Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

Yukihiko Funaki

Waseda University, Tokyo, JAPAN

19 Oct. 2017, KIER seminar

Schedule of the Talk

- 1 Introduction
- 2. Several characterizations of the Shapley value
- 3. α -egalitarian Shapley value
- 4. δ -discounted Shapley value
- 5. Weak Surplus Monotonicity Axiom
- 6. r-Egalitarian Shapley value

1/52

hapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

1. Introduction: the Shapley value

- The Shapley value One of the most famous solution concepts of cooperative games.
- Axiomatizations of the Shapley value :
 Original(Shapley[1953]),
 Strong Monotonicity(Young[1985]),
 Consistency(Sobolev[1973], Hart and Mas-Colell[1989]),
- Implementation(Pérez-Castrillo and Wettstein [2001])
- The Balanced Contribution property → axiomatic characterizations of the Shapley value and related solutions (Myerson,1980).

Charles Value and its Modified Colutions: Aviamatic and Non-scangarting Characterizations

Introduction: Modifications

- Convex combination of the Shapley value and the Equal Division value (Joosten[1996]) $\rightarrow \alpha$ -egalitarian Shapley value (van den Brink, Funaki and Ju[2013], Casajus and Huettner[2014]))
- Shapley value of a discounted game (Joosten[1996]) \rightarrow δ -discounted Shapley value
- Several monotonicity axioms → the above values, Consensus values(Ju et al.[2007]) and some modifications(Yokote and Funaki[2015])

4/

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterizations

Introduction: Modifications

- The Balanced Contribution property for Equal Contributors a class of solutions called **r-egalitarian** Shapley values (Yokote, Funaki and Kongo[2017]).
- This class contains the egalitarian Shapley values and the discounted Shapley values.

Shanley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterizations

2. Several characterizations of the Shapley value

(N, v): n-person TU game (n = |N|) $N \subset \mathcal{N}$: the set of players

v: a characteristic function from 2^N to $\mathbb R$ with $v(\emptyset)=0$

 Γ : set of all games

 Γ^N : set of all games with the player set N

 $x = (x_i)_{i \in N} \in \mathbb{R}^N$: A payoff vector of a game (N, v).

A value function (one point solution) ψ on Γ :

 $(N, v) \in \Gamma \mapsto \psi(N, v) \in \mathbb{R}^N$,

52 6 / 52

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterizations

The Shapley value

The Shapley value

$$Sh_i(N, v) = \sum_{\substack{S \subseteq N \\ i \in S}} \frac{(n-s)!(s-1)!}{n!} (v(S) - v(S \setminus \{i\})) \quad \forall i \in N,$$

where
$$n = |N|, s = |S|$$
.

Axioms for the Shapley value

- **Axiom (EFFiciency)**: $\sum_{i \in N} \phi_i(N, v) = v(N)$
- **Axiom (NULL player)**: For a null player i ($\Leftrightarrow \nu(S \cup \{i\}) = \nu(S) \ \forall S \subseteq N \setminus \{i\}$), $\phi_i(N, \nu) = 0$.
- **Axiom (SYMmetry)**: If i and j are substitutes $(\Leftrightarrow v(S \cup \{i\}) = v(S \cup \{j\})) \ \forall S \subseteq N \setminus \{i,j\})$, then $\phi_i(N,v) = \phi_i(N,v)$.
- Axiom (ADDitivity): For any games (N, v) and (N, w), $\phi_i(N.v + w) = \phi_i(N, v) + \phi_i(N, w) \ \forall i \in N$. Here, $(v + w)(S) = v(S) + w(S) \ \forall S \subseteq N$.

Theorem (Shapley[1953])

 ϕ satisfies EFF, ADD, SYM and NULL $\iff \phi = Sh$.

7 / 52

8 / 52

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

Monotonicity

Axiom (Strong MONotonicity):

If $v(S \cup \{i\}) - v(S) \ge w(S \cup \{i\}) - w(S)$ for all $S \subseteq N \setminus \{i\}$, then $\phi_i(N, v) \ge \phi_i(N, w)$.

Theorem (Young[1985])

 ϕ satisfies EFF, SYM and strong MON $\iff \phi = Sh$.

Axiom (Marginality):

If $v(S \cup \{i\}) - v(S) = w(S \cup \{i\}) - w(S)$ for all $S \subseteq N \setminus \{i\}$, then $\phi_i(N, v) = \phi_i(N, w)$.

Consistencies

Axiom (standardness for two-player games) For every $(N, v) \in \Gamma$ with $N = \{i, j\}, i \neq j$, it holds that

$$\phi_i(N, v) = v(\{i\}) + \frac{v(N) - v(\{i\}) - v(\{j\})}{2}.$$

Definitions: Take $(N, v) \in \Gamma$ with $n \ge 2$, $j \in N$, $x \in \mathbb{R}^N$.

Complement reduced game w.r.t j and x is given by $v^x(S) = v(S \cup \{j\}) - x_j$ for all $\emptyset \neq S \subseteq N \setminus \{j\}, v^x(\emptyset) = 0$.

Projection reduced game w.r.t j and x is given by $v^x(S) = v(S)$ for all $S \subset N \setminus \{j\}$, $v(N \setminus \{j\}) = v(N) - x_i$.

9 / 52

10 / !

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

Convex consistency

Definition: Convex Reduced Game

For $(N, v) \in \Gamma$ with $n \ge 2$, $j \in N$, $x \in \mathbb{R}^N$, the **Convex reduced game w.r.t** j and x is the game $(N \setminus \{j\}, v^x)$ given by

$$v^{\mathsf{x}}(S) = \frac{|S|}{n-1} (v(S \cup \{j\}) - \mathsf{x}_j) + \frac{n-1-|S|}{n-1} v(S) \text{ for all } S \subseteq N \setminus \{j\}.$$

Definition: Convex Consistency

Let ϕ be a value on Γ . ϕ satisfies **Convex consistency** on Γ \iff For every $(N, v) \in \Gamma$ with $n \ge 3$, $j \in N$, and $x = \phi(N, v)$, $\phi_i(N \setminus \{j\}, v^x) = \phi_i(N, v)$ for $i \in N \setminus \{j\}$.

Theorem (Sobolev[1973])

 ϕ satisfies Convex consistency on Γ and standardness for two-person games, $\iff \phi = Sh$.

 ${\bf Shapley} \ {\bf Value} \ {\bf and} \ {\bf its} \ {\bf Modified} \ {\bf Solutions}: \ {\bf Axiomatic} \ {\bf and} \ {\bf Non-cooperative} \ {\bf Characterizations}$

HM Consistency

Definition: Hart and Mas-Colell Reduced Game Given $(N, v) \in \Gamma$ with $n \ge 2$, $j \in N$, and a value ϕ , the Hart and Mas-Colell reduced game w.r.t. j is the game $(N \setminus \{j\}, v^{\phi})$ given by

$$v^{\phi}(S) = v(S \cup \{j\}) - \phi_i(S \cup \{j\}, v)$$
 for all $S \subseteq N \setminus \{j\}$.

Definition: Hart and Mas-Colell Consistency Let ϕ be a value on Γ. ϕ satisfies Hart and Mas-Colell consistency on Γ

$$\iff \text{For every } (N, v) \in \Gamma \text{ with } j \in N, \\ \phi_i(N \setminus \{j\}, v^{\phi}) = \phi_i(N, v) \text{ for } i \in N \setminus \{j\}.$$

Theorem (Hart and Mas-Colell[1989])

 ϕ satisfies Hart and Mas-Colell consistency on Γ and standardness for two-person games, $\iff \phi = \mathit{Sh}.$

Implementation

Pérez-Castrillo and Wettstein [2001] give an extensive form game called a bidding mechanism.

The bidding game for a set of players $N = \{1, ..., n\}$: t = 1: Each player $i \in N$ makes bids $b^i = (b^i_j)_{j \neq i} \in \mathbb{R}^{n-1}$. For each $i \in N$, let $B^i = \sum_{j \neq i} (b^i_j - b^i_j)$, be the net bid of player i measuring its willingness to be the proposer. Let

 $h = \arg\max_i(B^i)$ where, in case there are multiple maximizers, h is randomly chosen among the maximizers. Once chosen, player h pays b_i^h to every player $j \neq h$.

t=2: Player h makes a proposal, which specifies the offer y_j^h in \mathbb{R} to every player $j \neq h$.

13 / 52

Shanley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterization

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterizations

t=3: The players other than h, sequentially, either accept or reject the offer.

If the offer is accepted by every player, each player $j \neq h$ receives y_j^h and player h obtains the worth of the grand coalition minus the payments $\sum_{j \neq h} y_j^h$. Then h gets $v(N) - \sum_{j \neq h} y_j^h - \sum_{j \neq h} b_j^h$ in total, and each $j(j \neq h)$ gets $y_j^h + b_j^h$.

If the offer is rejected by at least one player, then all players except for h proceed to play a sub bidding mechanism with player set $N\setminus\{h\}$ whereas player h obtains its stand-alone worth $v(\{h\})$, that is, $v(\{h\}) - \sum_{i \neq h} b_j^h$ in total.

Definition: A TU-game (N, v) is zero-monotonic if $v(N) \ge v(S) + \sum_{i \in N \setminus S} v(\{i\})$ for all $S \subset N$.

Theorem(Pérez-Castrillo and Wettstein[2001])

If the game (N, v) is zero-monotonic, then the outcome in any subgame perfect equilibrium of the bidding mechanism coincides with the payoff vector of the Shapley value.

15/52

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterization

3. α -egalitarian Shapley value

The Equal Devision value

$$ED_i(N, v) = \frac{v(N)}{n} \quad \forall i \in N.$$

α -egalitarian Shapley value ($\alpha \in [0,1]$)

$$\varphi^{\alpha}(N, v) = \alpha Sh(N, v) + (1 - \alpha)ED(N, v)$$

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterizations

Consistency

Axiom (α -standardness for two-player games) Let $\alpha \in [0,1]$. Then for every $(N,\nu) \in \Gamma$ with $N=\{i,j\},\ i \neq j$, it holds that

$$\phi_i(N, v) = \alpha v(\{i\}) + \frac{v(N) - \alpha v(\{i\}) - \alpha v(\{j\})}{2}.$$

- lacktriangleq lpha = 1 yields standardness for 2-person games
- $lacktriangleq \alpha = 0$ yields egalitarian standardness for 2-person games

17/52 18/52

Consistency

Monotonicity

Theorem (van den Brink, Funaki and Ju[2013])

Take any $\alpha \in [0,1]$. ϕ satisfies Convex consistency on Γ and α -standardness for two-person games $\iff \phi = \varphi^{\alpha}$.

Axiom (Weak MONotonicity) If $v(N) \ge w(N)$ and $v(S \cup \{i\}) - v(S) \ge w(S \cup \{i\}) - w(S)$ for all $S \subseteq N \setminus \{i\}$, then $\phi_i(N, v) \ge \phi_i(N, w)$.

Theorem (van den Brink, Funaki and Ju[2013]), Casajus and Huettner[2014])

Let $|N| \geq 3$. ϕ satisfies EFF, ADD, and weak MON $\iff \exists \ \alpha \in [0,1] \ s.t. \ \phi = \varphi^{\alpha}$.

19 / 52

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterization

Implementation

We adapt Pérez-Castrillo and Wettstein [2001] bidding mechanism to get the α -egalitarian Shapley values. The bidding game for a set of players $N = \{1, ..., n\}$:

t = 1, 2: The same as the bidding mechanism.

t=3: The players other than $\it h$, sequentially, either accept or reject the offer.

If the offer is accepted by every player, each player $j \neq h$ receives y_j^h and player h obtains the worth of the grand coalition minus the payments $\sum_{j \neq h} y_j^h$. Then h gets $v(N) - \sum_{j \neq h} y_j^h - \sum_{j \neq h} b_j^h$ in total, and each $j(j \neq h)$ gets $y_j^h + b_j^h$.

Shapley Value and ite Modified Solutions: Axiomatic and Non-cooperative Characterization

Implementation

If the offer is rejected by at least one player, then with probability $(1-\alpha)$, where $\alpha \in [0,1]$, the game stops and all players including the proposer h get zero payoffs, (that is, $-\sum_{j \neq h} b^h_j$ in total,) while with probability α all players except for h proceed to play a sub bidding mechanism with player set $N \setminus \{h\}$ whereas player h obtains its stand-alone worth $v(\{h\})$, (that is, $v(\{h\}) - \sum_{j \neq h} b^h_j$ in total).

However from now on, in case of rejection, the remaining players other than player h keep playing the bidding mechanism, which is the same as the one in Pérez-Castrillo and Wettstein [2001].

22 /

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

<u>Theorem</u>

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

4. δ -discounted Shapley value

Theorem(van den Brink, Funaki and Ju[2013])

If the game (N,v) is zero-monotonic, then the outcome in any subgame perfect equilibrium of this bidding mechanism coincides with the payoff vector of the α -egalitarian Shapley value.

Modified Implementation

We consider a more consistent mechanism.

t = 1, 2: The same.

t=3: The players other than \emph{h} , sequentially, either accept or reject the offer.

If the offer is accepted by every player, each player $j \neq h$ receives y_j^h and player h obtains the worth of the grand coalition minus the payments $\sum_{j \neq h} y_j^h$. Then h gets $v(N) - \sum_{j \neq h} y_j^h - \sum_{j \neq h} b_j^h$ in total, and each $j(j \neq h)$ gets $y_j^h + b_j^h$.

23/52 24/52

If the offer is rejected by at least one player, then with probability $(1-\delta)$, where $\delta \in [0,1]$, the game stops and all players including the proposer h get zero payoffs, (that is, $-\sum_{j \neq h} b^h_j$ in total,) while with probability δ all players except for h proceed to play a sub bidding mechanism with player set $N \setminus \{h\}$ whereas player h obtains its stand-alone worth $v(\{h\})$, (that is, $v(\{h\}) - \sum_{j \neq h} b^h_j$ in total). In case of rejection, the remaining players other than player h

In case of rejection, the remaining players other than player h play the bidding game which is the same as the case t=1. (Go back to t=1.)

What is the value which is implemented by this mechanism?

δ -discounted Shapley value ($\delta \in [0,1]$)

$$\psi_i^{\delta}(\textit{N},\textit{v}) = \sum_{\substack{S\subseteq \textit{N}\setminus\{i\}\S
eq \emptyset}} rac{|S|!(n-|S|-1)!}{n!} \cdot \delta^{n-|S|-1}ig(\textit{v}(S\cup\{i\})-\delta\cdot\textit{v}(S)ig) \quad ext{for all } i\in\textit{N}.$$

Theorem(van den Brink and Funaki[2015])

Let $\delta \in [0,1]$ and and $v \in \Gamma$ be a zero monotonic game. Then the outcome in any subgame perfect equilibrium of the bidding mechanism coincides with the payoff vector of the δ -discounted Shapley value $\psi^{\delta}(N,v)$.

25 / 52

26 / 52

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterizations

Consistency

δ -discounted Shapley value $(\delta \in [0,1])$

$$\psi^{\delta}(\textit{N},\textit{v}) = \textit{Sh}(\textit{N},\textit{w}^{\delta}),$$
 $w^{\delta}(\textit{S}) = \delta^{n-|\textit{S}|}\textit{v}(\textit{S}) \text{ for all } \textit{S}$

Theorem (Joosten[1996])

Take any $\delta \in [0,1]$. ϕ satisfies Hart and Mas-Colell consistency on Γ and δ -standardness for two-person games $\iff \phi = \psi^{\delta}$.

27 / 52

28 / 52

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterization

Monotonicity

Axiom (δ -MONotonicity) $\phi_i(N, v) \ge \phi_i(N, w)$ for two games (N, v), (N, w) and $i \in N$ such that $v(S \cup \{i\}) - \delta v(S) \ge w(S \cup \{i\}) - \delta w(S)$ for all $S \subseteq N \setminus \{i\}$.

Theorem(van den Brink and Funaki[2014])

Take any $\delta \in [0,1]$. ϕ satisfies EFF, SYM, δ -MON and δ -standardness for two-person games $\iff \phi = \psi^{\delta}$.

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

5. Weak Surplus Monotonicity Axiom

- Strong Monotonicity (Mariginal contribution Monotonicity) → the Shapley value (Young [1985])
- Weak Monotonicity (Marginal + Grand coalition) → the Egalitarian Shapley value (van den Brink et al. [2013], Casajus and Huettner [2014])

The **consensus value** (Ju et al. [2007]): for $\alpha \in [0, 1]$,

$$CV^{\alpha}(N, v) = \alpha Sh(N, v) + (1 - \alpha)CIS(N, v).$$

29 / 52 30 / 52

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterizations

Weak Surplus Monotonicity

Weak Surplus Monotonicity

Axiom: Weak Surplus Monotonicity (WSM)

Let $v, w \in \Gamma$ and $i \in N$. If

- $v(S \cup \{i\}) v(S) \ge w(S \cup \{i\}) w(S), \forall S \subseteq N \setminus \{i\}.$
- $\mathbf{v}(N) \geq w(N)$, and
- $v(N) \sum_{j \in N} v(\{j\}) \ge w(N) \sum_{j \in N} w(\{j\}),$

then $\psi_i(N, v) \geq \psi_i(N, w)$.

Theorem(Yokote and Funaki[2015])

Let $n \geq 6$. Then, a solution ψ satisfies EFF, SYM and WSM \iff There exist $\alpha, \beta, \gamma \in [0, 1]$ s.t.

$$\psi(N, v) = \alpha ES^{\beta}(N, v) + (1 - \alpha)CV^{\gamma}(N, v).$$

Corollary

Let $n \geq 6$. Then, a solution ψ satisfies EFF, SYM and WSM \iff There exist $\alpha_1, \alpha_2, \alpha_3 \in [0, 1]$ with $\alpha_1 + \alpha_2 + \alpha_3 = 1$, s.t.

$$\psi(N, v) = \alpha_1 Sh(N, v) + \alpha_2 ED(N, v) + \alpha_3 CIS(N, v).$$

32 / 52

hapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

An Example

Conisder (N, v) and (N, w), where $N = \{1, 2, 3\}$

- v(1) = 0, v(2) = v(3) = 50,
- v(12) = v(13) = v(23) = 60, v(N) = 110,
- w(1) = w(2) = w(3) = 0,
- w(12) = w(13) = w(23) = 10, w(N) = 60,

These satisfy:

■
$$v(1) = w(1)$$
, $v(12) - v(2) = w(12) - w(2)$,
 $v(13) - v(3) = w(13) - w(3)$,
 $v(123) - v(23) = w(123) - w(23)$,

and

$$v(N) = 110 > w(N) = 60,$$

but

■
$$v(N) - \sum_{j \in N} v(j) = 10 < w(N) - \sum_{j \in N} w(j) = 60.$$

Shanley Value and its Modified Solutions: Axiomatic and Non-connective Characterizations

Proof of Theorem

■ Sketch of the proof.

For each $T \subseteq N$, $T \neq \emptyset$, we define u_T by

$$u_T(S) = \begin{cases} 1 & \text{if } T \subseteq S, \\ 0 & \text{otherwise.} \end{cases}$$

For each $T \subseteq N$, $|T| \ge 2$, we define \bar{u}_T by

$$\overline{u}_{\mathcal{T}}(S) = \begin{cases} 1 & \text{if } |S \cap \mathcal{T}| = 2, \\ 0 & \text{otherwise.} \end{cases}$$

34 / 5

36 / 52

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterization

Proof of Theorem

Define $u^1 = \sum_{i \in N} u_i$, $u^2 = \sum_{T \subseteq N: |T| = 2} u_T$. Then, the following set is a basis of game space Γ^N .

$$\begin{aligned} & \left\{ u^{1} \right\} \cup \left\{ u_{1} - u_{i} : i \in N, i \neq 1 \right\} \cup \left\{ u^{2} \right\} \\ & \cup \left\{ u_{12} - u_{T} : T \subseteq N, |T| = 2, T \neq \left\{ 1, 2 \right\} \right\} \cup \left\{ \overline{u}_{T} : |T| \ge 3 \right\} \end{aligned}$$

$$V^{1} = \{u^{1}\} \cup \{u^{2}\} \cup \{\bar{u}_{T} : |T| \ge 3\}, \qquad \Gamma^{1} = Sp(V^{1}),$$

$$V^{2} = \{u_{12} - u_{T} : T \subseteq N, |T| = 2, T \ne \{1, 2\}\}, \quad \Gamma^{2} = Sp(V^{2}),$$

$$V^{3} = \{u_{1} - u_{i} : i \in N, i \ne 1\}, \qquad \Gamma^{3} = Sp(V^{3}).$$

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

Proof of Theorem

33 / 52

35 / 52

Firstly, we show that

$$\psi(N, v + w^3) = \psi(N, v) + \psi(N, w^3) \text{ for all } v \in \Gamma, w^3 \in \Gamma^3.$$
(A)

Next, we show that

$$\psi(N, v + w^2) = \psi(N, v) + \psi(N, w^2) \text{ for all } v \in \Gamma, w^2 \in \Gamma^2.$$
(B)

We also show that

$$\psi_i(N, w^1) = \frac{w^1(N)}{n} \text{ for all } w^1 \in \Gamma^1.$$
 (C)

 $\varphi_i(N,W) = \frac{1}{n}$ for all $W \in \Gamma$.

Proof of Theorem

Cases for $n \leq 5$

Then for $v \in \Gamma$, we can express v by $v = v^1 + v^2 + v^3$, where $v^j \in \Gamma^j$, and

$$\psi_{i}(N, v) = \psi_{i}(N, v^{1} + v^{2} + v^{3}) \stackrel{\text{(A)}}{=} \psi_{i}(N, v^{1} + v^{2}) + \psi(N, v^{3})$$

$$\stackrel{\text{(B)}}{=} \psi_{i}(N, v^{1}) + \psi_{i}(N, v^{2}) + \psi_{i}(N, v^{3})$$

$$\stackrel{\text{(C)}}{=} \psi_{i}(N, v^{2}) + \psi_{i}(N, v^{3}) + \frac{v(N)}{n}.$$

- n = 1: EFF uniquely determines ψ .
- *n* = 2: There is another solution that satisfies EFF, SYM, WSM, but is not a convex combination of the solutions.
 - Casajus and Huettner [2014a].
- *n* = 3: We have another complicated solution that satisfies EFF, SYM, WSM, but is not a convex combination of the solutions.
- n = 4.5: Open questions.

37 / 52

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterization

Surplus Monotonicity

Axiom:Surplus Monotonicity (SM)

Let $v, w \in \Gamma$ and $i \in N$. If

- $v(S \cup \{i\}) v(S) \ge w(S \cup \{i\}) w(S), \forall S \subseteq N \setminus \{i\},$
- $v(N) \sum_{j \in N} v(\{j\}) \ge w(N) \sum_{j \in N} w(\{j\}),$

then $\psi_i(N, v) \ge \psi_i(N, w)$.

Theorem(Yokote and Funaki[2015])

Let $n \ge 6$. Then, a solution $\psi(N, v)$ satisfies EFF, SYM and SM \iff There exists $\alpha \in [0, 1]$ s.t. $\psi(N, v) = CV^{\alpha}(N, v)$.

Shapley Value and ite Modified Solutions: Axiomatic and Non-cooperative Characterization

Dual solutions

We consider a dual of WSM.

- $\blacksquare v^*(S) = v(N) v(N \setminus S) \ \forall S \subseteq N$: dual game
- $\Psi^*(N, v) = \psi(N, v^*)$: dual solution
- Axiom using v^* and ψ^* : dual axiom of v and ψ
- Dual axioms characterize a dual solution.

$$ENSC_{i}(N, v) = v(N) - v(N\{i\}) + \frac{v(N) - \sum_{j \in N} (v(N) - v(N\{j\}))}{n}$$

$$ENSC(N, v) = CIS^*(N, v)$$

4

Shanley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterization

Axiomatization of Dual solution

Axiom: Dual Weak Surplus Monotonicity (DWSM)

Let $v, w \in \Gamma$ and $i \in N$. If

- $v(S \cup \{i\}) v(S) \ge w(S \cup \{i\}) w(S), \forall S \subseteq N \setminus \{i\},$
- $\mathbf{v}(N) \geq w(N)$, and
- $v(N) \sum_{j \in N} (v(N) v(N \setminus \{j\})) \ge w(N) \sum_{j \in N} (w(N) w(N \setminus \{j\})),$

then $\psi_i(N, v) \geq \psi_i(N, w)$.

Theorem (Yokote and Funaki [2015])

Let $n \geq 6$. Then, a solution ψ satisfies EFF, SYM and DWSM if and only if there exist $\alpha, \beta \in [0,1]$ s.t. $\psi = \alpha \textit{ESS}^{\beta} + (1-\alpha)\textit{ENSC}$.

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

Summary Table $\Delta_i(v) = v(S \cup \{i\}) - v(S)$

	Sufficient condition based on:				Solutions			
Axiom	$\Delta_i v$	$\nu(N)$	$v(N) - \sum_{i} v(i)$	dual	Sh	ED	CIS	ENSC
WSM	0		0		0	0	0	
D-WSM	0	0		0	0	0		0
WM	0	0			0	0		
SM	0		0		\circ			
D-SM	0			0	0			0
WGM		0	0			0	0	
D-WGM		0				0		0
STM	0				0			
SSM			0				0	
D-SSM				0				Ô
GM		0				0		

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterizations

Weak balanced contribution property

6. r-Egalitarian Shapley value

■ For $N \subseteq \mathcal{N}$, $i \in N$ and $\lambda \in \mathbb{R}$, we define $(N, \nu_{\lambda,i}) \in \Gamma$ by

$$v_{\lambda,i}(S) = egin{cases} v(S) + \lambda & ext{ if } i \in S, \\ v(S) & ext{ otherwise.} \end{cases}$$

Axiom: Weak Strategic Invariance, WSI.

For any $(N, v) \in \Gamma$, $i \in N$ and $\lambda \in \mathbb{R}$,

$$\psi_i(N, v_{\lambda,i}) = \psi_i(N, v) + \lambda.$$

Axiom: Balanced contribution property (Myerson[1980])

For any $(N, v) \in \Gamma$ and $i, j \in N$, $i \neq j$,

$$\psi_i(N, v) - \psi_i(N \setminus \{j\}, v) = \psi_j(N, v) - \psi_j(N \setminus \{i\}, v).$$

■ "For any $i, j \in N$ " seems to be a strong condition.

Axiom: Balanced contribution property for equal contributors, BCEC

For any
$$(N, v) \in \Gamma$$
 and $i, j \in N$, $i \neq j$, $v(N \setminus \{i\}) = v(N \setminus \{j\})$,

$$\psi_i(N, v) - \psi_i(N \setminus \{j\}, v) = \psi_i(N, v) - \psi_i(N \setminus \{i\}, v).$$

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

r-Egalitarian Shapley value

■ For any $(N, v) \in \Gamma$ and a sequence of real numbers $\mathbf{r} = \{r_k\}_{k=1}^n, n = |N|$, we define $(N, v^r) \in \Gamma$ by

$$v^{\mathbf{r}}(S) = r_s v(S)$$
 for all $S \subseteq N$,

where s := |S|.

■ We define the **r-egalitarian Shapley value** *ESh*^r by

$$\textit{ESh}^r(N, v) = (1 - r_n) \cdot \frac{v(N)}{n} + \textit{Sh}(N, v^r) \text{ for } (N, v) \in \Gamma.$$

Theorem(Yokote, Funaki and Kongo[2016])

A solution ψ on Γ^N satisfies EFF, WSI and BCEC \iff There exists $\mathbf{r} = \{r_k\}_{k=1}^n$ such that $\psi(N, v) = ESh^r(N, v)$.

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterization

Relationships with other solutions

■ For $\alpha \in [0,1]$, $r_k = \alpha \ \forall \ k = 1, \dots, n$. ⇒ α -egalitarian Sh.

■ For $\delta \in [0,1]$, $r_k = \delta^{n-k} \ \forall \ k = 1, \dots, n$. ⇒ δ -discounted Sh (for *n*-person games)

■ For $\xi \in [0,1]$, $r_1 = 1 - \xi$, $r_k = 1 - \frac{k \cdot \xi}{(k-1) \cdot \xi + 1} \forall k \neq 1$ ⇒ generalized solidarity value (Casajus and Huettner[2014b]).

 Many variants of the Shapley value satisfies the same axiom, BCEC,

46 / 5

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterizations

Implementation

- \blacksquare t = 1, 2 are the same as the original mechanism.
- t=1 Each player $i\in N$ makes bids $b^i_j\in\mathbb{R}$ for every $j\neq i$. For each $i\in N$, let $B^i=\sum_{j\neq i}(b^i_j-b^i_i)$ be the net bid of player i. Let h be the player with the highest net bid. Player h pays every other player $j\in N\setminus h$, its offered bid b^i_i . Player h becomes the proposer in the next stage.
- t=2 Player h proposes an offer $y_i^h \in \mathbb{R}$ to every $j \in N \setminus h$.
- t=3 The players other than h, sequentially, either accept or reject the offer. If at least one player rejects it, then the offer is rejected. Otherwise, the offer is accepted.

 ${\bf Shapley} \ {\bf Value} \ {\bf and} \ {\bf its} \ {\bf Modified} \ {\bf Solutions}: \ {\bf Axiomatic} \ {\bf and} \ {\bf Non-cooperative} \ {\bf Characterizations}$

Implementation

■ If the offer is accepted, then each player $j \in N \setminus h$ receives y_i^h and player h obtains the remainder

$$v(N) - \sum_{j \neq h} y_j^h$$
.

If the offer is rejected then player h leaves the game and obtains $v(\{h\})$, while the players in $N \setminus h$ pay

$$\frac{1-r_{n-1}}{n-1}\nu(N\backslash h)$$
 and proceed to the next round.

Theorem(Yokote, Funaki and Kongo[2016])

This mechanism implements ESh^r in any subgame perfect equilibrium.

47 / 52

48 / 52

References

- van den Brink, R., Y. Funaki and Y. Ju [2013]: "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, 40(3), 693-714.
- van den Brink, R. and Y. Funaki [2015]: "Implementation and Axiomatization of Discounted Shapley Values," Social Choice and Welfare, 45(2), 329-344.
- Casajus, A., and F. Huettner [2014a]: "Weakly monotonic solutions for cooperative games," Journal of Economic Theory, 154, 162-172.
- Casajus, A., and F. Huettner [2014b]: "On a class of solidarity values," European Journal of Operational Research, 236(2), 583-591.

References

- Driessen, T.S.H. and Y. Funaki [1991]: "Coincidence of and collinearity between game theoretic solutions," Operations Research Spektrum, 13(1), 15-30.
- Hart, S., and A. Mas-Colell [1996]: "Bargaining and value,"
 Econometrica: Journal of the Econometric Society, 357-380.
- Joosten, R. [1996]: "Dynamics, equilibria and values," dissertation, Maastricht University.
- Ju, Y., P. Borm and P. Ruys [2007]: "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, 28(4), 685-703.
- Myerson, R. B. [1980]: "Conference structures and fair allocation rules," International Journal of Game Theory, 9(3), 169-182.

49 / 52

50 / 52

Shapley Value and its Modified Solutions: Axiomatic and Non-cooperative Characterization

References

- Pérez-Castrillo, D., and D. Wettstein [2001]: "Bidding for the surplus: a non-cooperative approach to the Shapley value," Journal of Economic Theory, 100(2), 274-294.
- Shapley L.S. [1953]: "A value for n-person games," In: Roth AE (ed) The Shapley value. Cambridge University Press, Cambridge, 41-48
- Sobolev, A.I., [1973], "The functional equations that give the payoffs of the players in an n-person game (in Russian)".
 In: Advances in Game Theory (Ed. E. Vilkas). Izdat.
 " Mintis", Vilnius, 151-153.

Shapley Value and its Modified Solutions: Axiomatic and Non-connective Characterizations

References

- Young, H. P. [1985]: "Monotonic solutions of cooperative games," International Journal of Game Theory, 14(2), 65-72.
- Yokote, K. and Y. Funaki [2015]: Weak Surplus Monotonicity characterizes convex combinations of egalitarian Shapley value and Consensus value, WINPEC Working Paper Series No.E1504, Waseda University, Japan...
- Yokote, K., Y. Funaki and T.Kongo[2017]: "The Balanced Contribution Property for Equal Contributors," to appear in it Games and economic behavior.

51/52 52/52