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Abstract

In this paper, We compare revenues in hybrid auctions with speculative resale. We consider a hybrid
auction in the first stage with symmetric independent private values (IPV) among N regular bidders and
one speculator who has no value for the object. The winner pays a weighted sum of the winning bid and
the highest losing bid with θ ∈ (0, 1] being the weight for the winning bid. In the second stage there
is resale among the bidders. The winner in the first stage auction uses an optimal mechanism to sell
the object to the losing bidders. There is revenue equivalence when N = 1. When N > 1, revenue is
increasing in θ. We conjecture that this ranking result is independent of the bid revelation policy. We
discuss why the ranking differs from that of common-value auctions even though the auction with resale
model here is strategically equivalent to a common-value auction.

Keywords: Speculative Resale, Mechanism Design, Revenue Ranking, Bid Disclosure, Hybrid Auction,

1 Introduction

In this paper, we compare auction revenues when speculative resale is allowed. There are N regular buyers
with independently distributed use values for the single object for sale. We assume the virtual value function
is increasing. There is one speculator who has no value for the object, but is interested in bidding for resale
to other regular buyers. There are two stages. In the first stage, the auction can be quite arbitrary, but we
focus on the hybrid auctions in this paper. A hybrid auction is a mixture of the first-price and second-price
auctions. The winner of the object pays a convex combination of the winning bid and the highest losing bid
with the weight θ ∈ [0, 1] placed on the winning bid. We shall refer to it as a θ−hybrid auction. First-price
auctions and second-price auctions are special cases of θ−hybrid auctions with θ = 1, 0 respectively. In the
second stage, the winner, who may be a speculator or a regular buyer, may sell to the other losing bidders.
We assume that the second-stage auction is an optimal auction with commitment. We also assume that the
original seller, the auctioneer, also has commitment to his auction in the sense that if the object is not sold
in the first stage due to a reserve price, the game ends, and there is no second-stage auction. We assume no
discounting in this model.
At the end of the first-stage auction, and before the start of the resale auction, some bids may be

announced. There are essentially two different bid revelation policies. In one case, only the winning bid
is announced, and this is equivalent to no bid revelation, as the winner of the first stage auction has no
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new information, and the optimal mechanism outcome at the resale stage is the same whether the winning
bid is known by the losing bidders or not. We refer to this case as no bid revelation. In the second case,
both the winning bid and the highest losing bid is announced. The revelation of all other lower bids have
no impact on the resale outcome due to the independence assumption on use values. Hence, we shall refer
to this case as full bid revelation. In a hybrid auction with θ < 1, we face a full bid revelation case. The
winner of the first-stage auction knows the highest winning and losing bids from the payment he makes. The
losing bidder with the highest losing bid also knows both bids before the start of the resale stage. It makes
no difference whether they are announced or not. The knowledge may allow the winner to extract all the
surplus from the losing bidder with the highest use value when his bidding strategy is strictly increasing.
Knowing this, the regular buyers may need to use mixed strategies to hide their true values. There may not
exist a pure strategy equilibrium. Therefore we need to consider mixed strategy equilibria in the case of full
bid revelation. In this paper, we focus on the no bid revelation case for two reasons. First it is easier to
understand the intuition of our results with the pure strategy equilibrium. Second, the equilibrium revenue
of the auction with no bid revelation can be replicated by an auction with full bid revelation, using the ideas
in Lebrun (2010). We conjecture that the equilibrium revenue is independent of the bid revelation policy, as
the full bid revelation induces the regular buyers to adopt a strategy to hide their values so that the revenue
is the same as if there is no bid revelation.
In this framework of hybrid auctions with speculative resale, the revenue equivalence theorem no longer

holds. This is not unexpected, as we have asymmetry between the speculator and the regular buyers. We
show that the first-price auction yields the highest revenue among all θ > 0 for any given reserve price ρ.
The equilibrium and revenue ranking for second-price or Vickrey auctions (when θ = 0) is treated elsewhere
in Cheng (2015 a,b) and there is no difference in the revenue ranking result.
To establish this result, we take the following steps: (1) We show that the speculator makes zero profit

in an equilibrium; (2) We establish a revenue formula in our model based on the virtual value concept of
Myerson (1981). This extension makes use of the holding probabilities of the regular buyers. The holding
probability of a buyer is the probability that the object ends in the hand of the person at the end of the
game; (3) We show that regular buyers bid lower in equilibrium, and have lower holding probabilities when
θ is higher; (4) From the revenue formula, we show that the lower holding probability of the regular buyers
(thus higher holding probability of the speculator) leads to higher revenue.
In the first-step, the main intuition is related to the zero profit property in Bertrand competition. In the

classical Bertrand competition by firms or sellers, any positive profit is driven away by slightly lower prices
from the rival buyers. In our case, we are dealing with buyers’competition through bids. Any positive profit
is driven away by slightly higher bids from competing buyers. This is more complicated to show than the
classical result, and is done in Cheng and Tan (2014) for first-price auctions. The proof applies to hybrid
auctions with θ > 0.
In the second step, the formula we establish allows us to compute the total expected payments by the

regular buyers in both stages of the auction. This includes payments to the auctioneer as well as the
speculator. Since the speculator makes zero profit, the payments to the speculator end up in the hand of
the auctioneer. Hence the total payment is the same as the auction revenue. Hence the holding probability
of the speculator is not needed for the revenue formula.
In the third step, the intuition behind the result is that the first-price auction demands the highest

payment (being the highest bid) after winning, and hence regular buyers respond by submitting the lowest
bids. If there is no speculator, the revenue equivalence theorem implies that the effect from higher payment
cancels the effect from lower bids, and there is no difference in revenue. When there is an active speculator
in equilibrium, and N > 1, the revenue equivalence no longer holds. With lower bids from regular buyers in
first-price auctions, the speculator makes the same revenue from resale while paying less after winning the
first-stage auction with lower bids. Hence the higher profit opportunity induces the speculator to win more
often. We can show that the holding probability of the regular buyers of any value v in first-price auctions
is the lowest. In the final step, we show that this stochastic dominance property implies that the revenue is
the highest when it is a first-price auction. When N > 1, we show that the revenue is strictly increasing in
θ. When N = 1, we have revenue equivalence, and the revenue is independent of θ. It can be shown that
the holding probability of a regular buyer is independent of θ.
Note that when θ = 1 (i.e. the first-price auctions), the speculator has the highest holding probability,

and the auction outcome is the least effi cient among all θ > 0, but has the highest revenue. The revenue
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ranking result reflects the well-known trade-off between revenue and effi ciency.
Although our focus is on revenue comparisons, it is still important to establish certain results in the

equilibrium bidding behavior. For θ > 0, bidding behavior in θ−hybrid auctions with speculative resale is
similar to that in first-price auctions with resale, which has been examined, and characterized in Cheng and
Tan (2014). For more detailed understanding about the equilibrium bidding strategy, we refer to that article.
Here we only adopt the tools there for the analysis of hybrid auctions and establish important equilibrium
properties related to the ranking results. Cheng and Tan (2014) also studied the optimal auctions in this
framework. However, the result here is not about optimal auctions, but rather the comparison of different
auctions given a reserve price.
Although the equilibrium with no bid revelation for hybrid auctions may involve impractical assumptions,

it is theoretically sound and possible to implement in principle. First, the resale auction does not require
the winner of the first stage auction to know the winning price to pay. Second, the winning price can be
announced after the end of the resale auction. Third, the buyers can commit to a pricing strategy in the
resale auction (mapping the winning bid to a reserve price) in the beginning. This leads to the same outcome
of the model. Fourth, the winning price can be randomly simulated so that the winner pays the simulated
price rather than the actual highest losing bid without affecting the equilibrium outcome of the model.
When there are two asymmetric buyers in an auction with resale, one weak, one strong, it has been

shown by Hafalir and Krishna (2008) that first-price auction yields higher revenue than the truthful bidding
equilibrium in the second-price auction with no reserve price (ρ = 0). In a two-bidder framework, Cheng and
Tan (2010) have provided rather extensive analysis of the revenue ranking result in the setting of weak-strong
pair of buyers.
Although we allow only one speculator, the auction revenue does not change when we have more specu-

lators. Hence our result remains the same when there are many speculators. We also expect the first-price
auction to be the dominant auction format when compared with other more general auctions.
It can be shown that the bidding behavior in our model is equivalent to that of a closely related common

value auction. This observation seems to bring up an interesting question. We know that for common value
auctions, the truthful bidding equilibrium in the second-price auction yields higher revenue than the first-
price auction equilibrium due to bid revelation (the Linkage Principle). There are two reasons why the result
is different here. First, our model starts with private values, and we have argued how the bid revelation has
no effect on the revenue ranking result. The associated common value auctions are endogenously determined,
and we are dealing with different common values when θ varies. Hence it is not surprising that we have
different results in our setting.

Section two describes the model, and provides preliminary results needed for equilibrium analysis. Section
three gives the equilibrium strategies when the speculator is absent or inactive. Section four deals with the
equilibrium bidding of a regular buyer when a speculator is actively bidding. Section five gives the ranking
result. Full equilibrium analysis is only given for pure strategies under no bid revelation in Section six.

2 Model and Preliminaries

We describe the model of hybrid auction with resale and speculation in section 2.1. Then we give explicit
expressions of the payoffs for symmetric strategies in section 2.2. We will describe the supermodularity
property for symmetric strategies in section 2.3.

2.1 Hybrid Auctions with Resale and Speculation

There are N regular symmetric buyers (referred to with a male pronoun) and one speculator1 (referred to
with a female pronoun) bidding for one object sold by the auctioneer (sometimes called the original seller
to distinguish from the seller in the resale market). Regular buyers have use value for the object, but the

1An earlier version allows several speculators. The speculators can be combined into one with no change in the outcome of
the equilibrium or the behavior of the regular buyers. For simplicity of exposition, we have only one speculator with no loss of
generality in our result.
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speculator has no use value for the object and participates in the auction only for resale. A regular buyer has
a use value distribution F (v) over [0, β], which is assumed to be C2 smooth2 . Let f(v) denote the density
function of F (.). We allow F (0) ≥ 0, so that F may have an atom at 0. Note that a speculator is a bidder
who has 0 use value for sure. A regular buyer may have 0 use value with a positive probability, but when
it occurs, it does not make him a speculator. It is convenient to use the notation F (.|v) = F (.)

F (v) for the
conditional distribution of F (.) if the use value has an upper bound v. The regular buyers are indexed by
i = 1, 2, ..., N.
We study θ−hybrid auctions with resale and speculation3 . It is a two-stage game. In the first stage, the

auctioneer sets a reserve price ρ for the speculator and regular buyers. A bid b is called fictitious if b < ρ or
b = 0. The highest bidder is the winner, and the winner pays

θb+ (1− θ)b(1),

where b is the winning bid, and b(1) is the highest losing bid or ρ when the highest losing bid is below ρ.
A winner of the auction in the first stage may sell to the losers in the second stage when it is profitable.

The seller in the resale stage chooses an optimal mechanism. By the revelation principle, we can assume
that the resale mechanism is a modified second-price auction with optimally chosen reserve prices. At the
end of the first-stage auction and before the beginning of the resale stage, the winning bid4 (the highest bid)
is announced. We will assume no discounting between the first stage and the second stage.
A bidding strategy of a regular buyer i is a random bid bi = bi(ṽ, ω̃). A regular buyer with use value

v uses random bid bi(v, ω̃), whose cumulative bid distribution function (c.d.f.) is denoted by Gi(v, .). We
let Hi(.), i = 1, 2, ..., N be the c.d.f. (of the marginal bid distribution) of a regular buyer i in the first
stage. By definition, Hi(.) is weakly increasing, continuous from the right. We assume Hi(.) is C1 smooth
(or piecewise smooth) wherever it is continuous in [ρ, β]. There may be atoms for Hi(.) so that a bid at ρ
or above may have positive probability of being used by buyer i. Let φi(b) denote max{v : the support of
Gi(v, .) ≤ b}. The speculator uses a mixed strategy of bidding, represented by a c.d.f. H(b). We allow H(.)
to be degenerate at 0, or have an atom at fictitious as well as non-fictitious bids. By definition, H(b) is
weakly increasing, and continuous from the right. The speculator may become inactive over some interval,
and H(b) is a constant over such an interval. The support of H(b) may not be connected. Let b̄i,b¯ i

be the
maximum and minimum of the support of the bid distribution of regular buyer i above ρ, respectively. Let b

¯ sbe the minimum non-fictitious bid of the speculator if she is active in equilibrium. Let b0s be the minimum
bid of the support of H(.).
The winner of the first-stage auction, i.e. the seller in the resale auction, will revise his or her belief about

the losers’value distributions in the resale stage after observing all the bids submitted. When the speculator
or buyer i wins the first-stage auction with a bid b, and the observed bid is bj for buyer j, the updated belief
of the winner regarding the value distribution of a losing regular bidder j is Gj(.|bj) which has a support
bounded above by φj(bj). A losing bidder also updates his belief about the winner i as Gi(.|b). Updating of
belief of a losing bidder regarding other losing buyers is not needed when the winner uses an optimal auction
in the resale stage as he just bids truthfully during resale. Such revision of beliefs is common knowledge as
all bids are public information. The game in the resale auction is well-known, and we can summarize the
result of the resale auction by a profit function, so that we can focus on the first-stage bidding behavior
anticipating the optimal resale outcome in the second stage.

2We can allow F (.) to be piecewise C2 smooth. This is a more natural framework for the analysis, as the equilibrium strategy
in general is a maximum of two smooth functions. A typical example of a piecewise C2 smooth function is the maximum or
minimum of two smooth C2 functions. Formally a function is called piecewise C2 smooth if (i) it is C2 except at a countable
closed set D, (ii) At a point in D, the left and right derivatives (up to the second order) exist and are continuous from the right
and left respectively.

3Haile (2000,2001,2003) did the pioneering works on auctions with resale. However, in his models, resale arises out of new
information. Our models are fashioned along the lines of Hafalir and Krishna (2008), Garratt and Troger (2006), Cheng and
Tan (2010) and Lebrun (2010), in which there is an incentive for resale due to asymmetry between buyers in the first stage
auction. Second-price auctions with resale are studied in Pagnozzi (2007,2010), Garratt, Tröger, and Zheng (2009), Lebrun
(2012).

4For the second-price auction with N > 1, the model is studied separately elsewhere. For θ ∈ (0, 1), the revelation of the
highest losing bid may not allow any strictly increasing pure strategy equilibrium. Since the winner pays the expected second
highest price, this payment can be generated stochastically, without informing the winner the actual second highest price.
Another alternative is to assume that the resale trade is planned ahead of time without knowing the actual winning price.
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To define an equilibrium strategy of the auction with resale, we shall focus on the bidding strategies in
the first stage, taking the anticipated outcome of the second-stage as given. Let σ denote the strategy profile
H(.), bi(., .), i = 1, 2, ...N, in the first stage. First consider the objective of the speculator’s bidding behavior.
If the speculator is the winner of the first-stage auction, the expected payment after winning at the bid b
and observing the highest losing bid b1,is

xs(b, b1, σ−s) = θb

N∏
i=1

Hi(b) + (1− θ) max(b1, ρ).

and the (unconditional) expected payment is

xs(b, σ−s) = θb

N∏
i=1

Hi(b) + (1− θ)Emax(b1, ρ)

with the expectation over the distribution of the highest losing bid. If only the winning bid is announced,
we have

xs(b, σ−s) = θb

N∏
i=1

Hi(b) + (1− θ)
∫ b

0

max(ρ, y)d

(
N∏
i=1

Hi(y)

)
The speculator has zero payoff during resale if she loses the first-stage auction. If she wins, let πs(b, σ−s)
denote the optimal (unconditional) expected revenue of the speculator during the resale stage. The speculator
chooses b to maximize the overall expected profit

us(b, σ) = πs(b, σ−s)− xs(b, σ−s).

Given σ, we say that b is an optimal bid for the speculator if b is an optimal solution of the above maximization
problem. Since the speculator uses a mixed strategy, all bids in the support of the equilibrium bid distribution
H(b) must yield the same payoff to the speculator.

Now we consider a regular buyer’s objective function. When a regular buyer i with use value vi wins the
first-stage auction with the bid b, the expected payment with the highest losing bid b1 is

xi(b, b1, σ−i) = θbH(b)
∏
j 6=i

Hj(b) + (1− θ) max(b1, ρ),

and the (unconditional) expected payment for the object is

xi(b, σ−i) = θbH(b)
∏
j 6=i

Hj(b) + (1− θ)Emax(b1, ρ).

When only the winning bid is announced, we have

xi(b, σ−i) = θbH(b)
∏
j 6=i

Hj(b) + (1− θ)
∫ b

0

max(ρ, y)d

H(b)
∏
j 6=i

Hj(y)

 .

Let
π1i(vi, b, σ−i) = viH(b)

∏
j 6=i

Hj(b)− xi(b, σ−i).

be his payoff in the first-stage auction. The updating of information is similar. Buyer i may sell the object
to buyer j during the resale stage if φj(b) > vi. Let πwi(vi, b, σ−i) be his (unconditional) expected payoff in
the resale market after winning.
If buyer i loses the auction, and the winner is the speculator or some regular buyer j with φj(b) < vi,

buyer i may bid for the object and buy it from the winner during resale. Since the winner will use the
winning bid and the bidding strategy of the losing buyer i in this case to update belief and determine the
reserve price, the payoff of buyer i after losing the auction will depend not only on the strategy profile of
the other buyers, but also on his own choice of the bidding strategy. When resale fails to materialize after a
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winner wins the object in the first stage, the winner keeps the object. Let πli(vi, b, σ) be his (unconditional)
expected payoff in the resale market after losing. Then the overall payoff from bidding b is

ui(vi, b, σ) = π1i(vi, b, σ−i) + πwi(vi, b, σ−i) + πli(vi, b, σ). (1)

When all regular buyers use the same bidding strategy, and only the winning bid is announced, more explicit
formulas for the payoffs are given below. Buyer i chooses b to maximize ui(vi, b, σ) in (1). We say that b is
an optimal or equilibrium bid for the regular buyer i with use value vi if it is a solution to the maximization
problem. We say that σ = (H(.), bi(., .)) is a perfect Bayesian equilibrium of the auction with resale if (i)
for the speculator, any bid b in the support of H(.) is an optimal bid, (ii) for each regular buyer i with value
vi, any bid b in the support of Gi(vi, .) is an optimal bid maximizing (1).
A perfect Bayesian equilibrium of the auction with resale should describe strategies in both stages of

the game. For convenience, we shall abuse the language somewhat and refer to σ as a perfect Bayesian
equilibrium. We say that the equilibrium has symmetry property if all regular buyers have the same bid
distribution G(v, .) for all v.. When symmetry holds, the equilibrium strategy of a regular buyer will be
denoted by one single bidding strategy. We say that the speculator is inactive in equilibrium if she submits
fictitious bids for sure, otherwise we say that she is active in equilibrium. We take the convention that
when the speculator is inactive in equilibrium, she bids 0 for sure (although bidding below ρ yields the same
outcome). We also take the convention that regular buyers with v < ρ all bid 0.

2.2 Payoffs Under Symmetry

When the symmetry property holds, the resale auction by the speculator is a symmetric auction with a single
reserve price. We will write down the detailed payoff expression in this case when the bidding strategy is a
pure strategy and only the winning bid is announced. It is convenient for the presentation to assume that
the virtual value is increasing, so that there is a unique optimal reserve price in the resale stage. Let

J(x,w) = x− F (w)− F (x)

f(x)
, 0 ≤ x ≤ w ≤ β.

denote the conditional virtual value at x when the buyer value upper bound is w. If J(x, β) is strictly
increasing in x, then J(x,w) is also strictly increasing for all w. If the seller has use value v0, the optimal
reserve price r(v0, w) conditioned on the upper bound w is determined by the solution of the following
equation in x

J(x,w) = v0.

We let v0 = 0 when the seller is the speculator. The increasing virtual value property of J(x, β) is made to
insure the uniqueness of the optimal reserve price. When the seller is the speculator, we may also use the
simpler notation r(w), or r(v) when w = v. This optimal reserve price r(v) is independent of the number of
buyers, and satisfies the following equation

r(v)f(r(v)) + F (r(v)) = F (v). (2)

Note also that we have r(v) < v for all v > 0.

When a speculator sells to N regular buyers with the value distribution F (.|v), the optimal revenue,
according to Myerson (1981), is given by

B(v) =

∫ v

r(v)

J(x, v)dFN (x|v) =
N

FN (v)

∫ v

r(v)

[xf(x) + F (x)− F (v]FN−1(x)dx. (3)

We shall call this the revenue function of the speculator. When N = 1, we have B(v) = r(v)(1 −
F (r(v))
F (v) ), Bt(v) = r(v). The function B(.) is not defined at v = 0, but we can let B(0) = 0, which will
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make B(v) a continuous function over [0, β]. A regular buyer with use value z ≤ v contributes the following
revenue in the optimal auction to the speculator

br(v)(z) = z −
∫ z

r(v)

FN−1(x|z)dx.

Let

Bt(v) = br(v)(v) = v −
∫ v

r(v)

FN−1(x|v)dx.

We have the following useful alternative formula, by the revenue equivalence theorem, for B(v) :

B(v) =

∫ v

0

br(v)(x)dFN (x|v) =

∫ v

0

Bt(x)dFN (x|v). (4)

The speculator’s objective function for b ≥ ρ is

us(b, φ) = [B(φ(b))− θb]FN (φ(b))− (1− θ)
[
ρFN (ρ) +

∫ b

ρ

ydFN (φ(y))

]
. (5)

Without the speculator and without resale, N > 1, the payoff function of a regular buyer can be written
as

u0(vi, b, φ) = FN−1(φ(b))vi − xi(b, φ). (6)

To write the explicit payoffs for a regular buyer when there is a speculator, we divide into two cases.

Case 1) (over bidding) vi ≤ φ(b).
In this case, when the regular buyer wins, he sets the optimal reserve price r(vi, φ(b)). The payoff is

u1i(vi, b, σ) + πwi(vi, b, σ)

= viH(b)FN−1(φ(b))− xi(b, σ−i) +H(b)

∫ φ(b)

r(vi,φ(b))

(J(x, φ(b))− vi)dFN−1(x|φ(b)). (7)

When the buyer loses the auction, there is positive payoff after losing only if the speculator wins. When
the speculator wins the first-stage auction with a bid y, the optimal reserve price set by her during resale is
r(φ(y)). Let

ỹ(vi) = b(r−1(vi)), when vi < r(β),

= b̄s, when vi ≥ r(β).

This is the highest winning bid of the speculator at which the buyer may buy from her during resale. Since
r−1(vi) > vi, when vi ∈ (0, r(β)), we have ỹ(vi) > b(vi) for all vi ∈ (0, β). When buyer i bids b ≥ ỹ(vi),
πli(vi, b, σ) = 0 as any winner will set a reserve price above his use value. We have ui(vi, b, σ) given by (7).
When b ∈ [b(vi), ỹ(vi)), we have πli(vi, b, σ) = πlis(vi, b, σ), given by

πlis(vi, b, σ) =

∫ ỹ(vi)

b

(∫ vi

r(φ(y))

FN−1(x)dx

)
dH(y). (8)

Hence, ui(vi, b, σ) is given by the sum of (7) and (8).

Case 2) (under bidding) vi > φ(b).
There is zero payoff from resale after winning the first-stage auction (πwi(vi, b, σ) = 0), but there is payoff

after losing. If N > 1, the winner of the first-stage auction may be a regular buyer. The winner believes
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that he has the highest value, and is indifferent between no resale or offering it for resale at the price equal
to his own value. Hence the payoff after losing, then buying from a regular buyer, denoted by πli0(vi, b, σ),
is either zero, or given by

πli0(vi, b, σ) =

∫ b(vi)

b

(vi − φ(y))H(y)dFN−1(φ(y)). (9)

If the regular buyer i deviates to a bid bi < bi(vi), and loses the auction to a speculator with the winning
bid y > b, the speculator sets the optimal reserve price r(φ(y)) based on her updated belief. When
y ∈ [b(vi), ỹ(vi)), the payoff during resale buying from the speculator is given by∫ ỹ(vi)

b(vi)

(∫ vi

r(φ(y))

FN−1(x)dx

)
dH(y) (10)

When y ∈ (b, b(vi)), the payoff of the regular buyer buying from the speculator during resale is∫ b(vi)

b

(
(v − r(φ(y)))FN−1(r(φ(y))) +

∫ φ(y)

r(φ(y))

(v − x)dFN−1(x)

)
dH(y).

From integration by parts, it can be written as∫ b(vi)

b

(
(v − φ(y))FN−1(φ(y)) +

∫ φ(y)

r(φ(y))

FN−1(x)dx

)
dH(y). (11)

The expected payoff after losing, then buying from a speculator, is the sum of (10) and (11) is given by

πlis(vi, b, σ) =

∫ b(vi)

b

(v − φ(y))FN−1(φ(y))dH(y) +

∫ ỹ(vi)

b

(∫ min(vi,φ(y))

r(φ(y))

FN−1(x)dx

)
dH(y). (12)

Hence, we have
πli(vi, b, σ) = πlis(vi, b, σ) + πli0(vi, b, σ). (13)

and the total payoff expression

ui(vi, b, σ) = viH(b)FN−1(φ(b))− xi(b, σ−i) + πli(vi, b, σ).

2.3 Supermodularity Property

Let ∂
∂b+

, ∂
∂b−

denote the partial derivatives from the right, or left respectively. We say that the payoff
function has the supermodularity property in the strong form at (vi, b) if

∂

∂b+(−)

∂

∂vi
u(vi, b, σ) > 0. (14)

It has the supermodularity in the weak form at (vi, b) if

∂

∂b+(−)

∂

∂vi
u(vi, b, σ) ≥ 0. (15)

When there is no speculator, and no resale allowed, we have

∂

∂vi
u0(vi, b, φ) = FN−1(φ(b)).

8



Notice that ∂
∂vi

u0(vi, b, φ) is the winning probability of a regular buyer with value vi bidding b, hence

∂

∂b

∂

∂vi
u(vi, b, σ) =

∂

∂b
FN−1(φ(b)) > 0,

and we have the supermodularity property in the strong form.

We can now prove the supermodularity property from Lemma 5. The proof is similar to the case of the
first-price auction in Cheng and Tan (2014).

Theorem 1 If the regular buyers use the same increasing strategies, then the supermodularity property in
the strong form (14) holds when H(b) > 0, β > φ(b) ≥ vi > ρ. Otherwise, the weak form (15) holds.

In the auction without speculator or resale, the supermodularity property always holds in the strong
form. The above supermodularity property is a little weaker, but is suffi cient for the first-order condition
∂
∂bu(vi, b, σ)|b=b(vi) = 0 to yield the optimality property for the strategy b(vi).

3 Equilibrium with No Speculator

In this section, we consider first the case when there is no speculator, but resale is allowed. We will deal
with the case of no bid revelation, and the regular buyers use pure bidding strategies. The hybrid auctions
have a simple equilibrium strategy.

Theorem 2 Let the first-stage auction be the θ−hybrid auction and there is no speculator, and no resale.
Let ρ < β be the reserve price and N > 1. Then the equilibrium is unique and is given by

b∗θ(v) = v −
∫ v

ρ

F
N−1
θ (x|v)dx =

∫ v

ρ

xdF
N−1
θ (x|v). (16)

The equilibrium strategy b∗θ(v) is strictly decreasing in θ at all v > 0.

Proof. The first-order condition of an optimal bid is

(N − 1)f(φ(b))

F (φ(b))
φ′(b) =

θ

φ(b)− b , (17)

or
d

db
lnF

N−1
θ (φ(b)) =

1

φ(b)− b ,

and we get the unique solution (16) under the boundary condition φ(ρ) = ρ.

It is convenient to write the first-order condition (17) in variable v, written as

b′(v) =
(N − 1)f(v)

θF (v)
(v − b(v)) (18)

This is also the first-order condition in an interval in which the speculator is not active. The equilibrium
strategy depends on both ρ, θ, and will be denoted by b∗ρ(.), b

∗
θ(.), or depending on which variables need to

be emphasized.

Under the symmetry assumption, we can easily show that the first-order condition without the speculator
but allowing resale is the same as that of the model with no resale. Combine this with the supermodularity
property, and we know that equilibrium must be unique in a model without a speculator but allowing resale.

9



Theorem 3 If there is no speculator, the symmetric equilibrium with resale is unique and is the same as
the one without resale given by Theorem (2).

Proof. When resale is allowed, but there is no speculator (or H(0) = 1), we can write the payoff of a regular

buyer i with value v bidding b, φ(b) < v, as

ui(v, b, φ) = u1i(v, b, φ) + πli0,

and we have the first-order condition

∂

∂b
ui(v, b, φ)|b=b(v) =

∂

∂b
u1i(v, b, φ)|b=b(v) = 0. (19)

When φ(b) ≥ v, we have

u(v, b, φ) = u1i(v, b, φ) +

∫ φ(b)

r(v,φ(b))

(J(x, φ(b))− v)dFN−1(x|φ(b)),

and we have the same first-order condition (19). Therefore if we allow resale with no speculator, the first-
order condition of an equilibrium is the same as that of a model with no speculator and no resale. From
the supermodularity property in the Appendix, the equilibrium with resale is the same as the equilibrium
without resale.

Note that the equilibrium bidding strategy of a hybrid auction is decreasing in θ. When θ → 0, we have
b∗θ(v)→ v. Thus we have truthful bidding in second-price auctions. Although the buyers bid higher when θ
is lower, the expected payment after winning remains the same. This is the result of the revenue equivalence
theorem. Therefore the revenue is independent of θ.

4 Equilibrium Condition of the Speculator

Here we also deal with the case of no bid revelation, and the regular buyers use pure bidding strategies. This
framework gives us a better understanding of how regular buyers bid with the presence of a actively bidding
speculator.
Let φ(.) be the inverse equilibrium strategy of the regular buyers. After winning the auction bidding

b, the speculator sells to N regular buyers with the value distribution F (.|φ(b)) in the resale market. The
speculator profit, given the regular buyer’s inverse bidding strategy φ(.), can be written as

us(b, φ) = FN (φ(b))B(φ(b))− xs(b, φ).

Equilibrium profit for the speculator bidding b in the support of the H(.) must be a constant independent
of b. It has been shown that when the first-stage auction is a first-price auction, the speculator makes zero
profit in equilibrium. The same proof for the first-price auction also applies to the θ−hybrid auction, θ > 0.
See the proof in Cheng and Tan (2014). We state it as a lemma for easy reference.

Lemma 1 In any symmetric equilibrium, the speculator makes zero expected profit, and H(b) > 0 for all
non-fictitous bid b.

10



When θ > 0, v ≥ ρ, v > 0, define

Bθ(v) = B(ρ)F
N
θ (ρ|v) +

∫ v

ρ

Bt(x)dF
N
θ (x|v) = Bt(v)− (Bt(ρ)−B(ρ))F

N
θ (ρ|v)−

∫ v

ρ

F
N
θ (x|v)dBt(x).

We have Bθ(v) < Bt(v), for all v > 0. The function Bθ(v) is strictly decreasing in θ at any v > 0. When
ρ = 0, we let Bθ(0) = 0, then Bθ(v) is a continuous function on [0,∞) for all θ > 0, and Bθ(v) = B(v). The
following lemma gives the derivative of the function Bθ(v). Note that Bθ(.), ηθ(.) depend on ρ as well.

Lemma 2 We have

B′θ(v) =
Nf(v)

θF (v)
(Bt(v)−Bθ(v)) > 0 at all v > 0. (20)

Proof. Since

Bθ(v) =
1

F
N
θ (v)

[
B(ρ)F

N
θ (ρ) +

∫ v

ρ

Bt(x)dF
N
θ (x)

]
,

we have

Bθ(v) =
Nf(v)

θF (v)
Bt(v)− Nf(v)

θF
N
θ +1(v)

[
B(ρ)F

N
θ (ρ)−

∫ v

ρ

F
N
θ (x)dBt(x)

]
=
Nf(v)

θF (v)

(
Bt(v)−Bθ(v)

)
. (21)

The main usefulness of the function Bθ(.) is due to the following property. Let ηθ(.) be the inverse
function of Bθ(.).

Lemma 3 If the regular buyers use the bidding strategy Bθ(.), then a speculator bidding in the range of Bθ(.)
makes zero expected profit.

Proof. The expected profit of the speculator bidding b after winning is

B(ηθ(b))− xs(b, ηθ) = B(ηθ(b))− θb−
1− θ

FN (ηθ(b))

[
B(ρ)FN (ρ) +

∫ b

ρ

ydFN (ηθ(y))

]
(22)

Change to the variable v = ηθ(b), we have the expression of the right-hand side of (22) in v :

K(v) = B(v)− θBθ(v)− 1− θ
FN (v)

[
B(ρ)FN (ρ) +

∫ v

ρ

Bθ(x)dFN (x)

]
. (23)

We want to show that the expression in (22) is equal to 0. This is equivalent to showing K(v) = 0 for all
v ≥ ρ. Taking the derivative of (23) with respect to v, we get

K ′(v) = B′(v)− θB′θ(v)− 1− θ
FN (v)

NFN−1(v)f(v)Bθ(v) +
1− θ

FN+1(v)
Nf(v)

[
ρFN (ρ) +

∫ v

ρ

Bθ(x)dFN (x)

]
=
Nf(v)

F (v)
[Bθ(v)−B(v)]− (1− θ)Nf(v)

F (v)
Bθ(v) +

Nf(v)

F (v)
[B(v)− θBθ(v)]

=
Nf(v)

F (v)
[Bθ(v)−B(v)]− Nf(v)

F (v)
[Bθ(v)−B(v)] = 0.

Since K(ρ) = 0, we have K(v) = 0 for all v. The proof is complete.

The following example illustrates the function Bθ(v) for the case N = 1, F (v) = v, ρ = 0.

Example 1 There is one speculator, one regular buyer with the use value distribution F (v) = v. Let ρ = 0.
We have

Bθ(v) =
1

v1/θ

∫ v

0

Bt(x)dx1/θ,

where Bt(v) = r(v) = v
2 . Hence

Bθ(v) =
v

2(1 + θ)
.
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5 Revenue Ranking

In Myerson (1981), one main idea is the relationship between the equilibrium payoff of a buyer and the
equilibrium winning probabilities. We reinterpret the winning probabilities as the holding probabilities at
the end of the second stage in the auction with resale, and establish the new expressions between the payoffs
and the winning probabilities.
For symmetric strategies, the holding probabilities can be easily calculated when the regular buyers use

pure strategies, and only the winning bid is announced. This is what we do in this section. When all the bids
are announced, and the regular buyers adopt mixed strategies to avoid the revelation of new information
after losing, then the calculations here are valid only if the updated belief is given by G(., b1) = F (.|φ(b1))
after observing the losing bid b1 or at least the same beyond x ≥ r(φ(b1)) so that there is no difference in
the resale revenue. If we can prove that in equilibrium, this is correct, then we will have only one auctioneer
revenue which is independent of the bid revelation policy. The conjecture is that it is indeed an equilibrium
property, as intuitively, it is best for the buyers to use mixed bidding to hide information without hurting the
incentive properties, and that means that either no new information information is revealed in equilibrium,
or that whatever revealed information makes no difference in the equilibrium outcome. For example, if we
announce only the lower losing bids (not the highest losing bid), then that information makes no difference
in the equilibrium outcome.
LetQi1(vi, b, σ) be the probability of winning in the first-stage auction, but failing to resell, andQi2(vi, b, σ)

be the probability of losing in the first-stage auction, but winning back during resale. Define the holding
probability as the sum Qi1(vi, b, σ) +Qi2(vi, b, σ). The following is the Myerson Lemma in our model. It has
been proved in Cheng and Tan (2014) for the case of first-price auctions. The proof for the hybrid auctions
is similar.

Lemma 4 We have
∂

∂vi
ui(vi, b, σ) = Qi1(vi, b, σ) +Qi2(vi, b, σ).

From the above lemma, we have the following immediate corollary.

Lemma 5 In equilibrium, we have

∂

∂vi
ui(vi, b, σ)|b=b(vi) = H(ỹ(vi))F

N−1(vi).

Proof. By definition, we have

Qi1(vi, b, σ)|b=b(vi) = H(b)FN−1(vi). (24)

The probability of losing to a speculator in the first stage, then buying it back is

Qi2(vi, b, σ)|b=b(vi) = FN−1(vi)(H(ỹ(vi))−H(b)) (25)

The sum of (24) and (25) gives us the result by Lemma 4.

In this model of speculative resale, we will establish the revenue formula similar to that of Myerson (1981)
with some natural adjustments needed. Although regular buyers make payments to both the auctioneer and
the speculator, all revenue ends up in the hands of the auctioneer as the speculator makes zero profit in
equilibrium. From Lemma 5, and the envelop theorem, we have the following formula of the equilibrium
payoff of a regular buyer. Let σ = (H, b) be the equilibrium strategy profile, and U(v) = u(v, b(v), σ) be the
equilibrium payoff of a regular buyer with use value v. Recall the definition of the function ỹ(.) in (??).

Lemma 6 The equilibrium payoff of a regular buyer is given by

U(v) =

∫ v

ρ

H(ỹ(x))FN−1(x)dx.
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The following revenue formula is derived from Lemma 6.

Theorem 4 Let ρ ≥ 0 be the reserve price. We have the following equilibrium revenue formula

R(θ) =

∫ β

ρ

Hθ(ỹ(x))J(x, β)dFN (x). (26)

Proof. Let t(x) = H(ỹ(x)) in the following computations. By Lemma 6, we must have the following
expected contribution of revenue from a regular buyer with value v

FN−1(v)t(v)v −
∫ v

ρ

FN−1(x)t(x)dx.

Hence the expected revenue of the auction with resale is given by

N

∫ β

ρ

(
FN−1(v)t(v)v −

∫ v

ρ

FN−1(x)t(x)dx

)
dF (v)

=

∫ β

ρ

t(v)vdFN (v)−N
∫ β

ρ

(∫ v

ρ

FN−1(x)t(x)dx

)
dF (v)

=

∫ β

ρ

t(v)vdFN (v)−N
∫ β

ρ

t(x)FN−1(x)

(∫ β

x

dF (v)

)
dx

=

∫ β

ρ

t(v)vdFN (v)−N
∫ β

ρ

t(x)(1− F (x))FN−1(x)dx

=

∫ β

ρ

t(x)xdFN (x)−
∫ β

ρ

t(x)(
1− F (x)

f(x)
)dFN (x) =

∫ β

ρ

t(x)J(x, β)dFN (x).

This proves the theorem.

We now apply Theorem 4 to obtain the revenue ranking result of the paper. First we consider the case
N = 1. In this case, the speculator is fully active in equilibrium for all θ > 0. We will show that the revenue
is independent of θ, so that there is revenue equivalence for all hybrid auctions. If we adopt the equilibrium
r(v) strategy for the second-price auction, revenue equivalence applies to all θ ≥ 0. Revenue equivalence
holds only for the case N = 1. When N > 1, the revenue is strictly increasing in θ. This is our main result.

Theorem 5 If N = 1, we have revenue equivalence for all θ−hybrid auctions, θ > 0. If N > 1, the revenue
is strictly increasing in θ.

Proof. When N = 1, the speculator is fully active in equilibrium. We have

H̃θ(v) = F (v),

and
Hθ(ỹ(v)) = Hθ(b(r

−1(v))) = H̃θ(r
−1(v)) = F (r−1(v)).

when v ≤ r(β), and Hθ(ỹ(v)) = 1 when v > r(β).Hence

R(θ) =

∫ r(β)

ρ

F (r−1(x))J(x, β)dF (x) +

∫ β

r(β)

J(x, β)dF (x)

when ρ ≤ r(β), and

R(θ) =

∫ β

ρ

J(x, β)dF (x)
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when ρ > r(β). The revenue is therefore independent of θ. If N > 1, the revenue is given by

R(θ) =

∫ β

ρ

Hθ(ỹ(x))J(x, β)dFN (x) =

∫ r(β)

ρ

H̃θ(r
−1(x))J(x, β)dFN (x) +

∫ β

r(β)

J(x, β)dFN (x).

Note that the holding probability of a regular buyer is smaller when θ is higher, as a regular buyer bids
lower. The speculator becomes more active in bidding, and wins with higher probability. This means that
the speculator holds the object more often, and the holding probability of a regular buyer is lower. Since
the function H̃θ(v) is strictly decreasing in θ, and J(x, β) < 0 in the first term on the right, we know R(θ)
is strictly increasing in θ.

Corollary 6 If N > 1, the first-price auction yields strictly higher revenue than the second-price auction

The following example illustrates the revenue equivalence for the uniform distribution case when N = 1.

Example 2 There is one speculator, one regular buyer with the use value distribution F (v) = v. Let ρ = 0.
The equilibrium bidding strategy of a regular buyer is given by

Bθ(v) =
v

2θ + 2
.

We have
H̃θ(v) = Hθ(Bθ(v)) = v.

Therefore H̃θ(v) is independent of θ. The revenue is given by∫ 1
2

0

2x(2x− 1)dx+

∫ 0

1
2

(2x− 1)dx =
1

6
.

Note that the optimal bid of a regular buyer is decreasing in θ. However the expected payment of a regular
buyer with value v is always B(v), and so is the expected payment of the speculator. We therefore have the
revenue equivalence for all θ.

The revenue equivalence is no longer true when N > 1. This is because the regular buyers with use value
v < r(β) have higher holding probability when θ is lower. Since the marginal revenue J(x, β) is negative,
this leads to a lower revenue for the original seller according to the revenue formula. Another good intuition
is that as θ becomes lower, the speculator is less active in equilibrium. Thus regular buyers have higher
holding probabilities, and higher equilibrium payoffs, hence they contribute less revenue to the original seller
in equilibrium. The speculator has zero payoff, and she affects the revenue by making it more diffi cult for
the regular buyers to win the object. The following example illustrates the ranking result.

Example 3 There are two regular buyers, and one speculator. Let the regular buyer’s use value distribution
be

F (v) = 0.5(1 + v2) over [0, 1].

Let ρ = 0. First we compute the equilibrium without the speculator. We have

b∗ρ(v) = v − 21/θ

(1 + v2)1/θ

∫ v

0

(
1 + x2

2
)1/θdx =

∫ v

0

xdF 1/θ(x|v).

When θ = 1, the strategy is

b∗ρ(v) =
2

3

v3

v2 + 1
,
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and this is the equilibrium bidding strategy of the regular buyers in the first-price auction without the specu-
lator. The revenue is∫ 1

0

2

3

v3

v2 + 1
d(

1 + v2

2
)2 =

∫ 1

0

4

3

v4

v2 + 1
(
1 + v2

2
)dv =

2

15
= 0.133 333

This is also the revenue of the truthful equilibrium in the second-price auction with a speculator. The virtual
value is

J(x, β) = x− 1− 0.5(1 + x2)

x
=

1

2x
(3x2 − 1).

The optimal reserve price for revenue during resale is given by r(v) = v√
3
. We can compute the revenue of

the first-price auction with a speculator by the formula∫ 1√
3

0

H̃(
√

3x)J(x, 1)dF 2(x) +

∫ 1

1√
3

J(x, 1)dF 2(x) = 0.140 539 7.

The revenue is larger than that of the second-price auction with a speculator.

6 Equilibrium Analysis

It is possible to have an explicit solution of the equilibrium bidding strategy profile and Hθ(.). Here we show
how the equilibrium is analyzed. The main ideas for our analysis is very similar to that of the first-price
auctions with resale in Cheng and Tan (2014). We show that the equilibrium profit of the speculator is 0.
This determines the equilibrium strategy bθ(v) of the regular buyers over the active intervals. For inactive
intervals, the first-order condition is identical to the one without the speculator, and is determined from
the boundary condition. The speculator bid distribution is determined by the first-order condition of the
regular buyer’s optimal bid. This gives rise to a simple solution of the bid distribution Hθ(b). Therefore the
equilibrium is uniquely determined when the active or inactive intervals are uniquely determined. We then
show that both bθ(v), Hθ(v) are strictly decreasing in θ for v > 0.
We say that the speculator is fully active in equilibrium if the support of H(.) is the same as that of the

equilibrium bid distribution of a regular buyer. In equilibrium, the speculator typically bids only in certain
intervals with positive probability. To define an interval in which the speculator is active, we say that a bid
interval [a1, a2] is an active interval if H ′(.) > 0 in the interval a.e. (everywhere, i.e. except a closed set
of measure 0. A maximal active interval is a closed active interval which is not a proper subset of another
closed active interval. A maximal active interval is simply a maximal connected component of the support
of H(.).When [a1, a2] is a maximal active interval, we say that a1 is the beginning of an active interval, and
a2 is the end of an active interval. An interval [a1, a2] is inactive if it contains no active intervals. This is
the same as saying H(.) is constant over the interval. Since most of our functions are defined in the space of
use values, It is convenient to call an interval [z1, z2] of use values an active interval if [Bθ(z1), Bθ(z1)] is an
active interval of bids. Since we know Bθ(.) must be the equilibrium bidding strategy over an active interval
[z1, z2], an active value interval is simply the value-types of a regular buyer who bids inside an active bid
interval in equilibrium. A maximal value interval can be similarly defined, so are the beginning and end of
an active value interval, and the inactive intervals.

6.1 Equilibrium Conditions for the Regular Buyers

Let N > 1, ρ > 0. If the speculator is active in equilibrium, let a(ρ) = min{b : b ≥ ρ, and b is in the support
of H(.)} be the minimum non-fictious bid a(ρ). The following lemma says we must have α(ρ) > ρ, and
regular buyers with value between ρ and a(ρ) bid as if there is no speculator.
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Lemma 7 Let θ > 0, ρ > 0, N > 1, and assume that the speculator is active in equilibrium Then we have
a(ρ) > ρ.

In principle a regular buyer with use value v ≤ ρ may be able to purchase from the winning speculator
during resale if the optimal reserve price r(φ(y)) is suffi ciently low. In this case, a regular buyer with use
value v ≤ ρ may have a positive winning probability. However, we will show that this is not possible in
equilibrium so that such regular buyers have zero winning probability. This result is actually needed for our
revenue formula in section 4.

Lemma 8 In equilibrium, we have: (i) A regular buyer with use value v < ρ bids below ρ, and has zero
holding probability; (ii) A regular buyer with use value v ≤ ρ has zero payoff.

The equilibrium condition for a regular buyer in inactive intervals is very similar to the equilibrium
condition with no speculator. It can be easily seen that in inactive intervals, (18) is also the first-order
condition of equilibrium. Therefore if the boundary condition is determined, then (18) uniquely determines
the bidding behavior of the regular buyers in inactive intervals. When we solve (18) with the initial condition
b(z) = b0 at z ≥ ρ, the solution is given by

b0F
N−1
θ (z|v) +

∫ v

z

xdF
N−1
θ (x|v),

for v ∈ [z, β]. We often take z to be either ρ, the beginning or the end of an active interval, and b0 = b(z).
In this case, we use the notation Cz(.) to denote the solution (27). When b0 = b(z) = Bθ(z), we have

Cz(v) = Bθ(z)F
N−1
θ (z|v) +

∫ v

z

xdF
N−1
θ (x|v). (27)

In a symmetric increasing equilibrium only the speculator will sell the object after winning it in the
first-stage auction. In determining whether the speculator is active or not, the two functions b∗ρ(.), Cz(.) can
be regarded as "cost functions" for the speculator because it is the cost needed to win the object to be able
to sell to N regular buyers with value distribution F (.|v). Note that Cz(v) is a strictly decreasing function
of θ, as F (z|v) > 1, F (x|v) < 1.

Another function closely related to Bt(v) is now introduced to simplify the first-order condition of equi-
librium. Let

Bc(v) = v −N
∫ v

r(v)

FN−1(x|v)dx.

Note that, by definition, we have
v −Bc(v) = N(v −Bt(v)). (28)

When N = 1, Bc(v) = Bt(v) = r(v).

The following gives the derivative of a regular buyer’s payoff with respect to b.

Lemma 9 We have the following derivative in active intervals for a regular buyer i with value v for b > ρ :

∂u(v, b, σ)

∂b
|v=φ(b) = H ′(b)FN−1(φ(b))Bt(φ(b))− ∂

∂b
x(b, σ−i) + vH(b)

∂FN−1(φ(b))

∂b
|v=φ(b). (29)

Proof. For the case 1) payoff expressions of section 2.1, we can take the derivative of (8) with respect to

b,and we have
∂

∂b
πli(v, b, σ)|v=φ(b) = −H ′(b)(v −Bt(φ(b)))FN−1(φ(b)). (30)
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Since J(φ(b), φ(b)) = v, J(r(v, φ(b)), φ(b)) = v, r(φ(b), φ(b)) = φ(b), from (7), with vi now denoted by v. we
have

∂uwi(v, b, σ)

∂b
|v=φ(b) = H ′(b)

∫ φ(b)

r(v,φ(b))

(J(x, φ(b))− v)dFN−1(x)|φ(b) = 0.

Hence taking the derivative with respect to b of

u(v, b, σ) = H(b)FN−1(φ(b))v − x(b, σ−i) + uwi(v, b, σ) + πli(v, b, σ)

at b = b(v), we get (29). For the case 2) with φ(b) < v, the term πli0 is either 0 or given by (9). Taking the
derivative with respect to b, we have

∂

∂b
πli0 =

∂

∂b

∫ b(v)

b

(v − φ(y))H(y)dFN−1(φ(y))|v=φ(b) = 0.

From (12), we have ∂
∂bπlis equal to (30). Thus the formula (29) holds in the this case as well.

For v in an active interval, let

L(v) =
Bc(v)−Bθ(v)

Bt(v)−Bθ(v)
; (31)

and for v in an inactive interval, let L(v) = 0. Let

L(b) = L(ηθ(b)).

When N = 1, we have Bc(v) = Bt(v), hence L(v) = 1. In general L(v) ≤ 1, and may take negative values.
When we want to express the dependence on θ, we use the notations Lθ(v), Lθ(v).

Lemma 10 For N > 1, in an active interval, the function Lθ(v) is a strictly increasing function of θ for
any v > 0.

Proof. By definition, we know Bt(v)−Bc(v) > 0 for v > 0. From Lemma ??, we also know Bt(v)−Bθ(v)

for v > 0. Note that

Lθ(v) =
Bc(v)−Bθ(v)

Bt(v)−Bθ(v)
< 1,

and Bθ(v) is decreasing in θ, hence

Bc(v)−Bθ(v)

Bt(v)−Bθ(v)
= 1− Bt(v)−Bc(v)

Bt(v)−Bθ(v)

is increasing in θ.

Let
H̃(v) = H(Bθ(v))

be the bid distribution of the speculator in variable v. For hybrid auctions, we further simplify the first-order
condition of a regular buyer as follows.

Lemma 11 For the θ−hybrid auction, the first-order condition of a regular buyer in an active interval is

H ′(b)

H(b)
= Lθ(b)

d

db
lnF (ηθ(b)), (32)

or
H̃ ′(v)

H̃(v)
= Lθ(v)

d

dv
(lnF (v)) (33)
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Proof. In active intervals, by Lemma 9, we rewrite the first-order condition by a change of variable to
v = φ(bi). We have

H̃ ′(v)

H̃(v)
FN−1(v)Bt(v) =

∂

∂v
xi(Bθ(v), σ−i)− vH̃(v)

d

dv
FN−1(v). (34)

Rewrite the payment rule in the variable v, we have

xi(Bθ(v), σ−i) = θBθ(v)FN−1(v)H̃(v) + (1− θ)
∫ v

0

Bθ(x)d(FN−1(x)H̃(x)),

hence we have

∂

∂v
xi(Bθ(v), σ−i) = θB′θ(v)FN−1(v)H̃(v) +Bθ(v)H̃(v)

d

dv
FN−1(v) +Bθ(v)FN−1(v)H̃ ′(v). (35)

From (34) and (35), we have

H̃ ′(v)

H̃(v)
FN−1(v)

(
Bt(v)−Bθ(v)

)
= θB′θ(v)FN−1(v)− (v −Bθ(v))

d

dv
FN−1(v)

= FN−1(v)

(
θB′θ(v)− (v −Bθ(v))

(N − 1)f(v)

F (v)

)
From Lemma 2, we have

H̃ ′(v)

H̃(v)

(
Bt(v)−Bθ(v)

)
=
Nf(v)

F (v)
(Bt(v)−Bθ(v))− (v −Bθ(v))

(N − 1)f(v)

F (v)

=
f(v)

F (v)

(
N(Bt(v)−Bθ(v))− (N − 1)(v −Bθ(v))

)
=
f(v)

F (v)

(
v −Bθ(v)−N(v −Bt(v))

)
=
f(v)

F (v)
(Bc(v)−Bθ(v)) ,

thus we have (33). We obtain (32) by a simple change of variable.

The following summarizes the first-order conditions of a regular buyer in active and inactive intervals.

Lemma 12 Let H(.), b(.) be an equilibrium strategy profile, φ(.) = b−1(.). In inactive intervals, we have

∂u0(v, b, φ)

∂b
(v, b, φ)|v=φ(b) = 0, b > ρ. (36)

In active intervals, we have φ(b) = ηθ(b),

H ′(b)

H(b)
= Lθ(b)

d

db
lnF (ηθ(b)). (37)

The following is an immediate implication of Lemma 12.
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Lemma 13 In an active open interval I of the speculator, we must have Lθ(b) > 0, a.e. or equivalently
Bc(v) > Bθ(v) in the active interval ηθ(I) a.e.

The following result states that the active and inactive intervals are uniquely determined, so that there
is only one equilibrium which has the symmetry property.

Theorem 7 (i) The collection of maximal active and inactive intervals are uniquely determined. (ii) There
can only be one equilibrium which satisfies the symmetry property.

Proof of Theorem 7:
Let b(.) be the equilibrium bidding strategy of a regular buyer. When N = 1, the speculator is fully

active, hence we must have b(.) = Bθ(.). We now assume N > 1. By Lemma 19, the active and inactive
intervals are uniquely determined. It is suffi cient to show that b(.) is uniquely determined in all active or
inactive intervals. In active intervals, we must have b(.) = Bθ(.), hence it is unique in active intervals.
Let [z1, z2] be any maximal inactive interval. We have b(z1) = B(z1). let Cz1(.) be defined by the initial
condition Cz1(z1) = Bθ(z1), and we must have b(.) = Cz1(.) in [z1, z2]. Hence we have shown that b(.) is
uniquely determined in inactive intervals as well. Thus the bidding strategy of a regular buyer is uniquely
determined. Now we want to show that H(.) is also uniquely determined. Since the active intervals are
uniquely determined, the maximum bid b∗s of the speculator is uniquely determined. Hence we have the
boundary condition H(b∗s) = 1 for H(.). The function H(.) satisfies the differential equation stated in
Lemma 12 in any active interval. The differential equation is the same for any equilibrium. The function
H(.) stays constant on inactive intervals. Hence H(.) must be uniquely determined, as long as the active
and inactive intervals are uniquely determined. The proof is complete.

6.2 Equilibrium Strategy

We are now ready to state the unique symmetric equilibrium of the model. The case N = 1 is a special
interest.

Theorem 8 Let N = 1, θ > 0. If ρ = 0, the speculator is fully active in equilibrium. The equilibrium strategy
b(.) of the regular buyer is given by

b(v) = Bθ(v), (38)

The speculator’s equilibrium bid distribution is given by

H̄(b) = F (ηθ(y)), b ∈ [0, Bθ(β)]. (39)

If ρ > 0, we have (38) for v ≥ ηθ(ρ), b(v) = ρ for all v ∈ [ρ, ηθ(ρ))], and H̄(.) is given by (39) for b ≥ ρ,
H̄(0) = H̄(ρ).

Proof. When N = 1, Lθ(v) = 1. The first-order condition of a regular bidder, by Lemma 12, is

H
′
(b)

H(b)
=

d

db
lnH(b) =

d

db
lnF (ηθ(b)), (40)

with the boundary condition H(ηθ(β)) = 1. Hence we get H̄(.) given in the lemma.

The following gives a simple characterization of the equilibrium bidding strategy profile in our model.
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Theorem 9 Let N > 1. In an active interval, the equilibrium strategy of the regular buyers in a θ−hybrid
auction, θ > 0, is given by

b(v) = Bθ(v).

In a maximal inactive interval [z, z′], it is given by

b(v) = Cz(v), (41)

where Cz(.) = b∗ρ(.) when z = ρ, and is the cost function with the initial condition Cz(z) = Bθ(z) when
z > ρ. The speculator bid distribution is given by

H̄(b) = exp

(
−
∫ b̄s

b

L(y)d (lnF (ηθ(b)))

)
, (42)

in [ρ, b̄s], where b̄s is the maximum equilibrium bid of the speculator. Moreover the equilibrium has the
following first-order stochastic dominance property

H̄(b) > F (ηθ(b)) or F (φ(b)) for all b < b̄s. (43)

Proof. The bidding strategy of a regular buyer in an active or inactive interval is clear and (42) is the
only solution of the first-order condition in Lemma 12 with the boundary condition H(b̄s) = 1. For the
regular buyers, the first-order condition of equilibrium is satisfied because of the way H̄(.) is defined. The
supermodularity property insures that b(.) is an optimal strategy for a regular buyer in active and inactive
intervals. This proves that the given strategy profile is an equilibrium strategy. To show (43), consider a
maximal active interval [a, b] = [B(z), B(w)], we have

ln H̄(b)− ln H̄(a) =

∫ b

a

L(b)d (lnF (η(b))) =

∫ w

z

L(v)d (lnF (v))

<

∫ w

z

d (lnF (v)) = lnF (η(b))− lnF (η(a)).

Over a maximal inactive bid interval [a′, b′], we also have

ln H̄(a′)− ln H̄(b′) < lnF (η(a′))− lnF (η(b′)),

as the left-hand side is always 0. Hence for all b < b̄s, we must have

ln H̄(b̄s)− ln H̄(b) < lnF (η(b̄s)− lnF (η(b)) < − lnF (η(b)),

and we have
ln H̄(b) > lnF (η(b)),

or
H̄(b) > F (η(b)).

Rewrite in the variable v,
H̄(Bθ(v)) > F (v) for all v < η(b̄s).

Note that we have Bθ(v) = b(v) over active intervals, and H̄(.) is constant over inactive intervals. We have
H̄(Bθ(v)) = H̄(b(v)), and this translates into

H̄(Bθ(v)) > F (v) for all v < η(b̄s),

which is equivalent to
H̄(b) > F (ηθ(b)) for b < b̄s,

which is also valid for b < b̄, as H̄(b) = 1 when b ≥ b̄s. The proof is complete.

The following gives the comparative static result of the equilibrium when θ varies.
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Theorem 10 Let N > 1. The equilibrium strategy H̄θ(v), bθ(v) is strictly decreasing in θ.

Proof. In an active interval, we have shown that Bθ(.) is the bidding strategy of the regular buyers, and
it is strictly decreasing in θ. In an inactive interval [ρ, z], the equilibrium bidding strategy is given by b∗ρ(v)
which is also strictly decreasing in θ. In a maximal inactive interval [z, z′], z > ρ, we have Cz(z) = Bθ(z).
Since Bθ(z) is strictly decreasing in θ, Cz(.) is also strictly decreasing in θ. Moreover we show that if θ

′ > θ,
then an active interval of the θ−equilibrium must be an active interval of a θ′−equilibrium. This is because
the endpoint is determined by the crossing of Bθ(.) by Bc(.) from above. As θ increases, Bθ(.) is smaller,
while Bc(.) remains unchanged. This implies that the endpoint of an active interval moves higher with a
higher θ. Moreover, the revenue function B(v) does not change when θ varies, but the cost function C(v) is
strictly decreasing in θ. This implies that the beginning point of an inactive interval becomes lower when θ
increases. Thus bθ(.) must be strictly increasing in θ at all v > ρ. Moreover, we have

H̄θ(v) = exp

(
−
∫ β

v

Lθ(x)d lnF (x)

)
,

Lemma 10 says that Lθ(x) is strictly increasing in θ. Hence H̄θ(v) is strictly decreasing in θ.

Example 4 Let N = 1. There is one speculator, one regular buyer with the use value distribution F (v) = v.
Let ρ = 0. The equilibrium bidding strategy of a regular buyer is given by

bθ(v) =
v

2θ + 2
.

The highest equilibrium bid of a regular buyer is 1
2θ+2 .We have the first-order condition

H ′θ(b)

Hθ(b)
=

1

b
, (44)

with the boundary condition H( 1
2θ+2 ) = 1. Hence we have

Hθ(b) = (2θ + 2)b,

and
H̃θ(v) = Hθ(bθ(v)) = v.

Example 5 Let N = 2. There are two regular buyers, and one speculator. Let the regular buyer’s use value
distribution be

F (v) = 0.5(1 + v2) over [0, 1].

Let ρ = 0. First we compute the equilibrium without the speculator. We have

b∗ρ(v) = v − 21/θ

(1 + v2)1/θ

∫ v

0

(
1 + x2

2
)1/θdx =

∫ v

0

xdF 1/θ(x|v).

When θ = 1, the strategy is

b∗ρ(v) =
2

3

v3

v2 + 1
,

and this is the equilibrium bidding strategy of the regular buyers in the first-price auction without the specu-
lator.

B(v) =
4v3

(1 + v2)2

[
1

3
√

3
+

1

15
(2 +

1

3
√

3
)v2

]
,
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Bt(v) =
v

1 + v2

[
1√
3

+
1

3

(
2 +

1

3
√

3

)
v2

]
,

Bc(v) =
v

1 + v2

[
2√
3
− 1 +

1

3
(1 +

2

3
√

3
)v2

]
.

From Theorem , we have

Bθ(v) =

(
2

1 + v2

) 2
θ
∫ v

0

Bt(x)d(
1 + x2

2
)
2
θ ,

for θ ∈ [0, b̄s], with b̄s determined by the positive intersection of Bc(v) = Bθ(v). When θ = 1, we have
b̄s = 0.812 063 1.

When θ is smaller, the active interval shrinks. To determine the active interval for θ = 0.5, we have

B0.5(v) =

(
2

1 + v2

)4 ∫ v

0

Bt(x)d(
1 + x2

2
)4 =

(
2

1 + v2

)4 ∫ v

0

4(
1 + x2

2
)3xBt(x)dx,

Solving Bc(v)−Bθ(v) = 0, we get v = 0.425 904, hence the active interval is [0, 0.425904].
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The graph of Bc(v)−Bθ(v) is given by
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7 Appendix

Proofs of Section 2

Proof of Lemma 4:
We have

Qi1(vi, b, σ) = H(b)FN−1(r(vi, φ(b))) when vi ≤ φ(b), (45)

= H(b)FN−1(φ(b)) when vi > φ(b).

When vi ≤ φ(b),and b ≤ ỹ(vi), Qi2(vi, b, σ) is the same as the probability of buying from the speculator, and
we have

Qi2(vi, b, σ) = FN−1(vi)(H(ỹ(vi)−H(b)). (46)

When vi ≤ φ(b),and b > ỹ(vi), we have
Qi2(vi, b, σ) = 0.

When vi > φ(b), the regular buyer wins during resale from the speculator when (i) all rival regular buyers
have use value below φ(y) and the speculator wins with a bid y ∈ (b, b(vi)), or (ii) all rival regular buyers
have values below vi and the speculator wins with a bid y ∈ [b(vi), ỹ(vi)). Hence the probability of winning
from a speculator is ∫ b(vi)

b

FN−1(φ(y))dH(y) + FN−1(vi)(H(ỹ(vi))−H(b(vi))). (47)

The probability of buying from other regular buyers is either 0 or given by∫ b(vi)

b

H(y)dFN−1(φ(y)). (48)

When the probability of buying from the regular buyers is zero, Qi2(vi, b, σ) is given by (47), otherwise
Qi2(vi, b, σ) is given by the sum of (47) and (48). From case 1) of the payoff expressions (7),(3) we have

∂

∂vi
(πi1(vi, b, σ) + πwi(vi, b, σ)) = H(b)FN−1(r(φ(b)) = Qi1(vi, b, σ).

From (8), we have
∂

∂vi
πli(vi, b, σ) = FN−1(vi)(H(ỹ(vi)−H(b)) = Qi2(vi, b, σ).

Hence the lemma is proved. For case 2) with no resale from the winning regular buyers, from (12), we have

∂

∂vi
πli(vi, b, σ) =

∫ b(vi)

b

FN−1(φ(y))dH(y) + FN−1(vi)(H(ỹ(vi))−H(b(vi))) = Qi2(vi, b, σ).

By (47), in this case, we have
∂

∂vi
πli(vi, b, σ) = Qi2(vi, b, σ). (49)

When there is resale from the winning regular buyers, from (9), we have

∂

∂vi
πli0(vi, b, σ) =

∫ b(vi)

b

H(y)dFN−1(φ(y)).

By (47), and (48), we also have (49). The lemma is proved.
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Proof of Theorem 1:

We use the simpler derivative notations instead of the one-sided derivatives. Consider the case 1),
φ(b) ≥ vi. From (46),(45), we have

∂

∂b
Qi1(vi, b, σ) = H(b)

∂

∂b
FN−1(r(vi, φ(b))) +H ′(b)FN−1(r(vi, φ(b))),

and
∂

∂b
Qi2(vi, b, σ) = −H ′(b)FN−1(vi).

Hence Lemma 4 implies that

∂

∂b

∂

∂vi
u(vi, b, σ) ≥ H(b)

∂

∂b
FN−1(r(vi, φ(b))) > 0.

For case 2), when there is positive payoffs buying from the speculator and the regular buyers, we have

∂

∂b
Qi2(vi, b, σ) = −H(b)

∂

∂b
FN−1(φ(b))−H ′(b)FN−1(φ(b)).

From the second line in (45), we have

∂

∂b
Qi1(vi, b, σ) = H(b)

∂

∂b
FN−1(φ(b)) +H ′(b)FN−1(φ(b)),

hence Lemma 4 implies that
∂

∂b

∂

∂vi
u(vi, b, σ) = 0.

In all other cases, we have
∂

∂b

∂

∂vi
u(vi, b, σ) > 0.

Proofs of Section 6:
Proof of Lemma 7:
Let b(v) be the equilibrium bidding function of a regular buyer, and Hr(.) be the bid distribution of b(.).

If a(ρ) = ρ, by Lemma 1, there exists v̄ > ρ such that b(v̄) = Bθ(v̄) = ρ. If Hr(.) has an atom at ρ, then
a regular buyer with value v̄ can bid slightly higher than ρ, and the existence of the atom implies that this
is a profitable deviation. Similarly, if H(.) has an atom at ρ, a regular buyer bidding ρ can increase the
payoff deviating slightly above ρ. Assume that neither of Hr(.) or H(.) has an atom at ρ.We will get another
contradiction. The existence of no atom means that a regular buyer with value v below v̄ bids below ρ.
Hence he loses the first-stage auction, and has zero payoff in the first stage. He has a payoff during resale. If
he bids ρ instead, he has the first-stage payoff H(ρ)FN−1(ρ)(v − ρ) > 0 while maintaining the same payoff
during resale. Hence the deviation is profitable. This is another contradiction. This proves that a(ρ) = ρ
cannot be true, and we must have a(ρ) > ρ.

Proof of Lemma 8: (i) If the speculator is not active in equilibrium, the equilibrium is the same the
model without the speculator. The lemma is obvious. We can now assume that the speculator is active in
equilibrium. It is clear that a regular buyer with use value v < ρ has zero winning probability in the first
stage, as he would not bid above ρ. Any winning in the first-stage leads to negative profit. We first show that
his winning probability is 0 also during resale, if the winner of the first-stage auction is a speculator. If N = 1,
when the speculator wins the first-stage auction with a bid b ≥ ρ, she sets a reserve price r(φ(b)) > B(φ(b)).
Since the speculator must have non-negative profit, we also have B(φ(b)) ≥ ρ, hence r(φ(b)) > ρ. Thus a
regular buyer with value v < ρ cannot win the object in the second-stage. This gives the proof for the case
N = 1.

Now consider the case N > 1. Let b0 = a(ρ), v = v(ρ) in Lemma 7. By Lemma 7, we have b0 = b∗ρ(v).
Let r(φ(b)) be the reserve price set by the speculator after winning the first-stage auction with the active
bid b. If r(φ(b)) < ρ, we have

b∗ρ(v) = v −
∫ v

ρ

FN−1(x|v)dx > v −
∫ v

r(φ(b))

FN−1(x|v)dx = Bt(φ(b)) > B(φ(b)).
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The speculator profit must be non-negative, hence we have

B(φ(b)) ≥ b ≥ b0,

hence we have b∗ρ(v) > b0 contradicting the equality b0 = b∗ρ(v) earlier. The contradiction means that the
reserve price r(φ(b)) set by the speculator must be at least ρ. This proves that the regular buyer with value
v < ρ cannot win in the second-stage auction, and the proof is complete. (ii) If ρ ≥ 0, it is clear that a regular
buyer with value v = 0 has zero payoff in equilibrium. Hence we can just consider the case ρ > 0, v > 0. We
know that the holding probability of a regular buyer with value v < ρ is zero, hence the payoffmust be zero.
If v = ρ, he has positive winning probability, but whenever he wins in the first stage or the resale stage, the
cost is v, hence the payoff is also zero.

Lemma 14 When N > 1, the function Cz(.) has the following properties: (i) Cz(z) = Bθ(z), (ii) Cz(.) is
strictly increasing in [z, β], and (iii) the derivative is given by

C ′z(v) =
(N − 1)f(v)

θF (v)
(v − Cz(v)).

for v ≥ z.

The following is a useful lemma on the derivative of the function Bθ(.)− Cz(v).

Lemma 15 We have

B′θ(v)− C ′z(v) =
Nf(v)

θF (v)

[
1

N
Bc(v) +

N − 1

N
Cz(v)−Bθ(v)

]
. (50)

Proof. From Lemma 14 and (20), we have

θ (B′θ(v)− C ′z(v)) =
Nf(v)

F (v)
[Bt(v)−Bθ(v)]− (N − 1)f(v)

F (v)
[v − Cz(v)]

=
f(v)

F (v)
[Nv − N

FN−1(v)

∫ v

r(v)

FN−1(x)dx−NBθ(v)− (N − 1)(v − Cz(v))]

=
f(v)

F (v)
[Bc(v)−NBθ(v) + (N − 1)Cz(v)] =

Nf(v)

F (v)

[
1

N
Bc(v) +

N − 1

N
Cz(v)−Bθ(v)

]
.

The following says that at the point where Bc(.) crosses Bθ(.), we also have the crossing of Cz(.) and
Bθ(.) in the other direction.

Lemma 16 Let N > 1, and Cz(.) be the endogenous cost function defined in (z, v) with the boundary con-
dition Cz(z) = Bθ(z). Then the following three statements hold (with the understanding that the inequalities
hold in (z, v) a.e.):

If Bc(.) > Bθ(.)(.) in (z, v), then we have Bθ(.)(.) > Cz(.) in (z, v),

If Bc(.) < Bθ(.)(.) in (z, v), then we have Bθ(.)(.) < Cz(.) in (z, v),

If Bc(.) = Bθ(.)(.) in (z, v), then we have Bθ(.)(.) = Cz(.) in (z, v).
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Proof of Lemma 16: Assume that Bc(.) > Bθ(.) in (z, z′). We want to show that Bθ(.) > Cz(.) in (z, v).
If it is not true, then we can find an interval (x, x + ε) ⊂ [z, v] such that Bθ(x) = Cz(x) and Bθ(.) ≤ Cz(.)
in (x, x + ε). By Lemma 15, we must have B′θ(x) > C ′z(x) in (x, x+ ε) , which implies Bθ(.) > Cz(.) in
(x, x+ ε) , a contradiction. The contradiction finishes the proof. Similarly, if Bc(.) < Bθ(.) in (z, v), the
same arguments show that we must have Bθ(.) < Cz(.) in (z, v). If Bc(.) = Bθ(.) in (z, v), then for the same
reason, Bθ(.) cannot be above or below Cz(.), and we must have Bθ(.) = Cz(.) in (z, v).

Since the equilibrium strategy of the regular buyer and the speculator is uniquely determined in active
as well as inactive intervals, and the speculator bid distribution is uniquely determined by the (33), we know
that there is a unique symmetric equilibrium. It can be characterized as in the case of first-price auctions
once we know that active and inactive intervals.

From the zero profit condition, we know that if b is in the support of the H(.), ηθ(.) is the inverse
equilibrium bidding strategy of the regular buyers.

Lemma 17 Let N > 1. The speculator is inactive in equilibrium if and only if Bθ(v) ≤ b∗ρ(v) for all v ∈ [ρ, β].
In an equilibrium in which the speculator is inactive, the equilibrium is the same as if there is no speculator
and is given by (??).

Proof. Assume that Bθ(v)− b∗ρ(v) ≤ 0 for all v ∈ [ρ, β]. Let ϕ(.) be the inverse equilibrium bidding strategy

of the regular bidders, and ρ > 0. If the speculator is active in equilibrium, by Lemma 7, there exists an
active interval (a(ρ), b′) such that the speculator is inactive in (ρ, a(ρ)), and ϕ(b) = ηθ(b) on the interval
(a(ρ), b′). Since Bθ(.) ≤ b∗ρ(.) in the interval (v(ρ), η(b′)), Lemma 16 implies that Bc(.) ≤ Bθ(.) in the interval
(v(ρ), η(b′)). This contradicts Lemma 13. If ρ = 0, and the active interval starts at 0, we can apply Lemma
16 to this active interval, and get the same contradiction Bc(.) ≤ Bθ(.). The contradiction implies that the
speculator cannot be active in equilibrium. We obtain the same equilibrium b∗ρ(.) in the model without resale
as shown in Theorem 3. If πρ(b) > 0 for some b ∈ [ρ, b∗ρ(β)], and the speculator is inactive in an equilibrium,
then regular bidders will bid b∗ρ(.) in equilibrium, but in this case the speculator can make a strictly positive
profit by bidding b, contradicting the zero profit condition. Hence the theorem is proved.
Given the equilibrium strategy b(.), and any value interval [z, z′], we can define the endogenous cost

function Cz(.) with the initial condition Cz(z) = b(z). If [z, z′] is an inactive interval, we know that the
first-order condition (18) must be satisfied, and both Cz(.), b(.) have the same initial condition, therefore
we have Cz(.) = b(.) in [z, z′]. The speculator makes maximum profit 0 in equilibrium, and we must have
Bθ(.) ≤ b(.) = Cz(.). The condition Bθ(.) ≤ Cz(.) is also suffi cient for being an inactive interval as stated
in the following. The proof is the same as that of Theorem 17.

Lemma 18 The value interval [z, z′] is an inactive interval if and only if Bθ(.) ≤ Cz(.) in [z, z′].

The difference between Lemma 17 and Lemma 18 is that the condition in Lemma 17 is based on the
primitives of the model, while the latter uses the value b(z) which needs to be determined in equilibrium.
Note that a corollary of the characterization of inactive equilibrium is that when the speculator is inactive in
one equilibrium, she must be inactive in another equilibrium, as the condition Bθ(v)− b∗ρ(v) is independent
of the equilibrium profile. Hence the equilibrium is unique when H(0) = 1 in an equilibrium. We define
inactive intervals through H(.). Now we want to show that if an interval is inactive in one equilibrium, it
must be inactive in another equilibrium, if there is another one.

Lemma 19 Let N > 1. If an interval is inactive in one equilibrium, it must be inactive in another equilib-

rium. Similarly, if an interval is active in one equilibrium, it must be active in another equilibrium.
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Proof. It is suffi cient to prove this for a maximal inactive interval. Let [z, z′] be a maximal inactive

interval in the equilibrium H(.), b(.). Lemma 18 implies Bθ(.) ≤ Cz(.) in [z, v], and Lemma 16 implies that
Bc(.) ≤ Bθ(.) in [z, v]. Assume that there is another equilibrium H̄(.), b̄(.) such that [z, z′] is an active interval.
There is a maximal active interval (z0, z

′′) of H̄(.) that overlaps with [z, z′] in some open interval (x, x′). By
continuity, the speculator profit must be 0 at z0, hence Bθ(z0) = b̄(z0). Define C̄z0(.) with the initial condition
C̄z0(z0) = Bθ (z0) . By Lemma 13, we have Bc(.) > Bθ(.). This is a contradiction. The contradiction proves
that [z, v] must be inactive in another equilibrium. Since the active intervals are complementary to inactive
intervals, we also conclude that the active intervals are uniquely determined regardless of the H(.) used to
define it.

The following says that the end of an active interval occurs at the place where Bc(.) crosses Bθ(.) from
above.

Lemma 20 If [z1, z2] is a maximal active interval, then Bc(z2) = Bθ(z2) if z2 < β.

Proof of Lemma 20: Since z2 is the endpoint of an active interval, either there exists an inactive
interval (z2, z2 + ε) or there is a sequence of maximal inactive intervals [xn, x

′
n] with x′n → z2, xn ≥ z2. If

Bc(z2) > Bθ(z2), define the cost function Cz2(.) with the initial condition Cz2(z2) = Bθ(z2), then we have
B′θ(z2) − C ′z2(z2) > 0 by Lemma 15. Hence Bθ(.) > Cz2(.) > 0 in a neighborhood (z2, z2 + ε). This is a
contradiction.

When we combine Lemma 20 with Lemma 15, we know that Bθ(.) cannot cross Cz(.) unless Bc(.) is
above Bθ(.). Once Bθ(.) crosses Cz(.), Lemma 16 then tells us Bθ(.) will stay above Cz(.) leading to an active
interval, until Bc(.) ends the active interval at the place it crosses Bθ(.) from above. This is essentially the
way a maximal active interval is determined.
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