes the test, we can also form set estimates on the proportion of firms with

payoff functions belonging to a particular type and to make out-of-sample predictions on equilibrium

behavior.

Our approach is also useful in the context of Bayesian games, such as those studied by Sweeting

(2009) and De Paula and Tang (2012). Sweeting (2009) shows how we could estimate a Bayesian

game subject to payoff functions which depend parametrically on observable variables and also on

heterogeneous shocks (unobservable both to the econometrician and to other players). Our setup

is very similar, except that we make no parametric assumptions. We show how to test whether a

data set is rationalizable as a Bayesian Nash equilibrium, subject to single crossing restrictions on

payoff functions. De Paula and Tang (2012) demonstrates how to recover the sign of interaction

effects in Bayesian games, without making parametric assumptions on payoff functions, so this is

close in spirit to what we do. However, De Paula and Tang’s test assumes that firms are playing

Bayesian Nash equilibria, while in our approach that assumption is part of the test, in the sense

that we require the recovery of a complete set of model primitives which are consistent with the

observations and with the single crossing assumptions.2

Broadly speaking, we see our revealed preference method as providing a useful tool that could

general, economically grounded shape restrictions improve both the identification and estimation of nonparametric
econometric models. Shape restrictions can reduce the size of the identified set of relevant parameters (see, e.g.,
Matzkin (2007)) and allows for the more efficient use of small sample data sets (see, e.g., Beresteanu (2005, 2007)).

2Since our test is more stringent, our data requirements are also (in a sense) more demanding than that in De
Paula and Tang (2012). See Section 5.2 for a detailed discussion.
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complement existing, mainly parametric, estimation strategies. For example, a model containing

only single crossing restrictions that passes our test will provide motivation for a more specific

version in which the impact of different factors enter parametrically and with sign restrictions.3 On

the other hand, a nonparametric version of the model that does not perform well in our test may

raise questions about the validity of the model or the suitability of the data.

The paper is organized as follows. In Section 2 we provide an outline of how our approach works

in the context of an entry game. Section 3 focuses on individual decision making, and begins with

a quick survey of theoretical results on monotone comparative statics. Section 3.2 is the theoretical

heart of the paper, where we characterize panel data sets (of individual choices) which are consistent

with the single crossing property; this is achieved through a condition on the data set we call the

revealed monotonicity axiom. The rest of the section then explains how to extend the test for the

single crossing property to cross sectional data sets, in which we observe a distribution of actions

from a population of agents with heterogenous payoff functions. This extension (from panel to

cross sectional data) follows an approach that has been taken by other authors such as Manski

(2007). Manski (2007) also discusses out of sample predictions, and our approach to this issue is,

in its essentials, the same as his. In the case where the feasible action set available to all agents in

the population is unchanged across observations, we show that the single crossing property can be

characterized by an intuitive formulation involving first order stochastic dominance.

Section 4 extends the ideas of Section 3 to games, where we show how to test for pure strategy

Nash equilibria. The use of these results is then illustrated in Section 6, where we carry out an

empirical analysis of entry decisions made by airlines, using the data collected by Kline and Tamer

(2016); we show how strategic substitutability in airlines’ entry decisions can be tested using our

method, and also explain how we can recover information on the distribution of payoff functions

among airlines. More details on the empirical implementation can be found in the Online Appendix.

Section 5 explains how the results of Section 3 can be applied to Bayesian games. It is worth noting

that while the examples in this paper are largely taken from IO games, our overall approach can

be applied to other decision- or game-theoretic settings; for example, the authors have applied it to

study joint smoking behavior among married couples (see Lazzati, Quah, and Shirai (2018)).

3See footnote 1 on the advantages of imposing sign restrictions a priori.
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px1, x2q Firm 2
N E

Firm 1
N PpN,N |x1, x2q PpN,E |x1, x2q
E PpE,N |x1, x2q PpE,E |x1, x2q

Table 1: Distribution of strategy profiles at px1, x2q

2 Motivating example

The seminal papers of Bresnahan and Reiss (1990) and Berry (1992) have given rise to a large

literature in empirical IO and structural econometrics that model oligopoly entry. In these models

there is a set of firms, N � t1, 2, ..., nu that may potentially operate in a given market. Firm i’s

action is denoted by yi P tE,Nu, where E means that the firm enters and N that it stays out. The

profit of firm i upon entry is determined by the entry decision of other firms and also by exogenous

factors. We denote its profit by Πi pyi,y�i, xi, εiq, where y�i are the choices of the other firms, xi

is a real-valued, finite-dimensional vector of exogenous profit shifters (that might be market- or

firm-specific) observed by all firms and also by the researcher, and εi are profit shifters observed by

all firms but not by the researcher.

Typically, it is also assumed that Πi has a linear functional form; for example, in Ciliberto and

Tamer (2009) it is assumed that

Πi pyi,y�i, xi, εiq �
$&
% α1ixi �

°
j�i δij1yj � εi if yi � E

0 if yi � N
(1)

where 1E � 1 and 1N � 0. Note that the entry of firm j alters the profit of firm i by δij. The

econometrician’s first objective is to estimate αi and δij (and hence Πi), based on the observed

entry decisions and profit shifters collected from a large cross-section of markets.

To be more specific, suppose there are just two firms, 1 and 2, both of which have payoff functions

of the form given by (1), and which interact with each other across many markets. For some given

value of the observable profit shifters px1, x2q, the econometrician observes the distribution of action

profiles in a large sample of markets. This is illustrated in Table 1, where PpE,N |x1, x2q denotes the

sample frequency of those markets where Firm 1 enters and Firm 2 stays out, when the observable

profit shifters take the value px1, x2q. (Obviously, the four entries in the table should add up to
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1.) Suppose that data of this form is collected at different values of px1, x2q; then it would be

possible to estimate αi and δij, under the following two assumptions: (1) at each market, each

pair of firms is playing a pure strategy Nash equilibrium of a complete information entry game and

(2) the distribution of pε1, ε2q is independent of px1, x2q and belongs to a specific family, with its

parameters at least partially known. For a recent study of how these estimates could be obtained

from data in this format, see Kline and Tamer (2016).

In the empirical study of entry games, a major focus of attention is whether the entry decisions

of other firms and/or the movement of different profit shifters tend to encourage or discourage a

firm’s entry. (In the parametric form (1) this manifests itself in the signs of αi and δij.) It is on

precisely this issue that our paper makes a contribution: we develop a technique that allows us to

test hypotheses about the direction of impact of different variables on a firm’s entry decision, without

imposing a parametric form on its payoff function. We also do not require the unobservable profit

shifters pε1, ε2q to belong to any distribution family or to influence payoffs in an additively separable

way, though we maintain the assumption that its distribution is independent of the observable profit

shifters. In particular, we allow for ε1 and ε2 to be correlated with each other. In the event that a

data set is consistent with our hypotheses, our procedure also leads to the (set) estimation of the

primitives of the model that would generate the observations as pure strategy Nash equilibria.

2.1 Single crossing condition

To explain our approach in greater detail, suppose we wish to test the hypothesis that a firm’s entry

into a market is (1) encouraged when the profit shifter takes higher values and (2) discouraged

when the other firm chooses to enter. The crucial observation to make here is that this hypothesis

is precisely captured by the following simple condition, which is a version of the single crossing

property, on the firm’s payoff function:4

ΠipE, y1j, x1i, εiq ¡ ΠipN, y1j, x1i, εiq ùñ ΠipE, y2j , x2i , εiq ¡ ΠipN, y2j , x2i , εiq

whenever p�1y2j , x
2
i q ¡ p�1y1j , x

1
iq. In other words, if firm i prefers entering a market to staying out

when firm j is also entering, then this preference is preserved if there is an increase in xi or if firm

4Throughout this section we shall assume that preferences are always strict. Indifferences are dealt with carefully
in Section 3.
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x2 � p0, 0q Firm 2
N E

Firm 1
N 3/12 3/12
E 4/12 2/12

x2 � p0, 1q Firm 2
N E

Firm 1
N 1/12 5/12
E 3/12 3/12

x2 � p1, 0q Firm 2
N E

Firm 1
N 2/12 4/12
E 2/12 4/12

Table 2: Distribution of strategy profiles

j decides not to enter. In the case of (1), this holds if αi ¡ 0 and δij   0, but it is clear that such

a parametric form is not necessary for the single crossing property to hold.

To gain some intuition on how our approach works, let us ignore small sample issues for the time

being and suppose that we observe the true distribution of action profiles at some realized values

of px1, x2q. We claim that the joint hypothesis that firms have payoff functions obeying the single

crossing property and are playing pure strategy Nash equilibria is sufficient to impose restrictions

on the data. Indeed, consider an increase in the observable profit shifters from px11, x12q to px21, x22q;
then, at any realization of ε1, if firm 1 strictly prefers to enter when the other firm enters at px11, x12q,
the single crossing property guarantees that it will continue to prefer enter at px21, x22q. The same

argument applies to firm 2, and so we conclude that if pE,Eq is the Nash equilibrium at px11, x12q
for a given pair of firms, it will continue to be the unique Nash equilibrium at px21, x22q. Since the

distribution of pε1, ε2q is independent of the observable profit shifters, we conclude that5

PpE,E|x21, x22q ¥ PpE,E|x11, x12q.

This constitutes a restriction on the data that could be tested but it is certainly not the only restric-

tion imposed by our hypothesis. The tightest possible restriction is obtained by checking whether

the data set is rationalizable. This involves identifying those types of joint behavior (between the

two firms) which are consistent with Nash equilibrium play and profit functions obeying the sin-

gle crossing property, and then attributing weights to these types in a way that accounts for the

observed distribution of action profiles.
5Strictly speaking, we need to assume here that the probability of a firm being exactly indifferent between entering

and staying out is zero.
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Path Weight
x2 � p0, 0q x2 � p0, 1q x2 � p1, 0q

Action profiles Action profiles Action profiles
N,N N,E E,N E,E N,N N,E E,N E,E N,N N,E E,N E,E

1 1/12 1/12 1/12 1/12
2 2/12 2/12 2/12 2/12
3 2/12 2/12 2/12 2/12
4 1/12 1/12 1/12 1/12
5 1/12 1/12 1/12 1/12
6 2/12 2/12 2/12 2/12
7 3/12 3/12 3/12 3/12

Sum 1 3/12 3/12 4/12 2/12 1/12 5/12 3/12 3/12 2/12 4/12 2/12 4/12

Table 3: Distribution of types rationalizing data in Table 2

2.2 Rationalizability

To get a flavor of what testing for rationalizability involves, suppose that we observe the distribu-

tion over action profiles at three values of px1, x2q, as depicted in Table 2. Note that x1 is fixed

throughout, while x2 is two-dimensional and takes three values. We claim that these observations

can be rationalized by our model. To understand why this is the case, we list in Table 3 seven

possible group paths for a pair of Firms 1 and 2. For example, in group path 1, pE,Nq is played

by the two firms at x2 � p0, 0q, with the firms switching to the Nash equilibrium pE,Eq when

x2 � p0, 1q, and remaining at pE,Nq when x2 � p1, 0q. It is straightforward to check that each of

these paths is compatible with single crossing, in the sense that one could find single crossing profit

functions for each firm, so that for each realized value of x2, the specified action profiles constitute a

(not necessarily unique) Nash equilibrium.6 Furthermore, when these paths are represented in the

population with the weights indicated in Table 3, they rationalize the distribution of action profiles

observed in Table 2. (Compare the entries in Table 2 with the last row of Table 3.)

More generally, the procedure for establishing the rationalizability of a data set (like that dis-

played in Table 2) consists of two steps. The first step consists of identifying all the group paths

which are compatible with the single crossing condition and the second consists of determining if

there is a distribution on these paths that explains the data. The second step is a computation-

ally straightforward linear programming problem, but solving the first step is generally non-trivial.

6For example, the following preferences will lead to the pure strategy Nash equilibria in group path 1: firm 1
prefers E to N irrespective of the other firm’s action and, irrespective of the action of firm 1, firm 2 prefers E to N
if x2 � p0, 1q, while it prefers N to E at other realizations of x2.
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What is required is an easy-to-check property on observed actions which characterizes payoff func-

tions that obey the single crossing property: this is fundamentally a theoretical question and it is

addressed in the Section 3 and 4.7

Lastly, it is worth noting that our model can accommodate behavior which is disallowed by the

parametric specification. Indeed, the data in Table 2 cannot be explained by profit functions of the

form (1), in which Firm 2’s profit upon entry will be

Π2pE, y1, x21, x22q � α21x21 � α22x22 � δ211y1 � ε2, (2)

where pα21, α22q ¡ 0 and δ21   0.8 The essential reason for this is the following: when Π2 has

the form (2), whether the boost to profits of an increase in x21 is greater or smaller than that

obtained from the same increase to x22 depends on whether α21 is bigger or smaller than α22 and

is independent of the realization of ε2. So it excludes the case where the realization of ε2 influences

the relative benefit of higher x21 versus higher x22. To see why the parametric model cannot explain

the data in Table 2, suppose instead that it does. Then

PpE,E|x1, p1, 0qq�PpE,E|x1, p0, 0qq � µ ptε1 : Π1pE,E, x1, ε1q ¥ 0u � tε2 : �δ21 ¥ ε2 ¥ �α21 � δ21uq ,

where µ is the probability measure on the space of pε1, ε2q; similarly,

PpE,E|x1, p0, 1qq�PpE,E|x1, p0, 0qq � µ ptε1 : Π1pE,E, x1, ε1q ¥ 0u � tε2 : �δ21 ¥ ε2 ¥ �α22 � δ21uq .

Since the former equals 2{12 while the latter equals 1{12, we conclude that α22   α21. However,

1

12
� PpN,N |x1, p0, 0qq�PpN,N |x1, p1, 0qq � µ ptε1 : Π1pE,N, x1, ε1q ¤ 0u � tε2 : 0 ¥ ε2 ¥ �α21uq

7The seven paths listed in Table 3 are only some of the possible group paths consistent with single crossing. For
example, suppose firm 1 prefers E to N if and only if firm 2 chooses N , and firm 2 prefers E to N if and only if
x2 � p0, 1q and firm 1 chooses N . These preferences lead to two group paths, because there are two Nash equilibria
at x2 � p0, 1q. One is Path 4, where pE,Nq is always chosen. The other path involves pE,Nq being played at
x2 � p0, 0q and x2 � p1, 0q, and pN,Eq being played at x2 � p0, 1q; this path is not among those listed.

8We are grateful to Aureo De Paula for suggesting that we construct an example with this specific feature.
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and

2

12
� PpN,N |x1, p0, 0qq�PpN,N |x1, p0, 1qq � µ ptε1 : Π1pE,N, x1, ε1q ¤ 0u � tε2 : 0 ¥ ε2 ¥ �α22uq

which tells us that α22 ¡ α21. So we obtain a contradiction.

3 Revealed monotone choice

This section focuses on the single-agent model. Section 3.1 gives a quick survey of basic results on

monotone comparative statics. Section 3.2 presents the theoretical result underpinning the whole

paper: imagining a panel data set of choice behavior, it gives a necessary and sufficient condition

under which it is generated by an agent choosing with a preference obeying the single crossing

property. Section 3.3 explains how the results in Section 3.2 could be applied to repeated cross

sections of choices made by a population of agents with such preferences.

3.1 Basic concepts and theory

Let Y be the set of all conceivable actions of a given agent. We assume it is either the real line R

or a closed subset of R such as the natural numbers. The agent selects an action from a subset A of

Y . A set A is said to be an interval of Y if, for every y1, y2 P A with y1   y2, we have that

y P Y and y1   y   y2 ùñ y P A.

Throughout this paper, we assume that observed feasible sets are compact intervals, where com-

pactness is with respect to the Euclidean topology on R. In this case, any compact interval A will

have a largest element y2 and a smallest element y1 so we may write it as A � ry1, y2s. We denote

the collection of compact interevals by IpYq.
The choice of the agent over different actions in a feasible set A is affected by a set of covariates

z P Z. We assume pZ,¥q is a partially ordered set. (For the sake of notational simplicity, we

are using the same notation for the orders on Y and Z and for any other ordered sets; we do not

anticipate any danger of confusion.) We refer to pz, Aq as the agent’s environment.

A binary relation Á on Y�Z is a preference relation if, for every fixed z, it is reflexive, transitive,
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and complete. That is, py2, zq Á py1, zq means that y2 is weakly preferred to y1 when the covariates

are z.9 The asymmetric part of Á (the strict preference) is denoted by ¡. At the environment

pz, Aq P Z � IpYq, the best response or optimal choice of the agent is the set

BRpz, Aq � ty1 P A : py1, zq Á py, zq for all y P Au. (3)

The preferenceÁ is regular if BRpz, Aq is nonempty and compact for all pz, Aq P Z�IpYq. Regularity

holds trivially in the important case where every bounded set of Y is finite (e.g., when Y � N) and,

more generally, it holds if Á is continuous at every z.

Oftentimes (and, indeed, in the previous section) it is convenient to think of the agent as having

a payoff function, which is a real-valued map Π on Y � Z. Clearly, this induces a preference

Á on Y � Z, where py2, zq Á py1, zq if Πpy2, zq ¥ Πpy1, zq. Then BRpz, Aq � arg maxyPA Πpy, zq
and we can speak of the payoff function being regular, etc., if the preference it induces has the

corresponding property. Since observed choices only reveal ordinal information, it is appropriate

that our discussion in this subsection and the next should focus on preferences. In Section 3.3, we

shall revert to using payoff functions, so as to follow the convention in much of the econometric and

structural IO literature.

The best response BRpz, Aq is said to be increasing in z if, for every z2 ¡ z1,

y2 P BRpz2, Aq and y1 P BRpz1, Aq ùñ y2 ¥ y1. (4)

The preference Á is said to obey strict interval dominance (SID) in py; zq if, for every y2 ¡ y1 and

z2 ¡ z1,

py2, z1q Á py, z1q for all y P ry1, y2s ùñ py2, z2q ¡ py1, z1q.

The following result is a straightforward adaptation of Theorem 1 in Quah and Strulovici (2009).

Basic Theorem. Suppose an agent has a regular preference Á on Y � Z. Then BRpz, Aq is

increasing in z P Z at every A P IpYq if and only if Á obeys SID in py; zq.
9Note that this is not a standard definition of a ‘preference’ since we do not require it to be complete on Y �Z.

We could define it in the standard way but that does not seem like a meaningful thing to do given that, in our setting,
even if the agent truly has a preference between py, zq and py1, z1q where z � z1, this will never be revealed since she
never chooses between these two alternatives.
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Readers familiar with the theory of monotone comparative statics will notice that our definition

of monotonicity in (4) is stronger than the standard notion, which merely requires that BRpz2, Aq
dominates BRpz1, Aq in the strong set order.10 This weaker notion of monotonicity can be charac-

terized by preferences obeying interval dominance (rather than strict interval dominance), which

can be defined as follows: for every y2 ¡ y1 and z2 ¡ z1,

py2, z1q Á p¡q py, z1q for every y P ry1, y2s ùñ py2, z2q Á p¡q py1, z2q (5)

(see Theorem 1 in Quah and Strulovici (2009)). Throughout this paper we have chosen to work

with a stronger notion of monotonicity; the weaker notion does not permit meaningful revealed

preference analysis because it does not exclude the possibility that an agent is simply indifferent to

all actions at every z. In this sense, our stronger assumption here is analogous to the assumption of

local non-satiation made in Afriat’s Theorem.11 In the case where Y is discrete, it is quite natural

to assume that the agent has a strict preference; in that context, there is no distinction between

interval dominance and strict interval dominance.

The interval dominance order is Quah and Strulovici’s (2009) generalization of the concept of

single crossing differences, due to Milgrom and Shannon (1994).12 Just as there is strict interval

dominance, so there is a strict version of single crossing differences. A preference Á obeys strict

single crossing differences (SSCD) if, for every y2 ¡ y1 and z2 ¡ z1,

py2, z1q Á py1, z1q ùñ py2, z2q ¡ py1, z2q. (6)

It is clear that SSCD implies SID, and hence the Basic Theorem applies if Á obeys SSCD. In fact,

it is known that the stronger SSCD property leads to a stronger conclusion: if Á obeys SSCD then

BRpz2, Aq is increasing in z, for any nonempty set A, whether or not it is an interval.13

Consider the entry model in Section 2. For simplicity, let us assume the payoff shifter xi for

10A set B2 dominates B1 in this order if, for every b2 P B2 and b1 P B1, b2 _ b1 P B2 and b2 ^ b1 P B1.
11It is clear that without such an assumption, any type of consumption data is rationalizable since one could

simply suppose that the consumer is indifferent across all consumption bundles. For a statement and proof of
Afriat’s Theorem see Varian (1982).

12Milgrom and Shannon (1994) actually use the term ‘single crossing property’; our reference to it as ‘single
crossing differences’ follows Milgrom (2004).

13For a more detailed discussion of the connections, see Quah and Strulovici (2009).
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player i is scalar, representing the size of the market, and that αi ¡ 0 and δij   0 for all j � i.

In this case, firm i’s payoff upon entry increases with xi (market size) and diminishes as more

firms enter the market; formally, Πi pyi,y�i, xi, εiq is increasing in zi � p�y�i, xiq, for every εi.

This guarantees that at every possible realization of the unobserved payoff shifter εi, firm i’s payoff

function, Πi pyi,y�i, xi, εiq, obeys SSCD in pyi; ziq. It follows from the Basic Theorem that if the

firm chooses to enter the market at some zi � z1i then it will also choose to enter when zi � z2i ¡ z1i.

3.2 Revealed Monotonicity Axiom

We consider an observer who records the actions chosen by an agent under a finite set of environ-

ments. The data set can be denoted by

O �  �
yt, zt, At

�
: t P T � t1, 2, ..., T u( ,

where at observation t, the agent chooses yt in the environment pzt, Atq. (Note that we allow for

the agent to make different choices in the same environment, so it is possible for pzt, Atq � pzs, Asq
and yet yt � ys.)

Definition 1. O is rationalizable if there is a regular preference Á on Y � Z such that for each

t P T , we have pyt, ztq Á py, ztq for every y P At.

Our aim in this subsection is to characterize data sets that are rationalizable by preferences that

obey SID in py; zq. Our motivation is clear: if O is rationalizable by an SID preference then there

is a regular preference that can both account for the observed behavior of the agent and guarantees

that the optimal choice of the agent based on this preference is increasing in the covariates on any

feasible action set in IpYq (including environments outside the observations tpzt, AtqutPT ).

Example 1. Consider a firm (for example, a power generator) producing a perishable good, whose

production in each period depends on the spot price for its output and the forward contracts it

has already signed. The observation at period t is pyt, zt, Atq, where yt ¥ 0 is the firm’s output,

zt ¥ 0 the spot price, and At � rȳt, Ks, where ȳt is the amount the firm had already committed to

supplying (at a price or prices which are not part of the observation) and K is the firm’s capacity.

Suppose that in each period t, the firm chooses y ¥ ȳt to maximize zpy � ȳtq � Cpyq, where C is
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the cost of producing y. Then the data set O � tpyt, zt, AtqutPT is rationalizable by a preference on

output-price pairs py, zq P R� �R� that obeys SID in py; zq. Indeed, it is clear that we can choose

the preference to be that induced by the payoff function Πpy, zq � zy � Cpyq.

To determine whether a data set is rationalizable by an SID preference, we first define the

revealed preference relations induced by O. The direct revealed preference relation ÁR is defined

as follows: py2, zq ÁR py1, zq if py2, zq � pyt, ztq and y1 P At for some t P T . The indirect revealed

preference relation ÁRT is the transitive closure of ÁR, i.e., py2, zq ÁRT py1, zq if there exists a finite

sequence ȳ1, ȳ2, ..., ȳk in Y such that

py2, zq ÁR pȳ1, zq ÁR pȳ2, zq ÁR ... ÁR pȳk, zq ÁR py1, zq. (7)

The motivation for this terminology is as follows. If the agent is optimizing according to some

preference Á and, at some environment pz, Aq the agent selects y2 when y1 P A, then it must be

the case that py2, zq Á py1, zq. Furthermore, given that Á is transitive, if py2, zq ÁRT py1, zq then

py2, zq Á py1, zq. We are now ready to introduce the axiom that characterizes rationalizability by

an SID preference.

Definition 2. O � tpyt, zt, AtqutPT obeys the Revealed Monotonicity (RM) axiom if, for every

s, t P T ,

zt ¡ zs, yt   ys, and pys, zsq ÁRT pyt, zsq ùñ pyt, ztq ÃRT pys, ztq.

Remark: Suppose that O is such that At � A � Y for all t P T . Then it is clear that the RM

axiom holds if and only if the optimal action is increasing in the covariates in the following sense:

yt ¥ ys for any two observation t, s P T such that zt ¡ zs.

It is clear that the RM axiom is a non-vacuous restriction. So long as the dataset is finite,

checking whether O obeys this property is a finite problem and indeed there are no computational

difficulties, either theoretical or practical, associated with the implementation of this test. It helps

with motivation at least to see why the RM axiom is a necessary condition.

Proposition 1. Suppose O � tpyt, zt, AtqutPT is rationalizable by a preference Á that obeys SID

in py; zq. Then O obeys the RM axiom.
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Proof. We first establish that ÁRT has what we call the interval property. In general, a binary

relation R on Y � Z has this property if py2, zqR py1, zq implies py2, zqR py, zq for any y between

y2 and y1, i.e., either y1   y   y2 or y2   y   y1.

If py2, zq ÁR py1, zq, then there is At such that y2 � yt and y1 P At. Since At is an interval, it

is clear that py2, zq ÁR py, zq for any y between y2 and y1. Now suppose py2, zq ÁRT py1, zq, but

py2, zq ÃR py1, zq. Then, we have a sequence like (7). Suppose also that y2 ¡ y1 and consider y

such that y2 ¡ y ¡ y1. (The case where y2   y1 can be handled in a similar way.) Letting y0 � y2

and yk�1 � y1, we know that there exists at least one 0 ¤ m ¤ k such that ym ¥ y ¥ ym�1.

Since pym, zq ÁR pym�1, zq, it must hold that pym, zq ÁR py, zq. This in turn implies that py2, zq �
py0, zq ÁRT py, zq, since py0, zq ÁRT pym, zq. So we have shown that ÁRT has the interval property.

Suppose there are observations s and t such that zt ¡ zs, yt   ys, and pys, zsq ÁRT pyt, zsq
holds. The interval property guarantees that pys, zsq ÁRT py, zsq for all y P ryt, yss. Since O is

rationalizable by an SID preference Á, we have pys, zsq Á py, zsq for all y P ryt, yss. The SID

property on Á guarantees that pys, ztq ¡ pyt, ztq, which means that pys, ztq £RT pyt, ztq. QED

Of course, our more substantial claim is that the RM axiom is also sufficient for rationalizability

by an SID preference. In fact, an even stronger property is true: whenever a dataset obeys the RM

axiom, then it is rationalizable by an SSCD (and not just SID) preference.14

Theorem 1. The following statements on O � tpyt, zt, AtqutPT are equivalent:

(a) O is rationalizable by a preference that obeys SID in py; zq.
(b) O obeys the RM axiom.

(c) O is rationalizable by a preference that obeys SSCD in py; zq.

As a very simple illustration of the use of this theorem, consider the following example.

Example 1 (continued). Suppose there are just two observations, py1, z1, A1 � rȳ1, Ksq and

py2, z2, A2 � rȳ2, Ksq, with z2 ¡ z1 and ȳ2   ȳ1. In other words, the output price is higher and the

14This phenomenon, which may seem surprising, is not unknown to revealed preference analysis; for example, it
is present in Afriat’s Theorem. In that context, the data consist of observations of consumer’s consumption bundles
at different linear budget sets. If the agent is maximizing a locally non-satiated preference, then the data set must
obey a property called the generalized axiom of revealed preference (GARP, for short); conversely, if a data set obeys
GARP then it can be rationalized by a preference that is not just locally non-satiated but also obeys continuity,
strong monotonicity, and convexity.
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output commitment lower at the second observation. Suppose ȳ1   y2   y1, then the RM axiom

is violated since py1, z1q ÁR py2, z1q and py2, z2q ÁR py1, z2q. On the other hand if y2   ȳ1   y1,

then the RM axiom holds, because the only revealed relation is py2, z2q ÁR py1, z2q and thus these

observations can be rationalized by an SID preference that obeys SID in py; zq. Note that for any

such preference Á, the SID property implies that py2, z1q ¡ py1, z1q but this does not contradict the

optimality of y1 in rȳ1, Ks.

It would be natural to speculate given Theorem 1 that, if we allow At to be arbitrary subsets of

Y (rather than intervals), then the RM axiom is necessary and sufficient for rationalizability with

SSCD preferences. It is clear that the axiom will be necessary for rationalizability in this sense, but

sufficiency does not hold.

Example 2. Let Y � tu, v, wu with u   v   w, and let A1 � tu,wu, A2 � tu, vu, and A3 � tv, wu.
Note that A1 is not an interval of Y . Suppose that z1   z2   z3. Then pw, z1q ÁR pu, z1q,
pu, z2q ÁR pv, z2q, and pv, z3q ÁR pw, z3q. The indirect revealed preference relation ÁRT is equal to

the direct revealed preference relation ÁR in this example and, clearly, this set of three observations

obeys the RM axiom. However, it cannot be rationalized by an SSCD preference. Suppose, instead,

that an SSCD preference Á rationalizes the data. Then, it must be that pw, z1q Á pu, z1q and, by

SSCD, pw, z2q ¡ pu, z2q. In addition, we have pu, z2q Á pv, z2q and so pw, z2q ¡ pv, z2q. SinceÁ obeys

SSCD, we get pw, z3q ¡ pv, z3q, which contradicts the direct revealed preference pv, z3q Á pw, z3q.

The RM axiom is an easy-to-understand property written in a form of no-cycling condition

(which is reminiscent of GARP in Afriat’s Theorem or the congruence axiom in Richter’s Theorem),

and the necessity of the axiom is relatively straightforward to show. Given the superficial familiarity,

a reader could be forgiven for thinking that its sufficiency is also obvious. But there is more than

what meets the eye in Theorem 1 and intuition can be misleading; indeed, any correct intuition

will have to distinguish between arbitrary constraint sets and interval constraint sets because, as

Example 2 demonstrates, the result is not true in the former case. The proof of the sufficiency

of the RM axiom does proceed in a way which is vaguely familiar, in the sense that we extend

ÁRT further by relying on strict interval dominance, and then take the transitive closure of that

extended revealed preference relation. While this seems like a natural approach to take, the issue

is whether the resulting incomplete revealed preference relation is actually well-behaved enough to

16



admit a completion that obeys SSCD or even SID, since the added requirements on the preference

means that we cannot simply appeal to Szpilrajn’s Theorem (or some other standard theorem)

to complete the relation. The heart (and substantive part) of the proof lies in showing that the

revealed preference relation does have the properties that allow for a completion that obeys SSCD.

This in turn relies crucially on the observed constraint sets being intervals; indeed, Kukushkin,

Quah, and Shirai (2016) provide an example of an incomplete preference ordering that obeys SSCD

(which can be interpreted as arising from a data set with non-interval constraint sets), for which

there is no completion that also obeys that property.

In the case where Y is finite, it is obvious that any SID preference on Y � Z can be represented

by a payoff function Π : Y �Z Ñ R, in the sense that Πpy1, zq ¥ p¡qΠpy, zq if py1, zq Á p¡q py, zq.15

The next result asserts that such a representation generally exists.

Proposition 2. Suppose Y is a closed interval of R and that O obeys the RM axiom. Then O is

rationalizable by a preference that obeys SSCD in py; zq and admits a payoff representation.

Up to this point in our discussion, we have allowed for the possibility that an agent’s preference is

indifferent between two actions. It is sometimes convenient, especially in the case where Y consists

of a finite set of actions, to rule out the possibility of indifference; in other words, for any py, zq
and py1, zq either py, zq ¡ py1, zq or py1, zq ¡ py, zq. To characterize rationalizability by a strict SID

preference would necessarily entail a strengthening of the RM axiom.

Definition 3. O obeys the Strong Revealed Monotonicity (SRM) axiom if, for every s, t P T ,

zt ¥ zs, yt   ys, and pys, zsq ÁRT pyt, zsq ùñ pyt, ztq ÃRT pys, ztq.

Notice that this property strengthens the RM axiom by imposing the following additional condi-

tion: it excludes the possibility that pys, zsq ÁRT pyt, zsq and pyt, ztq ÁRT pys, ztq when zt � zs and

yt � ys. Clearly, this exclusion is needed for rationalizability by a strict preference. The following

result is the analog to Theorem 1 and Proposition 2 for strict preferences.

15Note that there is a difference between our notion of ‘representation’ here and the textbook definition because
Á is not a complete binary relation on X � Z: it need not compare elements with distinct z. So the representation
requirement is also confined to elements py1, z1q and py, zq where z1 � z.
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Theorem 2. The following statements on O � tpyt, zt, AtqutPT are equivalent:

(a) O is rationalizable by a strict preference that obeys SID in py; zq.
(b) O obeys the SRM axiom.

(c) O is rationalizable by a strict preference that obeys SSCD in py; zq.

In the case where Y is a closed interval of R, the strict SSCD preference in (c) can be chosen to

have a payoff representation.

3.3 Cross-sectional data

So far we have assumed that the observer has access to panel data that gives the actions of the

same agent across different environments. We now consider the case where data of this type is

not available; instead, we only observe the distribution of actions taken by a population of agents,

with possibly heterogeneous preferences, under different environments. It is possible to extend our

revealed preference analysis to this stochastic setting, provided we assume that the distribution

of preferences is the same in populations subject to different environments or, put another way,

environments are assigned randomly. Throughout this section, we shall assume Y is finite, but bear

in mind that the set of covariates can still be infinite.

The cross-sectional data consists of a finite set of environments and an associated distribution

of choices for each of them. We can thus denote it as

P �  
Pp�|zt, Atq : t P T � t1, 2, ..., T u(

where Ppy|zt, Atq is the fraction of agents who choose action y in environment pzt, Atq. It almost goes

without saying that P is an idealized data set, in the sense that we assume that the distributions

observed in P are true population distributions; in practice, we do not observe P but rather some

sample which approximates P . In this section, as well as the next two, we shall be abstracting from

this specifically statistical issue and focus on idealized data sets. In the final, empirical section,

finite sample issues will be addressed using the approach of Kitamura and Stoye (2016).

There is no loss of generality in assuming that all agents in the population have payoff functions

(rather than just preferences), and so we shall present our results in that way, to make its connection
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with the empirical and econometric literature clearer. We introduce heterogeneity in the population

via a term ε P E ; one could think of ε simply as a parameterization of the payoff functions defined on

Y � Z. For a type ε, its payoff function is Πp�, εq : Y�Z Ñ R. Each agent in the population knows

its own type, but this is not directly observed by the econometrician. We denote a distribution on E

by F. Since indifferences are allowed, the set BRpz, A, εq � arg maxyPA Πpy, z, εq may be non-unique.

A selection rule at pε, tq P E � T is a conditional probability on Y with support on BRpzt, At, εq;
specifically, λ py | ε, tq gives the probability that y is chosen by type ε at the observation t.

Definition 4. P is stochastically rationalizable (or, when there is no ambiguity, simply rationaliz-

able) if there is E , regular payoff functions Πp�, εq : Y �Z Ñ R for all ε P E , a selection mechanism

λ, and a distribution F on E such that

Pr
�
y|zt, At� � »

λ py | ε, tq dFpεq for each t P T . (8)

In other words, there is a distribution F on a family of payoff functions that accounts for the

distribution of actions at each observed environment, assuming that agents choose from their best

response set according to a selection rule.16 This notion of rationalizability coincides with what

Manski (2007) calls a linear behavioral model. The models of Marschak (1960) and McFadden and

Richter (1991) are models of this type; see Manski (2007) for a discussion and other examples.

Our objective here is to formulate a test of rationalizability with payoff functions Πp�, εq that

obey SID in py; zq. Before we do that we must introduce the notion of a path, which is a sequence of

choices y� � �
y�1, y�2, ..., y�T

�
where y�t P At for all t P T . A path y� is said to obey the RM axiom

if the induced data set tpy�t, zt, AtqutPT obeys the RM axiom. By Theorem 1, this guarantees that

the induced data set can be rationalized by an SID (and indeed by an SSCD) preference. Since Y

is finite, it is in principle possible to determine the entire set of paths that obey the RM axiom; we

denote this set by Y�. The next result is a straightforward consequence of Theorem 1 and provides

a way of testing whether or not a data set P is rationalizable by SID preferences.

Theorem 3. P is rationalizable by payoff functions with the SID property in py; zq if and only if

16Note that the selection mechanism can vary across observations, in the sense that λpy|ε, tq and λpy|ε, sq may
not be equal, even when the environments are identical, i.e., pyt, Atq � pys, Asq. In other words, our definition
of rationalizability does not restrict which elements in the best response set are picked, and indeed allows for the
possibility that the agent will choose differently when the same environment is repeated.
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there exists a probability distribution Q on Y� such that

Ppy|zt, Atq �
¸

y�PY�
1
�
y�t � y

�
Q py�q for each y P At and all t P T . (9)

When Q exists, it is possible to choose E to be finite and the payoff functions to obey SSCD.

Proof. Suppose P is rationalizable. Let Ppy�, εq be the probability that an agent of type ε chooses

the path y� (in the sense that the agent chooses action y�t at observation t). Note that Ppy�, εq �
�T
t�1λpy�t|ε, tq. Since the agent ε has an SID payoff function, Theorem 1 guarantees that Ppy�, εq ¡ 0

only if y� obeys the RM axiom. Then the proportion of the population who choose the path y� is³
Ppy�, εqdFpεq; if we set this as Qpy�q, it is clear that (9) holds.

Conversely, suppose Q exists that solves (9). We can list, in any particular order, the finite

set of paths which have positive probability under Q. Let Πpy, z, 1q be an SID payoff function that

rationalizes the first path on the list, Πpy, z, 2q an SID payoff function that rationalizes the second

path, and so on. Then E � t1, 2, . . .u is a finite set and let the distribution F assign a weight of

Qpy�ε q to the type ε, where y�ε is the path rationalized by Πpy, z, εq. Let λpy|ε, tq � 1 if y � y�tε , and

let λpy|ε, tq � 0 otherwise; in other words, the type ε chooses y�tε at observation t with certainty.

Then (9) guarantees that (10) holds. QED

This theorem sets out a procedure that allows us to determine whether a cross-sectional dataset is

rationalizable by SID/SSCD payoff functions. First, we need to determine the set of all paths y� that

satisfy the RM axiom, and then we solve the linear equations given by (9). The implementability

of this procedure in practice will depend crucially on the number of observed environments in the

data and the ease with which we could work out the set Y�. Notice also that a solution to (9) is

a distribution on Y�, and because (9) is a linear family of equations, the collection of distributions

on Y� that solve this family form a convex set. This set can be non-unique; when that occurs the

distribution over payoff functions that rationalizes the data can also be non-unique. In other words,

in this environment, the primitives of the model can typically only be partially identified.

In the special case where the feasible action sets are fixed across all observed environments,

a path y� � py�1, y�2, ..., y�T q obeys the RM axiom if and only if y�t ¥ y�s whenever zt ¡ zs.

In this case, it is clear that Pp�|zt, Aq will first order stochastically dominate Pp�|zs, Aq whenever
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zt ¡ zs, because every type in the population will be taking a weakly higher action. Less obviously,

the converse is also true, so that monotonicity with respect to first order stochastic dominance

characterizes rationalizability with SID preferences when the feasible action set is fixed.

Theorem 4. Suppose that P satisfies At � A � Y for all t P T . Then P is rationalizable by SID

payoff functions if and only if Pp�|zt, Aq ¥FSD Pp�|zs, Aq for all s, t P T such that zt ¡ zs.

There are analogous versions of Theorems 3 and 4 for the case of rationalizability by strict SID

preferences. In the case of the former, the result holds, provided we require Q to have its support

on Y��, the set of paths obeying the SRM axiom. In the case of Theorem 4, the characterizing

property requires, in addition, that Pp�|zt, Aq � Pp�|zs, Aq for all s, t P T such that zt � zs. We

leave the reader to fill in the details.

Theorems 3 and 4 will be applicable in Section 5 (see, in particular, Theorem 8), where we study

the rationalization of Bayesian Nash equilibria. In that context, a data set consists of observations

of the distribution of actions of a player in different game environments, and the covariates will be

(1) the player’s observable characteristics and (2) some statistic of the actions of other players, such

as their average action. (Thus the covariates will be at least two-dimensional.)

3.4 Related results

Topkis (1998, Theorem 2.8.9) considers a correspondence ϕ mapping elements of a totally ordered

set (which can be interpreted as the set of covariates) to compact sublattices of R`. He shows that

this correspondence is increasing in the strong set order if and only if it can be exactly rationalized by

a payoff function that is supermodular in the choice variable and has increasing difference between

the choice variable and the covariates. By ‘exactly rationalized’ we mean that the optimal choices

at some value z of the covariate must coincide with (rather than simply contain) ϕpzq. In the case

where ϕ is a choice function, it is not hard to see that such a rationalization is possible even when

the covariates form a partially (rather than totally) ordered set; this has been noted by Carvajal

(2004) who applies this to a game setting.

Throughout this paper, we also permit the set of covariates to be partially rather than totally

ordered; this is crucial in game theoretic applications, where the covariates will include the actions

of other players in the game and thus will not generally be totally ordered. However, we confine
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ourselves to the case where actions are totally ordered (in essence, elements of R rather than R`),

while allowing for observations of the choices made from different subsets of the set of all possible

actions. Consequently, the observer may have partial information on the agent’s ranking over

different actions rather than simply the globally optimal action. In this respect, the problem we

pose is more complicated than the one posed by Topkis, because the rationalizing preference we

construct has to agree with this wider range of preference information (in addition to obeying single

crossing differences).

Echenique and Komunjer (2009) considers a structural model where there could be multiple

outcomes (which could be optimal choices made by an agent or equilibrium outcomes). It shows

that a monotone relationship between the exogenous and dependent variables in the structural

function leads to observable restrictions on the tail quantiles of the dependent variable. The issue

of rationalizability is not addressed.

Apesteguia, Ballester, and Lu (2017) characterize a random utility model where the distribution

of actions on any feasible set is generated by a set of preferences that are totally ordered by single

crossing differences. The model we study in the previous subsection can also be interpreted as a

random utility model; however, the rationalizability of a data set P does not require the population’s

preferences to be totally ordered by single crossing differences (i.e., in terms of our notation, we

do not require Πpy, z, εq to have single crossing differences in py; εq). The single crossing property

tested in the previous subsection is between actions and (observable) covariates, an issue which is

not addressed in Apesteguia, Ballester, and Lu (2017).

There is a significant empirical literature on the endogenous adoption of (possibly) complemen-

tary technologies within the firm. Unlike our contribution, that literature is not always concerned

with the recovery of payoff functions and, to the extent that it is, it uses parametric models (see,

for example, Athey and Stern (1998)).

4 Monotone choice in games

This section extends the results in the previous section to analyze games of complete information.

The first three subsections focus on games with strategic complements. The final subsection extends

these ideas to games with strategic substitutes, etc.
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4.1 Pure strategy Nash equilibrium

Let N � t1, 2, ...., nu be the set of agents in a complete information game, with Yi (a closed subset

of R) being the set of all conceivable actions of agent i. Player i has a feasible action set Ai which

is a compact interval of Yi, with the set of all such intervals denoted by IpYiq. Agent i’s payoff

over different feasible actions is affected by the actions of other players and also by an exogenous

variable xi, which is drawn from a partially ordered set pXi,¥q. We refer to xi as agent i’s observable

characteristics since it is observed by other players in the game and also by the econometrician.

Note that if there are observable features of the game that affect all players, this could simply be

folded into xi for each i, since Xi can be multi-dimensional.

To connect this setup with the previous section, let Zi � Y�i�Xi with Y�i � �j�iYj. A typical

element of Zi is denoted by zi � py�i, xiq and Zi is a partially ordered set if we endow it with the

product order. Player i has a regular preference Ái on Yi�Zi (for all i P N ). Given these preference,

we denote by Gpx,Aq the game arising when the joint feasible action set is A � �n
i�1Ai P IpYq

(where IpYq denotes �n
i�1IpYiq) and the profile of observable characteristics is x P X (where X

denotes �n
i�1Xi). We refer to px,Aq as a game environment. We say that the family of games

G � tGpx,Aqupx,AqPX�IpYq obeys strategic complementarity if, for every A P IpYq, the best response

of each agent i (as given by (3)) is monotone in zi � py�i, xiq. Games of strategic complementarity

have a number of properties that make them particularly well-behaved; the most important for

our purposes is that it always has a pure strategy Nash equilibrium (see Milgrom and Roberts,

1990). It follows immediately from the Basic Theorem that the family of games G obeys strategic

complementarity if and only if Ái is an SID preference for every agent i.

Our objective is to develop revealed preference tests of the hypothesis that agents are playing

games of strategic complementarity. We begin with the case where the observer has access to panel

data, where the joint actions selected by the agents under a finite set of game environments are

observed. Specifically, at observation t, the players choose an action profile yt from the feasible

action set At, when the covariates are xt. Thus the data set is

O �  �
yt,xt,At

�
: t P T � t1, 2, ..., T u( .

Definition 5. O is rationalizable as pure strategy Nash equilibria (PSNE) if, for each agent i P N ,
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there is a regular preference Ái on Yi �Y�i � Xi such that, at each t P T , we have pyti ,yt�i, xtiq Ái�
yi,y

t
�i, x

t
i

�
for every yi P Ati.

If O is rationalized as PSNE by a profile of preferences tÁiuiPN such that Ái obeys SID in

pyi; ziq where zi � py�i, xiq then the Basic Theorem guarantees that the resulting family of games

G obeys strategic complementarity. Characterizing data sets with this rationalizability property is

straightforward given the results of the previous section. By letting zti � pyt�i, xtiq, we can construct

from O a ‘personalized’ dataset Oi � tpyti , zti , AtiqutPT for each agent i. The following result follows

immediately from Theorem 1.

Theorem 5. O � tpyt,xt,AtqutPT is rationalized as PSNE by tÁiuiPN , such that Ái obeys SID in

pyi; zi � py�i, xiqq if and only if Oi obeys the RM axiom for each i P N .

Example 3. Suppose that Y1 � Y2 � t0, 1u, X1 � X2 � t0, 1u, and that O has two observations:

at observation 1, y1
1 � y1

2 � 1, x1
1 � x1

2 � 0, and A1
1 � A1

2 � t0, 1u; and

at observation 2, y2
1 � y2

2 � 0, x2
1 � x2

2 � 1, and A2
1 � A2

2 � t0, 1u.
In the case of a single agent and when the set of feasible actions is fixed across observations, the

RM axiom is equivalent to the co-monotonicity of the observed action with the covariates. Clearly,

co-monotonicity is violated here since the observed action profile falls from p1, 1q to p0, 0q, as the

covariates increase from p0, 0q to p1, 1q. Nonetheless this data set is rationalizable as PSNE by SID

preferences. By Theorem 5, it suffices to show that O1 and O2 obey the RM axiom. The two

observations of O1 are the following:

at observation 1, y1
1 � 1, z1

1 � p1, 0q, with A1
1 � t0, 1u; and

at observation 2, y2
1 � 0, z2

1 � p0, 1q, with A2
1 � t0, 1u.

O1 trivially obeys the RM axiom (since z1
1 and z2

1 are not comparable), and similarly so does

O2. More directly, it is straightforward to check that the following SID preferences rationalize the

data: for agent 1, p0, 0, x1q ¡1 p1, 0, x1q and p1, 1, x1q ¡1 p0, 1, x1q for any x1; in other words, agent 1

prefers coordinating on the same action with the other player irrespective of the exogenous variable.

Similarly, for agent 2, p0, 0, x2q ¡2 p1, 0, x2q and p1, 1, x2q ¡2 p0, 1, x2q. With these preferences, p0, 0q
and p1, 1q are Nash equilibria when the covariates are (0,0) and also at (1,1).
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4.2 Cross sectional data sets

We now extend our analysis to the case where we observe cross sectional data. Specifically, the data

consists of a finite set of game environments and at each environment we observe the distribution

of action profiles taken by a population of groups. Each group consists of n players, with a player

in role i, for i � 1, 2, . . . , n. As in Section 3.3, we now specialize to the case where Yi is finite, for

all i (while Xi may still be infinite). A typical data set can thus be denoted as

P �  
Pp�|xt,Atq : t P T � t1, 2, ..., T u(

where Ppy|xt,Atq is the fraction of groups in the population who play the action profile y in game

environment pxt,Atq.
Given that Yi is finite, there is no loss of generality in assuming that an agent in role i has a

payoff function (rather than just a preference). Heterogeneity among agents in this role is captured

by a term εi P Ei, which parameterizes the payoff functions. For a type εi, we denote its payoff

when it chooses action yi, given that others are playing y�i, and the observable characteristics

are xi by Πipyi,y�i, xi, εiq. We refer to ε � �n
i�1εi as a group type and denote the set of group

types by E � �n
i�1Ei. Given a group type ε and a game environment px,Aq, let NEpx,A, εq be

the corresponding set of PSNE; note that we are assuming that the players in a group know each

other’s type and are playing a game of complete information. A selection rule at pε, tq P E � T
is a conditional probability on Y with support on NEpxt,At, εq; specifically, λ py | ε, tq gives the

probability that the profile y is played by the group type ε at the observation t.

Definition 6. P is stochastically rationalizable (or simply rationalizable) if there is Ei and payoff

functions Πi : p�, εiq Ñ R for each role i and type εi P Ei, a selection mechanism λ, and a distribution

F on the set of group types E � �n
i�1Ei such that

Pr
�
y|xt,At

� � »
λ py | ε, tq dFpεq for each t P T . (10)

In other words, the distribution of action profiles at each observation can be accounted for by

a distribution F over group types (which does not vary across observations) and a selection rule
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over the PSNE of each group type. It is worth emphasizing that since we impose no restrictions at

all on F, we are allowing for the possibility that groups are not formed randomly. For example, in

two-player games, the probability that a role-1 player belongs to a particular type can depend on

the type of role-2 player to which that role-1 player is paired.

We would like to formulate a test for the rationalizability of P with payoff functions that obey

the SID property, in the sense that we require Πip�, εiq to obey SID in pyi; py�i, xiqq, for every role

i and every type εi. The test provided by Theorem 3 for single-agent decision problems could be

naturally extended to a game-theoretic setting.

We refer to a sequence of joint action profiles y� � �
y�1,y�2, ...,y�T

�
, where y�t P At for all

t P T , as a path. Abusing terminology a little, we say that this path obeys the RM axiom if, for

every i, the induced panel data set Oi � tpyti , zti , AtiqutPT (with zti � pyt�i, xtiq) obeys the RM axiom.

We denote the set of paths that obey the RM axiom by Y�. Since Y is finite, it is in principle

possible to find all the paths in Y�. Note that, by Theorem 5, if a path y� obeys the RM axiom

then tpy�t,x�t,AtqutPT is rationalizable as PSNE with SID payoff functions. The next result is

analogous to Theorem 3 and has a similar proof (which we shall omit).

Theorem 6. P is rationalizable with payoff functions that obey the SID property if and only if there

exists a probability distribution Q on Y� such that

Ppy|xt,Atq �
¸

y�PY�
1
�
y�t � y

�
Q py�q for each y P At and all t P T . (11)

When Q exists, it is possible to choose the set E to be finite and the payoff functions to obey SSCD.

There is an analogous version of Theorem 6 for the case of rationalizability by strict SID prefer-

ences: it is necessary and sufficient for Q to have its support on Y��, the set of paths that obey the

SRM axiom, by which we mean that, for every i, the induced panel data set Oi � tpyti , zti , AtiqutPT
(with zti � pyt�i, xtiq) obeys the SRM axiom.

In Section 2, we gave an example in Table 2 of a data set P with three observations and tested

whether it is SID-rationalizable (with the order of Firm 2’s strategies reversed). The paths listed

in Table 3 obey the SRM axiom and a distribution Q that satisfies (11) is provided by the second

column in that table.
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In Section 6, we illustrate the use of Theorem 6 by applying it to data on the entry behavior

of airlines. Readers who are keen to scrutinize the results of that application can skip to Section 6

immediately after reading Section 4.3. In fact there are many other potential empirical applications

of our approach. In a related note, we apply Theorem 6 to test for the presence of spousal influence

in smoking decisions (Lazzati, Quah, and Shirai, 2018).

4.3 Inference and out-of-sample predictions

Theorem 6 tells us that a data set P is rationalizable by payoff functions that obey SID if and

only if there is a distribution Q over Y� that solves (11). Beyond testing the model, we may wish

to know more about the set Q, and thus about the types that form the population generating P .

To be specific, suppose we are interested in the proportion of the population with paths belonging

to some set Y1 � Y�. (For examples of this type see the application in Section 6.) Since the

set of distributions Q that solve (11) will typically be a non-singleton convex set, this proportion

cannot be predicted uniquely. The largest (smallest) proportion which is data-consistent could be

obtained by maximizing (minimizing) the linear objective
°

y�PY1 Qpy�q subject to (11). We could

then conclude that the true proportion of the population with paths in Y1 can lie anywhere between

these two numbers, since the solution to (11) is convex.

Another natural exercise is to make out-of-sample predictions. Suppose P � tPp�|xt,AtqutPT
is rationalizable with SID payoff functions and we wish to predict the distribution of outcomes

at some game environment px0,A0q (while maintaining the SID property on payoff functions). In

other words, we would like to identify those distributions Pp�|x0,A0q (with their support on A0)

such that the augmented stochastic data set P Y tPp�|y0,A0qu is rationalizable by payoff functions

that obey SID. Let Ppx0,A0q be the set of these distributions; this set can be obtained using the

following procedure.

Let φ : Y� Ñ A0 be any map such that the path pφpy�q,y�q, on the game environments

tpx0,A0qu Y tpxt,AtqutPT obeys the RM axiom. It follows from Theorem 6 that Pp�|x0,A0q is in

Ppx0,A0q if and only if there is φ and a distribution Q on Y� such that (11) holds and

Ppy|x0,A0q �
¸

y�PY�
1 pφpy�q � yqQ py�q for each y P A0. (12)

27



Note that Pp�|x0,A0q exists because both Q and φ exists, the former because P is rationalizable with

SID payoff functions and the latter because any game of strategic complementarity has PSNE.17

4.4 Other classes of games

The tests we have outlined for games of strategic complementarity could potentially be applied

to classes of games that require other monotone properties on a player’s strategic choice. It could

certainly be applied to two-player games of strategic substitutes, since these games could be thought

of as games of strategic complements, once we reverse the order of the strategy of one of the two

players. It could also be applied to games of strategic substitutes more generally: instead of checking

whether a player i has SID preferences in pyi; py�i, xiqq, we could check whether the player has SID

preferences in pyi; p�y�i, xiqq, which will guarantee that this player’s action decreases with the

actions of other players. There is, however, a caveat: while games with strategic complementarity

always have pure strategy Nash equilibria, this is not true for games of strategic substitutes. So

while it is possible to test whether a given set of observations is consistent with PSNE in the

latter class of games, one may argue that the hypothesis itself is less plausible since there is no

general PSNE existence result for these games. Furthermore, even if preferences could be found

that rationalizes a data set as PSNE in games of strategic substitutes, these preferences may not

guarantee the existence of PSNE outside the set of observed environments tpxt,AtqutPT ; in other

words, there may be difficulty in making out-of-sample PSNE predictions. The bottom line is that

when we are testing a hypothesis that a set of observations consists of PSNE of games belonging to

a particular class, it would be desirable for that class of games to have PSNE in general.

Another natural variation on the tests we have developed involves making stronger hypotheses

on the way actions taken by other players impact a player’s payoff. For example, in the entry

model discussed in Section 2, we may hypothesize that firm i cares about the number of other firms

that enter the market, irrespective of their identity. If the firm’s payoff function has the linear

form given by (1), this is equivalent to assuming that δij is the same across all j. The analogous

condition in our nonparametric setting is to require the SID property in pyi; p
°
j�i yi, xiqq (in the

case of strategic complements) or the SID property in pyi; p�
°
j�i yi, xiqq (in the case of strategic

17Since y� obeys the RM axiom, Theorem 5 guarantees that it admits a rationalization with SID preferences, and
these preferences generate a nonempty set of PSNE in the game environment px0,A0q (Milgrom and Roberts, 1990).
Let φpy�q be any PSNE in this environment; then pφpy�q,y�q obeys the RM axiom (again by Theorem 5).
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substitutes). Theorem 6 could be straightforwardly adapted to test such a hypothesis.

5 Bayesian Nash Equilibrium

In Section 4.2, we consider an idealized cross sectional data set of the form P � tPp�|xt,AtqutPT
and find necessary and sufficient conditions under which it could be rationalized by a population

of groups playing complete-information games with strategic complementarity. In this section, we

consider a data set of the same form and investigate its rationalizability as Bayesian Nash equilibria.

5.1 Payoffs and game structure

The players N � t1, 2, . . . , nu play a simultaneous game. Each player i has a preference over its

own actions that depends on its observable characteristic xi and on its type εi. Unlike Section 4,

εi is now private information and unknown to the other players. We assume that this preference

is also affected by the player’s belief on the actions of other players; we allow this belief to be

non-deterministic, so it takes the form of a distribution ρ on Y�i. The impact of this belief on

the agent’s preference is captured by the expected value of some function gi : Y�i � Xi Ñ Rni ;

note that we have not excluded the possibility that the player’s preference depends directly on y�i

since we can always set gipy�i, xiq � y�i but this formulation allows us to build in simpler forms of

interaction, for example, by setting gipy�i, xiq �
°
j�i yj. The function gi is known to the players in

the game and also to the econometrician; crucially, this means that, if ρ is the distribution on y�i

observed in the data set, then the expected value of gi given ρ, i.e., Eρpgi|xiq �
³
gipy�i, xiqdρpy�iq,

is also known to the econometrician.

Let Bi be the convex hull of the image of gi. We assume that a player i of type εi P Ei has a

payoff function Πip�, εiq : Yi � Bi � Xi Ñ R such that if the player’s belief over Y�i is given by ρ,

then the payoff of action yi when the observable characteristic is xi is

Πipyi,Eρpgi|xiq, xi, εiq. (13)

In other words, the player’s payoff can be captured by a function defined on the expected value of

gi. This is a nonstandard assumption: if Πipyi, gipy�i, xiq, xi, εiq is the (ex post) payoff to player
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i when other players are playing y�i then the payoff when he has a belief ρ on y�i is typically

understood to be the expected value, which is
³
y�iPY�i

Πipyi, gipy�i, xiq, xi, εiq dρpy�iq and not (13).

However, many of the payoff functions assumed in the estimation of Bayesian games do have the

property that the expected value equals (13).18 This is obviously true for the payoff functions in

the entry model discussed in Section 2, where gipy�i, xiq � y�i (see (1)). Another instance where

this property obviously holds is the following payoff function

Πipyi,y�i, xi, εiq � aipyi, xi, εiq �
mi̧

k�1

cki pyi, xi, εiq gki py�i, xiq,

where ai, c
k
i and gki are real-valued functions; this is a generalization of the payoff function used in

Aradillas-Lopez and Gandhi (2016) where it is assumed that

Πipyi,y�i, xi, εiq � aipyi, εiq � cipyi, εiq gipy�i, xiq,

with ai, ci and gi being real-valued functions, and ai and ci independent of xi.

We assume that the distribution of types for player i obeys the independence property, by which

we mean that the distribution of εi can depend on some of player i’s observable characteristics, but

cannot depend on the characteristics of other players, or on their types. Specifically, we suppose

that Xi � rXi � X̄i, with a typical element having the form xi � px̃i, x̄iq and allow the distribution

of εi to depend on x̃i, but to be independent of px̄i,x�i, ε�iq. Note that we allow for the possibility

that x̄i is absent (the case where all of i’s characteristics will affect the distribution of εi) and also

the case where x̃i is absent (the case where none of i’s characteristics affect the distribution of εi).

That a player’s private type is independent of the type of other players is widely assumed in the

econometric literature on Bayesian games; in fact most estimation strategies also assume that εi is

additively separable from the non-stochastic component of the payoff function and to belong to a

known parametric family.

We denote the distribution of εi by Fip�, x̃iq : Ei Ñ R. The agent i chooses an action from its

feasible action set Ai after observing εi, so its strategy is a map σi : Ei Ñ Ai. Given the strategies

18An exception is Bajari, Hong, Krainer, and Nekipelov (2010), where the non-stochastic part of the payoff
function is nonparametric and may not satisfy the property we require. In that model, however, the private type is
additively separable and has a known distribution, requirements which we do not impose.
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of other players, σ�i, the distribution of their types F�ip�, x̃�iq, the payoff of an agent i of type εi

is Πipyi,EF�i
pgipσ�iq|xiq, xi, εiq where

EF�i
pgipσ�iq|xiq �

»
E�i

giprσjpεjqsj�i , xiqdF�ipε�i, x̃�iq.

A profile of strategies pσ̂iqiPN forms a Bayesian Nash equilibrium (BNE) in the game environment

px,Aq if, whenever εi is in the support of Fip�, x̃iq,

Πipσ̂pεiq,EF�i
pgipσ̂�iqq, xi, εiq ¥ Πipyi,EF�i

pgipσ̂�iqq, xi, εiq for all yi P Ai. (14)

Suppose gi is an increasing function and Πipyi, bi, xi, εiq has the SID property in pyi; biq (for all

i P N). Let us consider what happens when σj increases pointwise (for all j � i), in the sense that

player j’s action at every type εj is higher. Then bi increases because gi is increasing and this in

turn leads to player i’s optimal action at every type εi to increase, since Πi has the SID property.

In other words, player i’s optimal strategy σi also increases pointwise. Thus the strategies of the

players are strategic complements and the existence of a Bayesian Nash equilibium is guaranteed

(Vives, 1990).

5.2 Rationalization

Definition 7. P � tPp�|xt,AtqutPT is rationalizable as a BNE if, for each player i, there is a set

of types Ei, distributions Fip�, x̃tiq on Ei, and payoff functions Πip�, εiq : Yi � Bi � Xi Ñ R (for each

type εi P Ei) such that in each game environment pxt,Atq, there is a BNE pσ̂tiqiPN that leads to

Pp�|xt,Atq as the distribution on the action profiles At.

Our objective is to characterize those data sets which are rationalizable as BNE with payoff

functions obeying SID. As an example of what we have in mind, suppose that the players in the

game are radio stations, whose strategy consists of choosing the time during a particular hour at

which to have a commercial break (as in Sweeting (2009)). For a given station, the optimal timing

of a break depends on observable factors, such as the choices made by rival radio stations, but also

on idiosyncratic causes unobserved by other stations; for example, on any particular day, a station

must fit its commercial breaks around other pieces of programming. For this reason, we may think
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of radio stations as playing a game of incomplete information. Each observation t corresponds to

a radio market (corresponding to particular geographically area), with Pp�|xt,Atq being the joint

distribution of commercial break times (at different stations) observed in that market.

Note that, in practice, obtaining the distribution Pp�|xt,Atq could involve sampling the outcomes

of the same game played many times. Our definition of rationalizability implicitly posits that the

data collected to obtain Pp�|xt,Atq are realizations from the same BNE; consequently, this feature

is also part of the test we formulate. The estimation literature has addressed this issue in different

ways. There are models where the primitives are such that multiplicity is excluded (for example,

Seim (2006)), so the danger of sampling from different BNE of the same game does not arise; in other

cases, such as Sweeting (2009), the estimation strategy assumes that a single equilibrium is played

at each market, even if it allows for the possibility that different equilibria are played at different

markets which have the same observable characteristics (and so players are playing the same game).

Indeed, Sweeting (2009) emphasizes the usefulness for estimation of multiple equilibria. In terms of

our notation, Sweeting (2009) allows for the possibility that Pp�|xt,Atq � Pp�|xs,Asq, even though

pxt,Atq � pxs,Asq. Our definition and test of rationalizability allows for this possibility as well.

It may be implausible in certain applications to assume that the realized actions observed are

from a single BNE. This corresponds, in our setup, to the case where the distribution Pp�|xt,Atq is

obtained from a mixture of several BNE of the same game. Our rationalization concept does not

allow for that possibility, and we do not formulate a test for this case. Note that a distribution ob-

tained from such a mixture is precisely what is considered in De Paula and Tang (2012).19 However,

their objective is not to rationalize a data set as BNE with SID preferences, but rather to determine

the direction of interaction effects under the assumption that BNE are played; interestingly, the

efficacy of their test hinges on the presence of multiple BNE.

5.3 BNE rationalizability with SID payoff functions

Let us suppose that P is rationalizable as a BNE. Then given our assumption that players’ types

are independent from each other, the distribution of players’ actions must also be independent.

19See also the extension of Aradillas-Lopez and Gandhi (2016).
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Consequently, for any y1 P Y and at any observation t,

Ppy1|xt,Atq � �N
i�1Pipy1i|xt,Atq,

where Pipy1i|xt,Atq � °
y�iPY�i

Ppy1i,y�i|xt,Atq is the probability of the agent i choosing action y1i.

Notice also that, given the form of agent i’s payoff function, the actions of other players only

affect player i’s payoff via the average value of gi. The independence property guarantees that this

value is independent of the realization of εi and given by

bti � EF�i
pgipσ̂t�iq|xtiq �

¸
y�iPY�i

gipy�i, x
tq � P�ipy�i|xt,Atq (15)

where P�ipy�i|xt,Atq � �j�iPjpyj|xt,Atq is the observed probability of y�i at observation t. It

follows from (15) that bti is known to the econometrician. Somewhat abusing our notation, we shall

now write Pipy1i|xt,Atq, player i’s observed probability of choosing action y1i, as Pipy1i|bti, xti, Atiq, in

order to highlight precisely those factors which have an impact on the player’s action.

To rationalize P it is necessary and sufficient to rationalize the actions of each i, given the

player’s choice environment, as summarized by pbti, xtiq. In other words, we need to rationalize

Pi � tPip�|bti, xti, Atiq : t P T u (16)

in the sense of finding Ei, distributions Fip�, x̃tiq on Ei, payoff functions Πip�, εiq : Yi � Bi � Xi Ñ R

(for each type εi P Ei), and strategies σ̂ti : Ei Ñ Ati at each observation t such that

(i) Πipσ̂tipεiq, bti, xti, εiq ¥ Πipyi, bti, xti, εiq for all yi P Ati and εi in the support of Fip�, x̃tiq;

(ii) Pipyi|bti, xti, Atiq �
³
Ei 1pσ̂tq�1

i pyiq
dFipεi, x̃tiq, where pσ̂tq�1

i pyiq � tεi P Ei : σ̂tipεiq � yiu.

Condition (i) states that σ̂ti is an optimal response while (ii) guarantees that it generates a distri-

bution over actions coinciding with the one observed.

Notice that the problem of rationalizing Pi with SID payoff functions is virtually identical to the

one discussed in Section 3.3 and solved in Theorem 3, with the exception that while the distribution

of types in that case is held fixed across all observations, we allow it to vary with x̃i in this case.
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Since we can always choose the support of Fip�, x̃tiq and Fip�, x̃si q to be non-overlapping whenever

x̃ti � x̃si , there are effectively no restrictions imposed by the rationalizability of Pi on Pip�|bti, xti, Atiq
and Pip�|bsi , xsi , Asi q jointly when x̃ti and x̃si are distinct. However, restrictions of the type imposed

by Theorem 3 must hold (and are also sufficient) whenever x̃ti � x̃si since the rationalizability of Pi
requires the distribution of types to be the same in these two case. To state this more formally, we

partition T into Ti1, Ti2,..., Tinpiq, separating observations which have distinct x̃i. (Thus, for any

two observations t and s in Tik, we have x̃ti � x̃si .) Let

Pik � tPip�|bti, xti, Atiq : t P Tiku (17)

for each i and k � 1, 2, . . . , npiq. The following result summarizes our observations.

Theorem 7. P � tPp�|xt,AtqutPT is rationalizable as a BNE with independent types and pay-

off functions of the form (13) obeying SID in pyi; bi, x̄iq if and only if, for each i P N and k �
1, 2, . . . , npiq, the set Pik (as defined by (17)) passes the test specified in Theorem 3.

There are a number of features of this result that are worth remarking on. Firstly, suppose Xi �
X̄i, which means that we require the distribution of εi to be completely independent of i’s observable

characteristics. In that case, there is no nontrivial partition of Pi, and so the rationalizability

condition in Theorem 7 is simply that Pi (as defined by (16)) passes the test specified in Theorem

3 (for each player i).

On the other hand, if we wish to allow the type distribution to be partially dependent on

observable characteristics, then there will typically be a nontrivial partition of Pi. But notice that

for the test specified in Theorem 7 to be non-vacuous, it is crucial that there is some Pik containing

more than one element. In other words, there must be observations t and s where x̃ti � x̃si , even as

other aspects of the game environment differ between these observations. This can be thought of

as a version of the familiar exclusion assumptions found extensively in the estimation literature.

Since the rationalizability of P imposes no relationship between Fip�, x̃tiq and Fip�, x̃si q whenever

x̃ti � x̃si , it is always possible to choose their supports to be completely non-overlapping. Essentially

because of this, whenever Πi can be chosen to obey SID in pyi; pbi, x̄iqq then it can be chosen to obey

SID in pyi; pbi, x̃i, x̄iqq; in other words, the latter (seemingly stronger) condition in fact imposes no
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further restrictions on the data. We leave the reader to fill in the details.

Lastly, in the case where the constraint sets for each player do not vary across observations,

there is a simple characterization of rationalizability in terms of first order stochastic dominance

(FSD). This follows immediately from Theorem 4.

Theorem 8. Suppose that P � tPp�|xt,AtqutPT satisfies At � �n
i�1Ai for all t. Then P is ratio-

nalizable as a BNE with independent types and payoff functions of the form (13) obeying SID in

pyi; bi, x̄iq if and only if, for each i P N and s, t P Tik,

pbti, x̄tiq ¡ pbsi , x̄si q ùñ Pip�|bti, x̄ti, Aiq ¥FSD Pip�|bsi , x̄si , Aiq. (18)

Example 4. Suppose we have at least two observations of a two player game where gipyjq � yj

for i � j. Each observation consists of a distribution of actions for player 1 and a distribution of

actions for player 2. We assume that there are no changes either in the exogenous variables or in

the constraint sets; in other words, this is the case emphasized by Sweeting (2009), of potentially

distinct BNE of the same game. Suppose that b2
2 ¡ b1

2; in other words, player 2’s average action is

higher in observation 2 than in observation 1. For P to be rationalizable, condition (18) requires the

distribution of player 1’s action in the second observation to first order stochastically dominate the

distribution at the first observation. In particular, player 1’s action has a higher mean in the second

observation compared to the first, which in turn requires (via (18) again) that the distribution

of player 2’s action in the second observation should first order stochastically dominate that in

the first. To sum up, for each player, the distribution of actions must be comparable across any

two observations (with respect to FSD) and they must be co-monotone across players. When this

occurs, the observations can be rationalized as distinct BNE of the same game, with each player i

obeying SID in pyi; biq.

5.4 Variations on Theorem 7

In Theorem 7, the payoff function of player i is required to obey SID in pyi; bi, x̄iq. It may be the

case that the econometrician is interested in a weaker criterion: that payoff functions obey SID

in pyi; biq. In other words, the focus is on restricting interaction effects between players, while the

effect of the exogenous variable xi on i’s payoff is allowed to be arbitrary. It is straightforward to
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check that this case can be covered by an analogous version of Theorem 7 in which Pi is partitioned

differently: two observations s and t in the same partitioned subset Pik must satisfy xsi � xti.
20

So far in this section we have assumed that we can identify a player in role i across observations

and that his payoff function could differ from another player in role j. We could require instead

that all players are ex ante identical, in the sense of having the same payoff function Πpyi, bi, xi, εiq,
though players in a given game could still be different since they may be associated with different

observable characteristics. For the sake of simplicity, suppose also that the private type of each

player is independently and identically distributed across players and completely independent of

each player’s observable characteristic. In this case, it is straightforward to check that the following

modified version of Theorem 7 holds: P is rationalizable as a BNE with independent types and

some payoff function Π obeying SID in pyi; pbi, x̄iqq if and only if
�n
i�1Pi passes the test specified

in Theorem 3. In other words, instead of testing each Pi separately (as in Theorem 7) they must

now be tested jointly. Lastly, note that we could pursue this logic further by allowing the number

of (ex ante identical) players at each observed game to vary. For each player at each observation,

the observable characteristics, the interaction term, the constraint set, and the distribution over the

player’s actions are known. BNE-rationalizability with a single payoff function obeying SID could

be checked by subjecting all of these distributions (as a single collection) to the test specified in

Theorem 3.

6 Empirical Illustration: rationalizing an entry game

We implement the results of Section 4 to study a complete information entry game. Our data set is

taken from Kline and Tamer (2016), who use it to illustrate the application of their new econometric

techniques. The data set they construct contains the entry decisions of airlines in 7882 markets,

where a market is defined as a trip between two airports irrespective of intermediate stops. Airline

firms are divided into two categories: LCC (low cost carriers) and OA (other airlines).21 In Kline

and Tamer’s analysis (and in ours) the two categories are treated as two firms; thus in each market,

20Another way of saying the same thing is that X̄i no longer exists, and Xi � rXi.
21The data were collected from the second quarter of the 2010 Airline Origin and Destination Survey (DB1B).

The low cost carriers are AirTran, Allegiant Air, Frontier, JetBlue, Midwest Air, Southwest, Spirit, Sun Country,
USA3000, and Virgin America. A firm that is not an LCC is by definition an OA.
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Covariates = p0, 0, 0q 1271 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

30.37% 68.21% 0.55% 0.87%

Covariates = p0, 1, 0q 763 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

19% 78.51% 0.26% 2.23%

Covariates = p1, 0, 0q 1125 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

19.38% 36.71% 25.33% 18.58%

Covariates = p1, 1, 0q 782 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

12.15% 54.22% 4.99% 28.64%

Covariates = p0, 0, 1q 869 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

15.88% 82.28% 0.12% 1.73%

Covariates = p0, 1, 1q 1039 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

7.80% 88.93% 0% 3.27%

Covariates = p1, 0, 1q 677 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

10.64% 32.64% 30.58% 26.14%

Covariates = p1, 1, 1q 1356 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

5.53% 50.07% 2.14% 42.26%

Table 4: Distribution of action profiles across exogenous variables

the two players (LCC and OA) can either both enter, both stay out, or one could enter with the

other staying out.

This data set also contains information on two explanatory variables: market presence (P ) and

market size (S). Market presence is a market- and airline-specific variable. For each airline and

for each airport, they count the number of markets that airline serves from that airport and divide

it by the total number of markets served from that airport by any airline. The market presence

variable for a given market and airline is the average of these ratios at the two endpoints of the trip.

The construction and inclusion of this explanatory variable is not novel and follows Berry (1992).

Since the airlines are aggregated into two firms (LCC and OA), the market presence variable is also

aggregated: the market presence for the LCC firm (resp. OA firm) is the maximum among the

actual airlines in the LCC category (resp. OA category). The second explanatory variable is market

size, which is a market-specific variable (shared by all airlines in that market) and is defined as the

population at the endpoints of the trip. Lastly, Kline and Tamer (2016) discretize the market size

and market presence variables to take two values: 1 if the variable is higher than its median value

and 0 otherwise.

This data set is presented in Table 4. It consists of eight blocks, with the markets in each block

sharing the same exogenous variables. For example, there are 1271 markets where pPLCC , POA, Sq �
p0, 0, 0q, of which 30.37% are not served by either airline and 0.87% are served by both.
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pεLCC , εOAq
Firm OA

N E

Firm LCC
N 0 0 0 ΠOApN,E, POA, S, εOAq
E ΠLCCpE,N,PLCC , S, εLCCq 0 ΠLCCpE,E, PLCC , S, εLCCq ΠOApE,E, POA, S, εOAq

Table 5: Payoff matrix in market pεLCC , εOA)

6.1 Testing Rationalizability

Notice that the entries in Table 4 are mostly ‘reasonable’, in the sense that it appears as though

a firm’s entry is encouraged whenever its market presence is large or the market is large, and it is

deterred by the entry of the other firm. For example, going from p0, 0, 0q to p1, 0, 0q (so the market

presence of LCC has increased), both PpN,Nq and PpN,Eq fall, while PpE,Nq and PpE,Eq both

increase. Our results in Section 4 allow us to formulate and test this claim rigorously.

First, the notion of ‘reasonable’ behavior can be formalized by requiring LCC and OA to have

payoff functions with the SID property. Specifically, let εLCC be a type of the LCC player and denote

its payoff function by ΠLCCpyLCC , yOA, PLCC , S, εLCCq, where yLCC is the choice variable (either E

or N) and pyOA, PLCC , Sq are the other variables that affect its payoff. We require ΠLCCp�, εLCCq to

obey SID in pyLCC ; p�yOA, PLCC , Sqq; in other words, if LCC prefers to enter a market when OA has

entered, its market presence is small, or the market size is small, then (respectively) it will also enter

if OA has not entered, its market presence is large, or when the market is large.22 LCC’s payoff if it

stays out of a market is normalized at 0. Similarly, we require ΠOApyLCC , yOA, PLCC , S, εOAq to obey

SID in pyOA; p�yLCC , POA, Sqq. At a typical market, the econometrician observes pPLCC , POA, Sq
but not pεLCC , εOAq; the two players are playing a game of complete information so they observe

everything. Table 5 depicts the game played at a typical market between the two firms. The issue

we wish to address is whether the data displayed in Table 4 is rationalizable as PSNE (in the

stochastic sense defined in Definition 6), with both firms having payoff functions obeying SID.

At this point, it may be helpful to mention two features of our rationalizability criterion.

[1] To reiterate what we have stated more generally in Section 4, our notion of rationalizability is

silent regarding the joint distribution of types pεLCC , εOAq and it also imposes no restriction on

the equilibrium selection rule. In particular, we allow any sort of correlation between εLCC and

22For the SID property, we treat E as ranked above N (associated with values 1 and 0 respectively).
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εOA and the equilibrium selection rule may depend on particular realizations of pεLCC , εOAq.
We do assume (as does Kline and Tamer (2016)) that the joint distribution of pεLCC , εOAq is

independent of the exogenous variables pPLCC , POA, Sq.

[2] Since only a firm’s preference is recovered when a data set is rationalizable, we are free to

choose the payoff function so long as it generates the same preference. It is easy to check that

any payoff function for (say) LCC that obeys SID (which is an ordinal property) is ordinally

equivalent to some (other) payoff function ΠLCC where ΠLCCpN, yOA, PLCC , S, εLCCq � 0 and

ΠLCCpE, yOA, PLCC , S, εLCCq is increasing in p�yOA, PLCC , Sq. In other words, whenever a

data set is stochastically rationalizable, with firms having payoff functions that obey SID,

then we can always choose the payoff functions so that the payoff of entering increases when

the other firm stays out, the market presence is high, and the market size is big, and the

payoff of staying out is normalized at 0.23

By Theorem 6, the rationalizability test involves working out all the paths that obey the SRM

axiom and then finding weights on them that are consistent with the distribution over joint actions

observed at each value of the exogenous variables.24 In this data set, there are 48 � 65, 536

possible group paths, since for each of the eight possible covariate values, there are four joint

choices that a pair of firms can make. The set of paths that obey the SRM axiom, Y��, contains

482 paths. A path y� � pyp0,0,0q,yp0,1,0q, . . .q specifies the joint action at each value of the exogenous

variables. For example the following path obeys the SRM axiom: yp0,0,0q � pN,Nq, yp0,1,0q � pN,Eq,
yp1,0,0q � pE,Nq, yp1,1,0q � pN,Eq, yp0,0,1q � pN,Eq, yp1,0,1q � pE,Eq, yp0,1,1q � pN,Eq, and

yp1,1,1q � pE,Eq. Indeed, this is the path of PSNE that arises if the firms have the following SID

preferences: LCC prefers entering if and only if (i) its market presence is large and the other firm

is absent or (ii) its market presence is large and the market size is large; OA prefers entering if and

only if (i) its market presence is large or (ii) the market size is large.

Suppose for now that the entries in Table 4 give the true distribution at each value of the

exogenous variables/covariates. In that case, we can implement the test in Theorem 6 directly

by checking whether there is a solution to the linear system (11). It turns out that there is no

23Note that this hinges on there being just two actions for each firm.
24We focus on preferences where a firm is never indifferent between entering and staying out. It follows that the

paths must obey the SRM axiom rather than the RM axiom (see remarks following Theorem 6).

39



Covariates = p0, 0, 0q 1271 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

30.06% 67.90% 0.86% 1.18%

Covariates = p0, 1, 0q 763 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

18.29% 78.96% 0.71% 2.05%

Covariates = p1, 0, 0q 1125 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

19.38% 36.71% 25.33% 18.58%

Covariates = p1, 1, 0q 782 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

12.73% 53.64% 5.57% 28.06%

Covariates = p0, 0, 1q 869 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

15.46% 81.86% 0.54% 2.15%

Covariates = p0, 1, 1q 1039 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

7.86% 89.19% 0.26% 2.69%

Covariates = p1, 0, 1q 677 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

10.64% 32.64% 30.58% 26.14%

Covariates = p1, 1, 1q 1356 markets

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

5.63% 49.98% 2.24% 42.16%

Table 6: Rationalizable outcome closest to Table 4

solution, so this data set is not exactly rationalizable. This is fairly surprising, since the number

of unknowns (482) far exceeds the number of linear constraints, which suggests that the conditions

are very permissive. In fact, there is at least one easy-to-understand reason why the dataset is

not rationalizable. Notice from the data that PpN,N |1, 1, 0q� PpE,N |1, 1, 0q � 17.14%   19% �
PpN,N |0, 1, 0q. This is not compatible with rationalizability for the following reason: any pair of

firms with SID preferences that select pN,Nq at p0, 1, 0q would either select pN,Nq or pE,Nq at

p1, 1, 0q.
If we solve for the dataset that is rationalizable and closest (as measured by the sum of square

deviations) to the one we actually observe, we get the distribution displayed in Table 6. Notice that

in this case PpN,N |1, 1, 0q� PpE,N |1, 1, 0q � 18.3% ¡ 18.29% � PpN,N |0, 1, 0q. If we compare

the entries in Tables 4 and 6, we see immediately that they look quite close, which naturally makes

us wonder whether the observed violation of rationalizability is in fact significant.

To address this issue, we adopt the approach recently proposed by Kitamura and Stoye (2016);

they develop a method of evaluating the statistical significance of a data set violating a set of linear

constraints that directly applies to our framework.25 Roughly speaking, the test assumes that

the closest compatible distribution displayed in the last table is the true distribution, and uses a

bootstrap procedure to calculate the likelihood of getting a sample like the one we observe. (See the

Online Appendix for a fuller description of the Kitamura-Stoye procedure and our implementation

25Kitamura and Stoye (2016) apply their test to the consumer utility-maximization problem.
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Set Description # of paths Est. Prob. Conf. Int.

Non-strategic LCC (Y��
LCC) 69 r71, 88s r65, 92s

Non-strategic OA (Y��
OA) 69 r59, 75s r55, 78s

Non-strategic LCC and OA (Y��
LCC X Y��

OA) 36 r48, 75s r44, 78s

Table 7: Incidence of non-strategic payoffs

of all these results.) By applying their test, we find that the probability of getting our sample (or

a more extreme one), assuming that our modelling restrictions are true, is 15% without a tuning

parameter and it decreases as the value of the tuning parameter gets larger.26 These probabilities

correspond to the p-values for the null hypothesis that our modelling assumptions are true and they

indicate that our hypothesis cannot be rejected for small values of the tuning parameter.27

6.2 Estimation

In testing the model, we also recover information on the distribution of paths, and thus on the

distribution of firms’ preferences, that could have generated the data. This information allows us

to investigate a variety of interesting issues. To illustrate how this can be carried out, we ask the

following basic question: are strategic effects necessary to explain the data, and if so, in what way?

For LCCs, their choice of action is affected by the exogenous variables pPLCC , Sq, which can take

four possible values, in addition to the action of the other carrier. We say that an LCC’s preference

at some fixed pPLCC , Sq is non-strategic if its optimal action is independent of the other player’s

action, i.e., the sign of ΠLCCpE, yOA, PLCC , S, εLCCq is independent of yOA; on the other hand, its

preference is strategic if the payoff switches from being positive to negative if the other player enters.

Therefore, if LCC is non-strategic in a given market, then either E or N is a dominant strategy,

while a strategic LCC chooses E if and only if the other firm stays out.

We identify, among the 482 paths that obey the SRM axiom, those paths which can be ratio-

26The Kitamura-Stoye test relies on a tuning parameter that solves a discontinuity issue arising from the possibility
of boundary solutions. From an economic perspective, the tuning parameter modifies the initial hypothesis by forcing
all consistent types to have a strictly positive probability in the linear model. The p-value estimates are sensitive to
the tuning parameter.

27A more permissive version of our rationalizability test would allow for the possibility that firms may be indifferent
between entering and not entering a market (see footnote 24). In that case, the rationalizability test involves solving
(11), with the paths obeying the RM axiom (rather than the SRM axiom); there are 1,809 paths with this weaker
property. The p-value increases to 36% without a tuning parameter (see the Online Appendix).
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nalized by LCC preferences that are always non-strategic, in the sense that the carrier’s preference

is non-strategic at every realization of pPLCC , Sq. (Note that LCC’s decision can still depend on

pPLCC , Sq). Let us denote this set of paths by Y��
LCC . It is worth bearing in mind that since ra-

tionalizing preferences are non-unique, there is a difference between Y��
LCC and paths that must

be rationalized by non-strategic LCC preferences, which will be a subset of Y��
LCC .28 Since we are

investigating whether strategic behavior is necessary for explaining the data, we focus our attention

on Y��
LCC . Similarly, we can identify Y��

OA, those paths with the feature that it can be rationalized

by OA being always non-strategic.

It turns out that there are 69 paths each in Y��
LCC and in Y��

OA. (The path example given in

the previous subsection is a member of Y��
OA but not of Y��

LCC .29) The interval under ‘Estimated

Probability’ in Table 7 gives the interval estimate on the probability of Y��
LCC , subject to the model

generating the closest rationalizable distribution (i.e., the one depicted in Table 6).30 The last

column gives the confidence intervals on the probability of Y��
LCC ; in essence, it gives the values on

the probability of Y��
LCC which, when imposed as an additional restriction on the model, would still

allow the model to approximately rationalize the data (in Table 4) at the 5% level of significance;31

this interval must, by construction contain the estimated probability. The first thing to notice is

that the confidence interval on Y��
LCC has an upper bound that is clearly below 1; to be specific,

it is 0.92. This means that, notwithstanding the greater flexibility of our nonparametric model, a

more parsimonious version of the model in which LCC is assumed to be always non-strategic will

not be able to explain the data. Indeed, the probability of LCC being strategic (for some value of

pPLCC , Sq) must be at least 0.08.32 Formally, we may conclude that

P ptεLCC : ΠLCCp�, PLCC , S, εLCCq is strategic at some pPLCC , Squq ¥ 0.08.

28For example, consider a path where OA always chooses N and LCC always chooses E. This path obeys the
SRM axiom and is in Y��

LCC since it can be rationalized by a preference where LCC always prefers to enter, but it
is clear that there also exists a rationalization with a strategic LCC.

29The reader can check that there is no non-strategic LCC preference that rationalizes the path.
30This calculation is described at the start of Section 4.3.
31The procedure for calculating these intervals follow Deb, Kitamura, Quah, and Stoye (2018) and is explained

more carefully in the Online Appendix.
32Y��

LCC is the set of path that can be (not must be) rationalized by non-strategic LCC preferences. This means
that the upper bound of the confidence interval on Y��

LCC really is the upper bound on the probability of non-strategic
LCCs, but the lower bound of that interval could be an overestimate of non-strategic behavior, because there are
some paths in Y��

LCC which can also be rationalized by strategic LCCs.
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Set Description (subsets of Ŷ��) # of paths Est. Prob. Conf. Int.

Non-strategic LCC for all pPLCC , Sq 46 r71, 88s r65, 92s

Strategic LCC at pPLCC , Sq � p1, 1q or p1, 0q 22 r11, 28s r8, 34s
Strategic LCC at pPLCC , Sq � p1, 1q 13 r11, 28s r8, 33s

of which Strategic LCC at pPLCC , Sq � p1, 0q 17 r9, 16s r6, 19s

Strategic LCC at pPLCC , Sq � p1, 1q & p1, 0q 8 [0,16] r0, 19s

Non-strategic OA for all pPOA, Sq 46 r59, 75s r55, 78s

Strategic OA at pPOA, Sq � p0, 1q or p0, 0q 22 r24, 40s r21, 45s
Strategic OA at pPOA, Sq � p0, 1q 17 r24, 26s r21, 29s

of which Strategic OA at pPOA, Sq � p0, 0q 13 r13, 40s r10, 45s

Strategic OA at pPOA, Sq � p0, 1q & p0, 0q 8 r10, 26s r6, 29s

Table 8: Composition of data-rationalizing types

Analogously, we surmise from Table 7 that for OA

P ptεOA : ΠOAp�, POA, S, εOAq is strategic at some pPOA, Squq ¥ 0.22.

It is worthwhile finding out precisely where is strategic behavior crucial in explaining the data.

Indeed, we discover that it is possible to restrict ourselves to paths in the set Ŷ��, which consists

of paths where the preference of LCC can be chosen to be non-strategic whenever PLCC � 0 (i.e.,

at pPLCC , Sq � p0, 0q and at pPLCC , Sq � p0, 1q) and the preference of OA can be chosen to be

non-strategic whenever POA � 1 (i.e., at pPOA, Sq � p1, 0q and at pPOA, Sq � p1, 1q).33 There are

68 paths in Ŷ��, its estimated probability is 0.99, and the confidence interval is [0.96,1]. In other

words, if we have a more restrictive model in which we require LCC to be non-strategic at PLCC � 0

and OA to be non-strategic at POA � 1, such a model will still be consistent with the data.

Combining these observations, we conclude that to explain the data, it is crucial that there are

markets where (I) LCCs are strategic when PLCC � 1 and (II) OAs are strategic when POA � 0.

This phenomenon is recorded in Table 8 which gives a dissection of the types that explain the data.

All the paths reported in this table are drawn from Ŷ��. The first row gives the weight on the set

of paths where LCC’s preference can be chosen to be always non-strategic (i.e., at all four possible

33It is important to note that flipping the restrictions will not work. Indeed, the estimated weight of those paths
which are rationalizable with LCC being non-strategic at pPLCC , Sq � p1, 1q is 0.88 while the estimated weight of
those paths which are rationalizable with OA being non-strategic at pPOA, Sq � p0, 0q is 0.86, so both numbers are
some distance away from 1.
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values of pPLCC , Sq); there are 46 paths in this group and its weight is significantly less than 1.

Explaining the data therefore requires the remaining paths in Ŷ��, which are those where LCC

must be strategic, in the sense that any rationalization of the path will involve LCC being strategic

at either pPLCC , Sq � p1, 0q or at pPLCC , Sq � p1, 1q (and possibly both); there are 22 paths in this

group. We can explore its composition further and estimate the probability of those paths where

LCC has to be strategic at (1,0), at (1,1), and at both (1,0) and (1,1). We learn, for example, that

PptεLCC : ΠLCCp�, PLCC , S, εLCCq is strategic at pPLCC , Sq � p1, 1quq ¥ 0.08.34

In other words, the probability that LCC is strategic in a market with observable characteristic

pPLCC , Sq � p1, 1q is at least 0.08. Similarly, for OA, we find that

PptεOA : ΠOAp�, POA, S, εOAq is strategic at pPOA, Sq � p0, 1quq ¥ 0.21.

Appendix I

Proof of Theorem 1

It suffices to show that (b) implies (c): if O obeys RM axiom, then it is rationalizable by a pref-

erence that obeys SSCD. Our proof involves first working out the (incomplete) revealed preference

relations on Y �Z that must be satisfied by any SID preference that rationalizes the data and then

constructing a rationalizing preference on Y � Z that completes those relations and obeys SSCD.

Given a data set O � tpyt, zt, AtqutPT , the single-crossing extension of the indirect revealed

preference relation ÁRT is another binary relation ¡RTS defined in the following way: (i) for y2 ¡ y1,

py2, zq ¡RTS py1, zq if there is z1   z such that py2, z1q ¡RT py1, z1q and (ii) for y2   y1, py2, zq ¡RTS

py1, zq if there is z2 ¡ z such that py2, z2q ÁRT py1, z2q. Let ÁRTS be the relation given by ÁRTS�
¡RTS Y ÁRT . It follows immediately from its definition that ÁRTS also obeys SSCD, in the following

34Note that the upper bound on that confidence interval, 0.33, is not a cap on the probability that LCC is strategic
at p1, 0q because paths could be rationalized in more than one way, and there are paths that could be rationalized
by one LCC preference that is strategic at (1,0) and another that is not. See the related observation in Footnote 32.
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sense: if y2 ¡ y1 and z2 ¡ z1 or y2   y1 and z2   z1, then

py2, z1q ÁRTS py1, z1q ùñ py2, z2q ¡RTS py1, z2q. (19)

In addition, let ÁRTST be the transitive closure of ÁRTS, i.e., py2, zq ÁRTST py1, zq if there is a

sequence ȳ1, ȳ2, ..., ȳk
35 such that

py2, zq ÁRTS pȳ1, zq ÁRTS � � � ÁRTS pȳk, zq ÁRTS py1, zq. (20)

If there is one strict relation ¡RTS in this sequence, then we say that py2, zq ¡RTST py1, zq.36

Lemma A1: The relations ÁRTS, ¡RTS, and ÁRTST have the interval property.

Proof. Let y2 ¡ y ¡ y1. (The case where y2   y   y1 can be proved in a similar way.) If

py2, zq ÁRTS p¡RTSq py1, zq holds, there exists some z1 ¤ p q z such that py2, z1q ÁRT py1, z1q. By

the interval property of ÁRT (see the proof of Proposition 1), we obtain py2, z1q ÁRT py, z1q. Since

y2 ¡ y and z1 ¤ p q z, we have py2, zq ÁRTS p¡RTSq py, zq. So we have shown that ÁRTS and ¡RTS

have the interval property. Lastly, if py2, zq ÁRTST py1, zq, there exists a sequence ȳ1, ȳ2, ..., ȳk such

that

py2, zq ÁRTS pȳ1, zq ÁRTS pȳ2, zq ÁRTS ... ÁRTS pȳk, zq ÁRTS py1, zq.

Letting ȳ0 � y2 and ȳk�1 � y1, since y2 ¡ y ¡ y1, we can find some 0 ¤ m ¤ k such that ȳm ¥ y ¥
ȳm�1. By the interval property of ÁRTS, we obtain pȳm, zq ÁRTS py, zq. Thus py2, zq ÁRTST py, zq
since py2, zq ÁRTST pȳm, zq ÁRTS py, zq. QED

The relevance of the binary relations ÁRTST and ¡RTST flows from the following lemma, which

says that any rationalizing preference for the agent must respect the ranking implied by them.

Lemma A2:37 Suppose that the preference obeys SID and rationalizes O. Then Á extends ÁRTST

35Note that subscripts here denote generic numbering. When we wish to refer to an action at a particular
observation t, we write yt.

36Note that ¡RTS is not the asymmetric part of ÁRTS and ¡RTST is not the asymmetric part of ÁRTST .
37Strictly speaking this result is not needed for the proof of Theorem 1, but it provides the motivation for why

we are focusing on ÁRTST and ¡RTST .
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and ¡RTST in the following sense:

py2, zq ÁRTST p¡RTST q py1, zq ùñ py2, zq Á p¡q py1, zq. (21)

Proof. We assume y2 ¡ y1. (The other case has a similar proof.) Since Á is transitive, we need only

show that py2, zq Á p¡q py1, zq whenever py2, zq ÁRTS p¡RTSq py1, zq. If py2, zq ÁRTS p¡RTSq py1, zq
then there exists some z1 ¤ p q z such that py2, z1q ÁRT py1, z1q. By the interval property of ÁRT , we

obtain py2, z1q ÁRT py, z1q for all y P ry1, y2s. Since Á rationalizes O, we also have py2, z1q Á py, z1q
for all y P ry1, y2s. By SID of Á, we obtain py2, zq Á p¡q py1, zq for z1 ¤ p q z. QED

The next result establishes a property of ÁRTST useful for the proof of Theorem 1.

Lemma A3: Suppose py2, zq ÁRTST py1, zq; then there is a sequence tȳjukj�1 such that

py2, zq ÁRTS pȳ1, zq ÁRTS pȳ2, zq ÁRTS � � � ÁRTS pȳk, zq ÁRTS py1, zq, (22)

with y2 ¡ ȳ1 ¡ ȳ2 ¡ � � � ¡ ȳk ¡ y1, (23)

if y2 ¡ y1 and the inequality (23) reversed if y2   y1.

Proof. By the definition of ÁRTST , we know there is tȳjukj�1 such that (22) holds, so what we need

to do is to show that tȳjukj�1 obeys (23) if y2 ¡ y1. (The case where y2   y1 has an analogous proof

which we shall skip.) To do this, we choose a chain linking py2, zq and py1, zq with the property that

(writing ȳ0 � y2 and ȳk�1 � y1) pȳm, zq ÃRTS pȳm1 , zq for m1 ¡ m� 1; in other words, no link in the

chain can be dropped. We claim that (23) must hold in this case. First we note that ȳj ¡ y1 for all

j   k� 1. If not, there is ` such that ȳ` ¤ y1   ȳ`�1, with pȳ`�1, zq ÁRTS pȳ`, zq; since ÁRTS has the

interval property (Lemma A1), we obtain pȳ`�1, zq ÁRTS py1, zq and the chain has been shortened.

To show that ȳj is decreasing, suppose instead that there is m such that ȳm�1 ¡ ȳm. Let ȳm�n be

the first time after ȳm�1 such that ȳm�n ¤ ȳm. (This must occur since ȳm ¡ y1.) Then we have

ȳm�n ¤ ȳm   ȳm�n�1. Since pȳm�n�1, zq ÁRTS pȳm�n, zq, the interval property of ÁRTS guarantees

that pȳm�n�1, zq ÁRTS pȳm, zq. Thus we obtain a cycle

pȳm, zq ÁRTS pȳm�1, zq ÁRTS ... ÁRTS pȳm�n�1, zq ÁRTS pȳm, zq.
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Since ÁRTS is cyclically consistent, this chain cannot be related by ¡RTS and must be related by

ÁRT . In particular, pȳm�n�1, zq £RTS pȳm, zq and thus pȳm�n�1, zq £RTS pȳm�n, zq (by the interval

property of ¡RTS). We conclude that pȳm, zq ÁRT pȳm�n, zq and thus we can shorten (22) to

py2, zq ÁRTS pȳ1, zq ÁRTS ... ÁRTS pȳm, zq ÁRTS pȳm�n, zq ÁRTS ... ÁRTS pȳk, zq ÁRTS py1, zq

which contradicts our assumption that no link in the chain can be dropped. QED

It follows from Lemma A2 that in order for O to be monotone rationalizable, the binary relation

ÁRTST must have the following property: for any py1, zq and py2, zq in Y � Z,

py1, zq ÁRTST py2, zq ùñ py2, zq £RTST py1, zq. (24)

If not, we obtain both py1, zq Á py2, zq and py2, zq ¡ py1, zq, which is impossible. The following

lemma says that ÁRTST obeys this property as well as SSCD whenever O obeys RM axiom.

Lemma A4: Suppose that O obeys RM axiom. Then, ÁRTST obeys SSCD and property (24).

Proof. We first prove that (24) holds. The statement (24) is equivalent to ÁRTS being cyclically

consistent, i.e.,

pȳ1, zq ÁRTS pȳ2, zq ÁRTS ... ÁRTS pȳk, zq ùñ pȳk, zq £RTS pȳ1, zq. (25)

Cyclical consistency can in turn be equivalently re-formulated as the following:

pȳ1, zq ÁRTS pȳ2, zq ÁRTS ... ÁRTS pȳk, zq ÁRTS pȳ1, zq (26)

ùñ pȳ1, zq £RTS pȳ2, zq £RTS ... £RTS pȳk, zq £RTS pȳ1, zq

Thus, whenever there is a cycle like (26), it must be the case that

pȳ1, zq ÁRT pȳ2, zq ÁRT ... ÁRT pȳk, zq ÁRT pȳ1, zq

We prove (24) by induction on the length of the chain, k, on the left side of (25). Whenever
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(25) holds for chains of length k or less (equivalently, whenever the cycles in (26) have length k or

less), we say that ÁRTS is k-consistent. For 2-consistency, we need to show that

pȳ1, zq ÁRTS pȳ2, zq ùñ pȳ2, zq £RTS pȳ1, zq.

Suppose that ȳ1 ¡ ȳ2; the case of ȳ1   ȳ2 can be dealt with in a similar way. By definition, if

pȳ1, zq ÁRTS pȳ2, zq then there is z1 ¤ z such that pȳ1, z
1q ÁRT pȳ2, z

1q. On the other hand, if

pȳ2, zq ¡RTS pȳ1, zq, then there is z2 ¡ z such that pȳ2, z
2q ÁRT pȳ1, z

2q and so we obtain a violation

of RM axiom. Suppose that ÁRTS is k-consistent for all k   k̄. To show that k̄-consistency

holds, suppose the left side of (25) holds for k � k̄ and ȳ1   ȳk̄. Clearly, there must be m   k̄

such that ȳm   ȳk̄ and ȳm�1 ¥ ȳk̄. We consider two cases: (A) ȳm ¥ ȳ1 and (B) ȳm   ȳ1.

In case (A), by the interval property of ÁRTS (Lemma A1), we obtain pȳm, zq ÁRTS pȳk̄, zq. By

way of contradiction, suppose also that pȳk̄, zq ¡RTS pȳ1, zq. Then the interval property of ¡RTS

guarantees that pȳk̄, zq ¡RTS pȳm, zq and so we obtain a violation of 2-consistency. For (B), since

pȳm, zq ÁRTS pȳm�1, zq, the interval property guarantees that pȳm, zq ÁRTS pȳ1, zq. So we obtain the

cycle

pȳ1, zq ÁRTS pȳ2, zq ÁRTS ... ÁRTS pȳm, zq ÁRTS pȳ1, zq (27)

which has length strictly lower than k̄. By the induction hypothesis, we obtain

pȳ1, zq £RTS pȳ2, zq £RTS ... £RTS pȳm, zq £RTS pȳ1, zq

and so we can replace each ÁRTS in (27) by ÁRT . Furthermore, pȳm, zq £RTS pȳ1, zq guarantees

that pym, zq £RTS pȳm�1, zq, by the interval property of ¡RTS. Therefore, pȳ1, zq ÁRT pȳm�1, zq
and, by the interval property of ÁRT , we obtain pȳ1, zq ÁRT pȳk̄, zq. 2-consistency then ensures that

pȳk̄, zq £RTS pȳ1, zq. This completes the proof that (24) holds.

By definition, ÁRTST obeys SSCD if whenever y2 ¡ y1 and z2 ¡ z1 or y2   y1 and z2   z1,

py2, z1q ÁRTST py1, z1q ùñ py2, z2q ¡RTST py1, z2q.

We shall concentrate on the case where y2 ¡ y1; the other case has a similar proof. If py2, z1q ÁRTST
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py1, z1q, then by Lemma A3, there is ȳj (for j � 1, 2, ..., k) such that

py2, z1q ÁRTS pȳ1, z
1q ÁRTS pȳ2, z

1q ÁRTS ... ÁRTS pȳk, z1q ÁRTS py1, z1q.

with y2 ¡ ȳ1 ¡ ȳ2 ¡ ... ¡ ȳk ¡ y1. Since ÁRTS obeys SSCD (see (19)), we obtain

py2, z2q ¡RTS pȳ1, z
2q ¡RTS pȳ2, z

2q ¡RTS ... ¡RTS pȳk, z2q ¡RTS py1, z2q

and so py2, z2q ¡RTST py1, z2q. QED

Our final step consists of constructing the SSCD preference that rationalizesO. SinceÁR�ÁRTST ,

it is clear that Lemma A2 has the converse: if there is a regular and SID preference Á on Y�Z that

obeys (21), then this preference rationalizes O. This observation, together with Lemma A4, suggest

that a reasonable way of constructing a rationalizing preference is to begin with ÁRTST and ¡RTST

and then complete these incomplete relations in a way that gives a preference with the required

properties. This is precisely the approach we take. Define the binary relation Á� on Y � Z in the

following manner:

py2, zq Á� py1, zq if py2, zq ÁRTST py1, zq
or py2, zq ‖RTST py1, zq and y1 ¥ y2, (28)

where py2, zq||RTST py1, zq means neither py2, zq ÁRTST py1, zq nor py1, zq ÁRTST py2, zq. The following

result completes our argument that (b) implies (c) in Theorem 1.

Lemma A5: Suppose that O obeys RM axiom. The binary relation Á� is an SSCD preference that

rationalizes O. On every set K � Y that is compact in R and for every z P Z, BRpz,K,Á�q is

nonempty and finite; in particular, Á� is a regular preference.

Proof. We first show that Á� is a preference that rationalizes O. Since ÁRTST�Á� by construction,

Á� must rationalizeO. Furthermore, Á� is complete and reflexive by construction, so to demonstrate

that it is a preference we need only show that it is transitive. Indeed, suppose

pa, zq Á� pb, zq Á� pc, zq Á� pa, zq. (29)
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There are essentially four possible cases we need to consider:

Case 1. None of the three elements are related by ÁRTST . Given the definition of Á�, this means

that a   b   c   a, which is impossible.

Case 2. pa, zq ‖RTST pb, zq, pb, zq ‖RTST pc, zq, and pc, zq ÁRTST pa, zq. Then (29) can only occur

if a   b   c, but if this is the case, the interval property of ÁRTST (Lemma A1) will imply that

pc, zq ÁRTST pb, zq. So this case is impossible.

Case 3. pa, zq ‖RTST pb, zq, pb, zq ÁRTST pc, zq ÁRTST pa, zq. This is impossible because, by the

transitivity of ÁRTST , we obtain pb, zq ÁRTST pa, zq.
Case 4. pa, zq ÁRTST pb, zq ÁRTST pc, zq ÁRTST pa, zq. By (24), this is only possible if

pa, zq ÁRT pb, zq ÁRT pc, zq ÁRT pa, zq,

but then we also obtain, by the transitivity of ÁRT , pa, zq ÁRT pc, zq and, hence, pa, zq Á� pc, zq,
which establishes the transitivity of Á�.

To show that Á� obeys SSCD, let y2 ¡ y1 and z2 ¡ z1; then

py2, z1q Á� py1, z1q ùñ py2, z1q ÁRTST py1, z1q
ùñ py2, z2q ¡RTST py1, z2q
ùñ py2, z2q ¡� py1, z2q,

in which the first implication follows from the definition of Á�, the second implication from the

SSCD property of ÁRTST , and the third from the fact that ¡� contains ¡RTST (so Á� extends

ÁRTST in the sense of (21)). The last claim is true because if py2, zq ¡RTST py1, zq, then Lemma A4

says that py1, zq ÃRTST py2, zq; thus py1, zq Ã� py2, zq and we obtain py2, zq ¡� py1, zq.
It remains for us to show that, for every z P Z, BRpz,K,Á�q is nonempty and finite, where

K � Y and K is compact in R. If K S yt for every t P T , then it follows from the definition of Á�

that pm, zq Á� py, zq, where m � minK and y P K. In this case, m is the only maximiser of Á� in

K. Suppose that K Q yt for some t. Since there are a finite number of observations, we can find

some ys P K such that pys, zq Á� pyt, zq for every yt P K. We claim that either m or ys is optimal

in K at the parameter value z, so that BRpz,K,Á�q is nonempty and finite. Indeed, suppose there
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is y P K such that py, zq ¡� pm, zq. Then, since m   y, it must hold that py, zq ¡RTST pm, zq and

there is t P T such that y � yt, in which case we obtain pys, zq Á� pyt, zq by the definition of ys. So

for all y P K, either pm, zq Á� py, zq or pys, zq Á� py, zq. QED

Proof of Proposition 2

Let λ by a measure on Y with the following properties: (i) λpYq   8; (ii) on any nonempty

interval I of Y , λpIq ¡ 0; (iii) λptytuq ¡ 0 for all t P T . For any py, zq P Y � Z, we define

the set Lpy, zq � tȳ P Y : py, zq Á� pȳ, zqu. This set is measurable since O is finite and IpYq
consists of compact intervals. Furthermore, λ is a finite measure (according to (i)), so λpLpy, zqq
is well-defined. We claim that upy, zq � λpLpy, zqq represents Á�. It follows immediately from the

definition that upy2, zq ¥ upy1, zq if py2, zq Á� py1, zq. So we need only show that upy2, zq ¡ upy1, zq
if py2, zq ¡� py1, zq. Suppose there exists an observed action, ys, such that ys P Lpy2, zqzLpy1, zq;
then upy2, zq ¡ upy1, zq since λptysuq ¡ 0 (by (iii)). If such an ys does not exist, then, in particular,

y2 R tytutPT . For y2 Á� y1, it must be the case that py2, zq ‖RTST py1, zq and y2   y1. We claim that

there is a sufficiently small ε ¡ 0 such that y2�ε   y1 and for any ȳ P ry2, y2�εs, py, zq ‖RTST py1, zq
and hence pȳ, zq ¡� py1, zq. If this is true, ry2, y2 � εs is contained in Lpy2, zqzLpy1, zq and has

positive measure (by (ii)), so again upy2, zq ¡ upy1, zq. It remains for us to show that ε ¡ 0

exists. If it does not exist, then there must be a sequence yn ¡ y2 and tending towards y2 such

that py1, zq ÁRTST pyn, zq (since, with a finite data set, it is impossible for there to be a sequence

yn tending y2 such that pyn, zq ÁRTST py1, zq). This leads to py1, zq ÁRTST py2, zq, which is a

contradiction.38 QED

Proof of Theorem 2

It suffices to see that (b) implies (c). First, the SRM axiom guarantees that ÁRT is antisymmetric.

This in turn implies that ÁRTST is antisymmetric. By Lemma A5, Á�, as defined by (28) obeys

SSCD and rationalizes O. Lastly, it is clear from its definition that py2, zq Á� py1, zq and py1, zq Á�

py2, zq only if py2, zq ÁRTST py1, zq and py1, zq ÁRTST py2, zq, but the latter is impossible. QED

Proof of Theorem 4

38In general, if a sequence yn tends to y2 P Y, and py1, zq ÁRTST pyn, zq for all n, then py1, zq ÁRTST py2, zq.
Analogous closure properties are true of ÁRT and ÁRTS . It is straightforward to check that these properties follow
from the finiteness of the data set and the compactness of the sets in IpYq.
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For each t P T , we may regard Pp�|zt, Aq as an element of ∆ �
!
y P R|A|

� :
°|A|
k�1 yk � 1

)
, and P

as an element of ∆T . We simplify our notation and denote Pp�|zt, Aq by µt P ∆; a cross sectional

data set P can be written as P � tpµt, zt, AqutPT . We denote the set of paths obeying RM axiom

by Y�; each path can also be regarded as an element of ∆T . Let ∆T
RM (contained in ∆T ) be the set

of all possible tµtutPT such that tpµt, zt, AqutPT is stochastically rationalizable. By Theorem 3, this

set is the convex hull of Y�. Since At � A for all t P T , Y� consists precisely of those paths where

a higher parameter leads to a weakly higher action; it follows immediately from this that ∆T
RM is

contained in ∆T
FSD, the set of tpµt, zt, AqutPT that obey first order stochastic dominance in the sense

that µt ¥FSD µs whenever zt ¡ zs. Both ∆T
RM and ∆T

FSD are convex and compact sets in ∆T . The

Krein-Milman Theorem tells us that ∆T
FSD is the convex hull of its extreme points; therefore, to

show that ∆T
RM � ∆T

FSD (as the theorem claims), we need only show that any extreme point of

∆T
FSD is an element of Y�. Equivalently, we shall show the following: if tµtutPT P ∆T

FSD is not in Y�,

then it is not an extreme point of ∆T
FSD.

Suppose tµtutPT P ∆T
FSD zY� and for each t P T , let mt P A be the median of µt, i.e., mt �

inf
!
a :

°
a¤y µ

tpyq ¥ 0.5
)

. Let αt be a distribution defined in the following manner: αtpyq � 2µtpyq
if y   mt; αtpyq � 1� 2

°
y mt µtpyq if y � mt; αtpyq � 0 if y ¡ mt. We also define the distribution

βt: βtpyq � 0 if y   mt; βtpyq � 1� 2
°
y¡mt µtpyq if y � mt; and βtpyq � 2µtpyq if y ¡ mt. Clearly,

it holds that µt � 0.5αt�0.5βt for all t. Since tµtutPT R Y�, there exists t P T for which this convex

combination is non-degenerate; therefore, tµtutPT is not an extreme point of ∆T
FSD if tαtutPT and

tβtutPT are both in ∆T
FSD. We only show this for tαtutPT since the other case is similar. Suppose

zt ¡ zs for some s, t P T . Since tµtutPT is in ∆T
FSD it must hold that ms ¤ mt. If a   ms ¤ mt, it

follows from tµtutPT P ∆T
FSD that

¸
y¤a

αtpyq � 2
¸
y¤a

µtpxq ¤ 2
¸
x¤a

µspyq �
¸
y¤a

αspyq.

If a ¥ ms, then
°
y¤a α

tpyq ¤ °
y¤a α

spyq � 1. We conclude that αt ¥FSD αs. QED
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Online Appendix (not part of main paper)

Data and testing procedures

We implement the results of Section 4 to a model of a binary entry game, with data from airline

markets. The data is taken from Kline and Tamer (2016). The empirical question concerns the

entry behavior of two kinds of firms: LCC (low cost carriers) and OA (other airlines). A firm that is

not an LCC is by definition an OA. The dataset comes from the second quarter of the 2010 Airline

Origin and Destination Survey (DB1B). It contains observations from 7882 markets that are defined

as trips between two airports irrespective of intermediate stops.

In Kline and Tamer’s analysis (and in ours) the two categories of firms are treated as two players.

So the LCC player (respectively OA) enters if some LCC (OA) firm enters the market. Thus in each

market, the two players (LCC and OA) can either both enter, both stay out, or one could enter

with the other staying out. The data set also contains information on two explanatory variables:

market presence (P) and market size (S). Market presence is a market- and airline-specific variable.

For each airline and for each airport, they count the number of markets that airline serves from

that airport and divide it by the total number of markets served from that airport by any airline.

The market presence variable for a given market and airline is the average of these ratios at the

two endpoints of the trip. Since the airlines are aggregated into two firms (LCC and OA), the

market presence variable is also aggregated: the market presence for the LCC firm (resp. OA firm)

is the maximum among the actual airlines in the LCC category (resp. OA category). The second

explanatory variable is market size, which is a market-specific variable (shared by all airlines in

that market) and is defined as the population at the endpoints of the trip. Lastly, Kline and Tamer

discretize the market size and market presence variables to take two values: 1 if the variable is

higher than its median value and 0 otherwise. Thus, for each market, the covariates are a triplet

PLCC, POA, S in the set product t0, 1u�t0, 1u�t0, 1u. The distribution at each observable covariate

is presented in Table 4 in the main paper.
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Test and closest compatible distribution

Testing whether a data set is SID-rationalizable involves checking whether a linear system

Ax � B (30)

has a positive solution x. We describe next all the components of this system.

Matrix A: This matrix is composed of 0s and 1s. Each column describes the behavior (in terms of

choices) of a specific group path that satisfies the SRM axiom. Recall that a group path specifies the

profile of choices that the group makes for each possible vector of covariate values (or treatments).

Each row of A corresponds to one of the 32 possible combinations of (joint) entry choices and

treatment values. Since there are 482 group paths that obey the SRM axiom, A is a 32 � 482-

matrix. In Sheet “Consistent Paths” of the file “Matrices, Data, and Results.xlsx” (included with

this submission as a separate file) we describe all possible group paths for the entry game application;

all paths that satisfy the SRM axiom get number 1 in column SRM —SRM 1 and SRM 2 check

the SRM axiom for firm LCC and OA, respectively. In Sheet “Matrix A” of “Matrices, Data,

and Results.xlsx” we show how to construct matrix A in our application. We also considered the

case where a player is allowed to be indifferent between entering and not entering a market. When

indifferences are allowed, group paths must obey the RM (rather than SRM axiom) and the number

of paths increases to 1,809, so that A is a 32 � 1, 809-matrix. In these two sets of Sheets we write

NI if we do not allow for indifferences and I if we allow for them.

Vector B: The size of this column vector is 32. It is composed of 8 conditional probability

distributions. Each conditional distribution specifies the fraction of groups in the data that, for a

given treatment, make each of the four possible joint choices. Sheet “Data” of “Matrices, Data,

and Results.xlsx” describes all the information from the available data on the airlines that we use

to construct vector B, and shows how to construct it.

Vector x: This vector represents a probability distribution over the set of SID-rationalizable group

paths —whenever the system has a positive solution. In the entry game application, x has 482

entries when we do not allow for indifferences.
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We implement our test by using Matlab. Specifically, we use the built-in function

x � linprogplb, rs, rs, A,B, lb, rsq

to check whether system (30) has a positive solution in x. In this specification, inputs A and B are

described as above and lb corresponds to a column vector of zeros with the size of vector x. When

no solution exists, Matlab reports that the primal solution appears infeasible.

For those data vectors B that do not pass this test, we use built-in function “lsqnonneg” in Mat-

lab to find a positive vector px, with its components adding up to 1, that minimizes pB � Axq1 pB � Axq.
We refer to Apx as the closest compatible distribution of choices. Sheet “Results” of “Matrices, Data,

and Results.xlsx” describes the closest compatible vectors in columns “Closest” for the model that

does not allow indifferences and allows them, respectively.

Small sample inference procedure

As Kitamura and Stoye (2016) explain, the null hypothesis is equivalent to

H: minxPRK
�
pB � Axq1 pB � Axq � 0

where K is the number of group paths. (In the entry game without allowing for indifference,

K � 482.) A natural sample counterpart of the objective function in H is given by

� pB � Ax
	1 � pB � Ax

	

where pB estimates B by sample choice frequencies. Normalizing the latter by sample size N , we

get

JN � N minxPRK
�

� pB � Ax
	1 � pB � Ax

	
.

Let x�� be any solution to this problem. If Ax�� � pB, so that the observed choices are compatible

with our restrictions, then JN � 0 and the null hypothesis cannot be rejected.

Kitamura and Stoye (2016) propose the following bootstrap algorithm to test H:
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(i) Obtain a vector x� that solves

JN � N minrx�τN1K sPRK
�

� pB � Ax
	1 � pB � Ax

	

and compute pCτN � Ax�. Here, 1K is a vector of 1s of dimension K.

Broadly following the practice in Kitamura and Stoye (2016), we report results for τN � 0 and

for τN � 5.15 � 10�7 � a
ln pNq {N{65, 536, where the denominator is the number of all possible

paths (including those that violate the RM axiom) and N � 7882 (the sample size). (The tuning

parameter τN plays the role of a similar tuning parameter in the moment selection approach; in

Kitamura and Stoye (2016), it is required to satisfy two properties, namely, τN Ó 0 and
?
NτN Ò 8.)

(ii) Calculate the boostrap estimators under the restriction

pBprq
τN

� pBprq � pB � pCτN r � 1, ..., R

where pCτN derives from step (i) and pBprq is a re-sampled choice probability vector obtained via

standard nonparametric boostrap. In addition, R is the number of boostrap replications. In our

paper, we let R � 2000.

(iii) Calculate the boostrap test statistic by solving the following problem

J
prq
N pτNq � N minrx�τN1K sPRK

�

� pBprq
τN
� Ax

	1 � pBprq
τN
� Ax

	

for r � 1, ..., R.

(iv) Use the empirical distribution of J
prq
N pτNq, r � 1, ..., R, to obtain the critical value of JN .

We repeat this procedure four times: for the model that does not allow indifferences (NI) and the

one that allows them (I) and we implement the test under two specifications of the τN -parameter.

For the airline application, we obtain the following p-values.

NI I

τN � 0 0.150 0.307

τN � 5.15 � 10�7 0.131 0.273
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In Sheet “Results” of “Matrices, Data, and Results.xlsx” we expand on these findings. In particular,

we also provide information regarding the closest compatible distribution for τN � 0 (in column

“Closest”) and for τN � 5.15 � 10�7 (in column “Closest τ”).

Bounds for subset of types

Suppose the dataset is consistent with our modeling restrictions, i.e., it passes the test in the previous

sub-section. This means that the set of types that our model allows can explain the observed choices.

In this context, we might also want to recover, from the data, the relative importance of a specific

subset of types allowed by the model. In general, this fraction can only be partially identified.

Recall that x represents a probability distribution over the set of all permissible paths. Let us

define a vector ρ of equal length with x, such that the entry in ρ is 1 on all those types included in

the subset of interest and 0 otherwise. For each x, the probability weight on the subset of interest

is just x1ρ. Let pC be the closest compatible distribution of choice data (if the dataset passes the

test, then pC is just pB). We can construct bounds for x1ρ by solving

minxPRK
�

!
x1ρ : Ax � pC) and maxxPRK

�

!
x1ρ : Ax � pC) .

The “Estimated Probability” in Tables 7 and 8 in the main paper is calculated in this way.

Finally, the confidence interval for the identified set can be constructed using a procedure de-

veloped in Deb, Kitamura, Quah, and Stoye (2017). Let θ P r0, 1s be a specific weight for the group

of interest. We can then use our previous test to verify whether this fraction is consistent with the

empirical evidence by adding the restriction x1ρ � θ to the initial hypothesis H. Bounds for the

relevance of a specific subset of types can be recovered by implementing the previous test for all

θ P r0, 1s and including in the confidence interval all those values of θ for which the p-value is above

5%. This test is relatively easily to carry out and we implement it to obtain confidence intervals

for various subsets of SID-rationalizable paths. The confidence intervals reported in Tables 7 and 8

of the main paper correspond to the case where the tuning parameter is set at zero but the results

are robust to small modifications of the tuning parameter.
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