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1. Introduction :

the Shapley value

m The Shapley value — One of the most famous solution
concepts of cooperative games.

m Axiomatizations of the Shapley value :
Original(Shapley[1953]),
Strong Monotonicity(Young[1985]),
Consistency(Sobolev[1973], Hart and Mas-Colell[1989]),

m Implementation(Pérez-Castrillo and Wettstein [2001])

m The Balanced Contribution property — axiomatic
characterizations of the Shapley value and related
solutions (Myerson,1980).
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Introduction : Modifications

m The Balanced Contribution property for Equal

Contributors — a class of solutions called r-egalitarian

Shapley values (Yokote, Funaki and Kongo[2017]).

m This class contains the egalitarian Shapley values and the

discounted Shapley values.
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Modifications

Introduction :

m Convex combination of the Shapley value and the Equal
Division value (Joosten[1996]) — a-egalitarian Shapley
value (van den Brink, Funaki and Ju[2013], Casajus and
Huettner[2014]))

m Shapley value of a discounted game (Joosten[1996]) —
d-discounted Shapley value
m Several monotonicity axioms — the above values,

Consensus values(Ju et al.[2007]) and some
modifications(Yokote and Funaki[2015])
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2. Several characterizations of the Shapley value

(N, v) : n-person TU game (n = |N|)
N C N : the set of players
v : a characteristic function from 2V to R with v(f)) =0
I set of all games
TN : set of all games with the player set N
x = (x;)ien € RN : A payoff vector of a game (N, v).
A value function (one point solution) ¢ on T
(N,v) €T — (N, v) e RV,

N
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The Shapley value Axioms for the Shapley value

m Axiom (EFFiciency): >, ¢i(N,v) = v(N)
m Axiom (NULL player): For a null player i
The Shapley value (& v(SU{i})=v(S)VS C N\{i}), ¢i(N,v) =0.

m Axiom (SYMmetry): If j and j are substitutes
(e v(SU{}) =v(SU{}) VS C N\ {i,j}), then

Shi(Nv) =" M(V(S) —v(S\ {i})) VieN, ¢i(N, v) = ¢;(N.v).
scn m m Axiom (ADDitivity): For any games (N, v) and (N, w),
ics di(N.v+w) = ¢:(N,v) + ¢;(N,w) Vi€ N.
where n = |N|,s = |S]. Here, (v 4+ w)(S) = v(S) + w(S) VS C N.

Theorem (Shapley[1953])

¢ satisfies EFF, ADD, SYM and NULL <= ¢ = Sh.
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Monotonicity Consistencies

. . Axiom (standardness for two-player games) For every
Axiom (Strong MONotonicity): (N,v) el with N = {ij}, i #], it holds that
Ifv(SU{i}) —v(S) > w(SU{i}) — w(S) for all

¢i(N, V) _ V({I}) + V(N) — V({;}) — V({J})

S C N\ {i}, then ¢;(N,v) > &;(N, w).
Theorem (Young[1985]) . ) . N
Definitions: Take (N,v) € I with n>2, je N, xeR".

¢ satisfies EFF, SYM and strong MON <= ¢ = Sh.

Complement reduced game w.r.tjand x is given by

Axiom (Marginality): vi(S) =v(SU{j})—x; forall@#SC N\{j}, v<(0)=0.
Ifv(SU{i}) = v(S) = w(SU{i}) — w(S) for all
S C N\ {i}, then ¢;(N,v) = &:i(N, w). Projection reduced game w.r.tjand x s given by

v¥(§) =v(S) forall S N\ {j}, v(N\{j})=v(N)—x.
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Convex consistency HM Consistency

Definition: Convex Reduced Game

For (N,v) € T with n>2, je N, xe R", the Convex D.efinition: Hart zimd Mas-CpIeII Reduced Game

reduced game w.r.tjand xis the game (N\ {j}, v*) given by Given (N, v) € T with n > 2, j € N, and a value ¢, the Hart
S| n—1-5| and Mas-Colell reduced game w.r.t. j is the game

vi(S) = n_l(v(SU{j})ij)JrTv(S) for all S C N\{j}. (N\ {j}, v®) given by

Definition: Convex Consistency vO(S) = v(SU{j}) — d;(SU{j},v) forall S C N\ {j}.

Let ¢ be a value on I'. ¢ satisfies Convex consistency on I

<= For every (N,v) € I with n >3, j € N, and Definition: Hart and Mas-Colell Consistency

x =¢(N,v), ;(N\ {j},v¥) = ¢i(N,v) forie N\{j} Let ¢ be a value on I'. ¢ satisfies Hart and Mas-Colell

consistency on [
Theorem (Sobolev[1973]) <= For every (N,v) € [ with j € N,
¢ satisfies Convex consistency on I and standardness for di(N\ {j}, v?) = ¢i(N,v) forie N\ {j}.

two-person games, <= ¢ = Sh.
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Implementation

Pérez-Castrillo and Wettstein [2001] give an extensive form
game called a bidding mechanism.

Theorem (Hart and Mas-Colell[1989]) The bidding game for a set of players N = {1, ..., n}:

¢ satisfies Hart and Mas-Colell consistency on I and t = 1: Each player i € N makes bids b’ = (bj’f)#; € R™L. For
standardness for two-person games, <= ¢ = Sh. each i € N, let B' = 3, ,(bi — b/), be the net bid of player i
measuring its willingness to be the proposer. Let
h = arg max;(B') where, in case there are multiple maximizers,
h is randomly chosen among the maximizers. Once chosen,

player h pays bjh to every player j # h.

t = 2: Player h makes a proposal, which specifies the offer yjh
in R to every player j # h.
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t = 3: The players other than h, sequentially, either accept or
reject the offer.

If the offer is accepted by every player, each player j # h
receives yj” and player h obtains the worth of the grand
coalition minus the payments Z#hyj". Then h gets

v(N) =>4 v = Dith b}’ in total, and each j(j # h) gets Theorem(Pérez-Castrillo and Wettstein[2001])

h h
ﬁ’jt: bjf'F < reiected by at least | th I ol If the game (N, v) is zero-monotonic, then the outcome in any
€ ofter Is rejected by at feast one player, then afl players subgame perfect equilibrium of the bidding mechanism

except for /1 proceed to play a sub b|dd|_ng rnechamsm with coincides with the payoff vector of the Shapley value.
player set N\{h} whereas player h obtains its stand-alone

worth v({h}), that is, v({h}) — 32, b’ in total.

Definition: A TU-game (N, v) is zero-monotonic if
v(N) = v(S) + > ieps v({i}) forall S C N
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Consistency

3. «-egalitarian Shapley value

The Equal Devision value Axiom (a-standardness for two-player games) Let
a € [0,1]. Then for every (N, v) € T with N = {i,j}, i #j, it
N holds that
EDi(N, v) = # VieN.

@,’(N, V) _ ozv({l}) + V(N) — av({;}) — av({./})

a-egalitarian Shapley value (o € [0,1])

m « = 1 yields standardness for 2-person games
¢*(N,v) = ash(N, v) + (1 - ) ED(N, v) m o = 0 yields egalitarian standardness for 2-person games
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Consistency Monotonicity

Axiom (Weak MONotonicity) If v(N) > w(N) and
v(SU{i}) = v(S) > w(SU{i}) — w(S) forall S C N\ {i},

Theorem (van den Brink, Funaki and Ju[2013]) then ¢;(N,v) > ¢;(N, w).

Take any « € [0,1]. ¢ satisfies Convex consistency on I and Theorem (van den Brink, Funaki and Ju[2013]),Casajus
a-standardness for two-person games <= ¢ = ¢®. and Huettner[2014])

Let |N| > 3. ¢ satisfies EFF, ADD, and weak MON
<— 3 a€[0,1] s.t. ¢ =

19 /52 20 /52
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Implementation Implementation

We adapt Pérez-Castrillo and Wettstein [2001] bidding
mechanism to get the a-egalitarian Shapley values.
The bidding game for a set of players N = {1,..., n}:

If the offer is rejected by at least one player, then with
probability (1 — «), where « € [0, 1], the game stops and all
players including the proposer h get zero payoffs, (that is,

t = 1,2: The same as the bidding mechanism. — Z#h bjh in total,) while with probability « all players except
t = 3: The players other than h, sequentially, either accept or for h proceed to play a sub bidding mechanism with player set
reject the offer. N\{h} whereas player h obtains its stand-alone worth v({h}),
If the offer is accepted by every player, each player j # h (that is, v({h}) — Zj# b}’ in total).. . N
receives yj" and player h obtains the worth of the grand However from now on, in case of rejection, the remaining
coalition minus the payments 3_ ., yj”. Then h gets players other than player 1 keep playing the bidding

v(N) — Zj;ﬁhyjh ~ bl in total, and each j(j # h) gets mechanism, which is the same as the one in Pérez-Castrillo

yjh + bf’. and Wettstein [2001].

21/52 22 / 52
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Theorem 4. ¢-discounted Shapley value

Modified Implementation
We consider a more consistent mechanism.

Theorem(van den Brink, Funaki and Ju[2013]) t =1,2: The same.

. . . t = 3: The players other than h, sequentially, either accept or
If the game (N, v) is zero-monotonic, then the outcome in any . pay a y P
o L . reject the offer.
subgame perfect equilibrium of this bidding mechanism

o . o If the offer is accepted by every player, each player j # h
sz:zzldes with the payoff vector of the a-egalitarian Shapley receives yjh and player h obtains the worth of the grand

coalition minus the payments Z#hyj". Then h gets

V(N) =32,y — >, b in total, and each j(j # h) gets
. ph
yj + b
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If the offer is rejected by at least one player, then with
probability (1 — ¢), where § € [0, 1], the game stops and all
players including the proposer h get zero payoffs, (that is,

— ;44 b’ in total,) while with probability & all players except
for h proceed to play a sub bidding mechanism with player set
N\{h} whereas player h obtains its stand-alone worth v({h}),
(thatis, v({h}) — >, b} in total).

In case of rejection, the remaining players other than player h
play the bidding game which is the same as the case t = 1.

(Go back to t =1.)

What is the value which is implemented by this mechanism?
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d-discounted Shapley value (4 € [0, 1])

sy oy = 1SI(n—[5] — 1)
vy = Y B lsiZ
SCN\{i}
540

"L W(SU{iY) =5 v(S)) forallie N.

Theorem(van den Brink and Funaki[2015])

Let 9 € [0,1] and and v € T be a zero monotonic game. Then
the outcome in any subgame perfect equilibrium of the bidding
mechanism coincides with the payoff vector of the
d-discounted Shapley value ¢°(N, v).
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d-discounted Shapley value (4 € [0, 1])

V°(N, v) = Sh(N, w"),
w?(S) = 5" 1*ly(S) for all S
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Monotonicity

Consistency

Theorem (Joosten[1996])

Take any d € [0, 1]. ¢ satisfies Hart and Mas-Colell consistency
on I and d-standardness for two-person games <= ¢ = 1)°.
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5. Weak Surplus Monotonicity Axiom

Axiom ()-MONotonicity) ¢;(N,v) > ¢;(N, w) for two
games (N, v),(N,w) and i € N such that
v(SU{i}) —dv(S) > w(SU{i}) —ow(S) for all S C N\ {i}.

Theorem(van den Brink and Funaki[2014])

Take any ¢ € [0, 1]. ¢ satisfies EFF, SYM, 6-MON and
§-standardness for two-person games <= ¢ = ¢°.

m Strong Monotonicity (Mariginal contribution
Monotonicity) — the Shapley value (Young [1985])

m Weak Monotonicity (Marginal + Grand coalition) — the
Egalitarian Shapley value (van den Brink et al. [2013],
Casajus and Huettner [2014])

The consensus value (Ju et al. [2007]): for o € [0, 1],

CV*(N, v) = aSh(N, v) + (1 — a)CIS(N, v).

30 /52
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Weak Surplus Monotonicity

Axiom: Weak Surplus Monotonicity (WSM)
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Weak Surplus Monotonicity

Let v,weTl and i € N. If
mv(SU{i})—v(S) > w(SU{i}) —w(S), VS C N\{i}.
m v(N) > w(N), and
B v(N) =2 en v(UU}) = wN) = X en w{i}),
then d)i(N7 V) = @U:(N» W)
Theorem(Yokote and Funaki[2015])
Let n > 6. Then, a solution ® satisfies EFF, SYM and WSM
<= There exist o, 8,7 € [0, 1] s.t.

(N, v) = aESP(N,v) + (1 — a)CV(N, v).
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An Example

Conisder (N, v) and (N, w), where N = {1,2,3}
m v(1) =0, v(2) = v(3) =50,
m v(12) = v(13) = v(23) = 60, v(N) = 110,
B w(l) =w(2) =w(3)=0,
m w(12) = w(13) = w(23) = 10, w(N) = 60,
These satisfy:
m v(1) =w(l), v(12) — v(2) = w(12) — w(2),
v(13) — v(3) = w(13) — w(3),
v(123) — v(23) = w(123) — w(23),
and
m v(N) =110 > w(N) = 60,
but
mv(N) =3 cnv() =10 < w(N) =37, w(j) = 60.
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Proof of Theorem

Corollary

Let n > 6. Then, a solution ¢ satisfies EFF, SYM and WSM
<= There exist a1, @y, a3 € [0,1] with a; + ax + a3z =1, s.t.

(N, v) = a1 Sh(N, v) + o ED(N, v) + a3 CIS(N, v).

Shapley Value and its Modified Solutions : Axiomatic and Non-cooperative Characterizations

Proof of Theorem

m Sketch of the proof.
For each T C N, T # (0, we define ut by

i C
UT(S)_{1 if TCS,

0 otherwise.

For each T C N, |T| > 2, we define Tt by

UT(S)_{l if1SNT| =2,

0 otherwise.
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Proof of Theorem

Define u' = 37,y i, U = 3 7y 7i=p UT- Then, the
following set is a basis of game space 'V,

{v'}U{u =i e Nyi #1}U{?}
Ufup—ur : TCNT|=2,T#{L,2}}u{ar:|T| >3}

Vi={uYu{s}u{or:|T| >3}, r = Sp(v?h),
VZ={up—ur: TCN,|T|=2,T#{L,2}}, M =5Sp(V?,
V3={u—u:i€N,i#1}, M =Sp(V?).

Firstly, we show that
(N, v+ w?) = (N, v) + (N, w?) forall v e T, w? e T,
(A)
Next, we show that
(N, v+ w?) = (N, v) + (N, w?) forall v e T, w? € T2
(B)
We also show that

wl(N)

i(N, wt) = for all w' € T, Q)
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Proof of Theorem

Then for v € T, we can express v by v = v! 4 v + v3, where
vi €, and

Di(N,v) = (N, v+ v+ vP) w Gi(N, v+ v2) + (N, v?)
(E) ’lﬂ,’(N7 Vl) + wi(Nv V2) + /&i(N7 V3)

Oy m,v?) (v, v?) + A,
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Surplus Monotonicity
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Cases for n <5

m n = 1: EFF uniquely determines 1.

m n = 2: There is another solution that satisfies EFF, SYM,
WSM, but is not a convex combination of the solutions.

m Casajus and Huettner [2014a].

m n = 3: We have another complicated solution that
satisfies EFF, SYM, WSM, but is not a convex
combination of the solutions.

m n=4,5: Open questions.
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Dual solutions

Axiom:Surplus Monotonicity (SM)

Let v,weTl and i € N. If
B v(SU{i}) —v(S) = w(SU{i}) —w(S), VS C N\{i},
m Vv(N) = jen VT 2 w(N) = 2 jen w({i}),

then ;(N, v) > ¥;(N, w).

Theorem(Yokote and Funaki[2015])

Let n > 6. Then, a solution ¢ (N, v) satisfies EFF, SYM and
SM <= There exists @ € [0, 1] s.t. (N, v) = CVE(N, v).
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Axiomatization of Dual solution

Axiom: Dual Weak Surplus Monotonicity (DWSM)

Let v,w €Tl and i € N. If
mv(SU{i})—v(S) > w(SU{i})—w(S), VS C N\{i},
m v(N) > w(N), and
m v(N) = jen (v(N) = v(N\{})) >
w(N) = en(w(N) — w(N\{j})),
then ;(N, v) > ¥;(N, w).

Theorem (Yokote and Funaki [2015])

Let n > 6. Then, a solution ¢ satisfies EFF, SYM and DWSM
if and only if there exist «, 8 € [0, 1] s.t.
Y = aESP + (1 — o) ENSC.

We consider a dual of WSM.
m v(S)=v(N)—v(N\S)VS C N: dual game
m *(N, v) =¢(N, v*): dual solution
m Axiom using v* and ¢*: dual axiom of v and v
m Dual axioms characterize a dual solution.

(V)= jen(v(N) —v(M{})

ENSCG(N, v) = v(N)— v(M{i}) + n

ENSC(N, v) = CIS*(N, v)
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Summary Table

Ai(v) = v(SU{i}) — v(S)

Sufficient condition based on: Solutions

Axiom [ Ajv [ v(N) [ v(N)=>",v(i) | dual | Sh [ ED [ CIS [ ENSC
WsM | O | O O 01010
D-WSM || O | O O1010 O
WM Ol 0 010

SM O O O O

D-SM || O O 10 O
WGM O O 010
D-WGM O O O O
STM O O

SSM O O
D-SSM O O

GM O O
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6. r-Egalitarian Shapley value Weak balanced contribution property

Axiom:Balanced contribution property (Myerson[1980]).

m For NC AN, i€ N and X €R, we define (N, vy;) €T by o .
' Forany (N,v) €T and i,j € N, i # j,

vai(S) = {V‘S) +A o ifies, Ui(N, v) — (N7, v) = (N, v) — g5(N\{i}, v).

v(S) otherwise.
m “For any i,j € N" seems to be a strong condition.
Axiom: Weak Strategic Invariance, WSI. n —— :
Axiom:Balanced contribution property for equal contributors,
For any (N,v) €T, i€ N and A € R, BCEC.
GilN, var) = Bi(N, v) + A For any (N,v) e Tand i,j € N, i # j, v(N\{/}) = v(N\{/}),
Yi(N, v) = hi(N\{j}, v) = (N, v) = o;(N\{i}, v).
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r-Egalitarian Shapley value Relationships with other solutions

m For any (N,v) € T and a sequence of real numbers
r={r}i_;,n=|N| we define (N,v") €T by

vi(S) = rsv(S) forall SC N,

mForac(0,l], n=aVk=1--,n
= a-egalitarian Sh.
mForde€[0,1], n=0"*Vk=1,---,n

where s :=|5]. = ¢-discounted Sh (for n-person games).
m We define the r-egalitarian Shapley value ESh" by 3
mForée0,1],n=1-¢ n=1—-——-—"—Vk#1
N ~1)-
ESH(N,v) = (1— 1) - M) 4 Sh(N, ) for (N, v) €T _ o (k—=1)-&+1
n = generalized solidarity value (Casajus and
Huettner[2014b]).

Theorem(Yokote, Funaki and Kongo[2016])

A solution 1 on IV satisfies EFF, WS| and BCEC <> There m Many variants of the Shapley value satisfies the same axiom,

exists r = {ry}7_; such that ¥(N, v) = ESh"(N, v). BCEC,
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Implementation Implementation

m If the offer is accepted, then each player j € N\h

m t = 1,2 are the same as the original mechanism. receives yj” and player h obtains the remainder
t =1 Each player i € N makes bids bJ’: eR for every j # . v(N) — Zyjh.
For each i € N, let B' = 3=, ,,(b} — b}) be the net bid J#h
of player i. Let h be the player with the highest net bid. If the offer is rejected then player h leaves the game and
Player h pays every other player j € N\h, its offered bid obtains v({h}), while the players in N\h pay
bjh. Player h becomes the proposer in the next stage. 1—r,1

N\ h d d to th t d.
t =2 Player h proposes an offer y/' € R to every j € N\h. 1 v(N\h) and proceed to the next roun

t = 3 The players other than h, sequentially, either accept or Theorem(Yokote, Funaki and Kongo[2016])
reject the offer. If at least one player rejects it, then the
offer is rejected. Otherwise, the offer is accepted.

This mechanism implements ESh" in any subgame perfect
equilibrium.
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