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Abstract

Antitrust law makes a sharp distinction between tacit and explicit collusion
whereas the theory of repeated games– the standard framework for studying
collusion– does not. In this paper, we study this difference in Stigler’s (1964)
model of secret price cutting. This is a repeated game with private monitoring
since in the model, firms observe neither the prices nor the sales of their rivals.
For a fixed discount factor, we identify conditions under which there are equi-
libria under explicit collusion that result in near-perfect collusion– profits are
close to those of a monopolist– whereas all equilibria under tacit collusion are
bounded away from this outcome. Thus, in our model, explicit collusion leads
to higher prices and profits than tacit collusion.

JEL classification: C73, D43
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1 Introduction

In ruling on an antitrust case in 1993, the US Supreme Court clearly stated that tacit
collusion– the setting of supracompetitive prices without evidence of conspiracy–
was not in itself unlawful.1 When there is evidence of explicit collusion, however,
the law provides for severe fines, even prison terms. Antitrust law thus makes a
sharp distinction between tacit and explicit collusion. In the former, there is no
communication between firms, whereas in the latter there is. The theory of repeated
games– the standard framework for studying collusion– does not, however, provide a
justification for this distinction since in most models communication does not increase

∗We thank Olivier Compte, Joyee Deb and Ed Green for helpful conversations and seminar
participants at NYU, Warwick and Indiana for comments.
†E-mail: YuAwaya@gmail.com
‡E-mail: vkrishna@psu.edu
1See Brooke Group v. Brown & Williamson, 509 US 209, US Supreme Court, June 21, 1993.
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cartel profits. But as Marshall and Marx (2012) write: "... repeated [tacit] interaction
is not enough in practice, at least not for many firms in many industries. Even for
duopolies ... explicit collusion was required to substantially elevate prices and profits
(p. 3)." Harrington (2005) points to the shortcomings of economic theory in this
regard: "There is a gap between antitrust practice– which distinguishes explicit and
tacit collusion– and economic theory– which (generally) does not (p. 6)."
In this paper, we study this issue in Stigler’s (1964) model of secret price cutting,

which is a repeated game with private monitoring. Firms cannot observe each other’s
prices nor can they observe each other’s sales. Each firm only observes its own sales
and, because of demand shocks, these are imperfect signals of the other firms’actions.
These signals are noisy in the sense that given the prices, the marginal distribution
of a firm’s sales is dispersed. At the same time firms’sales are correlated. We study
situations where this correlation is rather sensitive to prices. Precisely, it is high
when the difference in firms’prices is small– say, when both firms charge close to
monopoly prices– and decreases when the difference is large– say, when there is a
unilateral price cut. This kind of monitoring structure can arise quite naturally, for
example, in a Hotelling-type model with random transport costs (see Section 2). For
analytic convenience, we suppose that the relationship between sales and prices is
governed by log normal distributions.
Under tacit collusion, firms base their pricing decisions only on their own history

of prices and sales. Because sales are subject to unobserved shocks, it is diffi cult for
firms to detect a rival’s price cuts. Under explicit collusion, firms can communicate
with each other in every period and pricing decisions are now based on these commu-
nications as well as their private histories. The communication is "cheap talk"– the
firms exchange non-verifiable sales reports in every period.
Our main result is2

Theorem For any high but fixed discount factor, when the monitoring is noisy but
sensitive enough, there is an equilibrium under explicit collusion whose profits are
strictly greater than those from any equilibrium under tacit collusion.

Explicit collusion leads to higher sustainable prices and profits because even un-
verifiable communication improves monitoring. In their study of the sugar refining
cartel, based on internal documents, Genesove and Mullin (2001), point to the mon-
itoring role of the weekly (!) meetings of the firms. Clark and Houde (2014) find
similar evidence in the retail gasoline market in Canada. The exchange of sales fig-
ures for monitoring purposes seems to have been key to the functioning of cartels in
numerous industries, including citric acid, lysine and graphite electrodes (see Har-
rington, 2005).
The argument underlying our main result is divided into two steps. The first task

is to find an effective bound for the maximum equilibrium profits that can be achieved

2A formal statement of the result is in Section 5.
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under tacit collusion. But the model we study is that of a repeated game with private
monitoring and there is no known characterization of the set of equilibrium payoffs.
This is because with private monitoring each firm knows only its own history (of
prices and sales) and has to infer its rival’s history. Since firms’histories are not
commonly known, these cannot be used as state variables in a recursive formulation
of the equilibrium payoff set. Thus we are forced to proceed somewhat differently.
In Proposition 1 we develop a bound on equilibrium profits by using a very simple
necessary condition– a deviating strategy in which a firm permanently cuts its price
to an unchanging level should not be profitable. This deviation is, of course, rather
naive– the deviating firm does not take into account what the other firm knows or
does. We show, however, that even this minimal requirement can provide an effective
bound when the relationship between prices and sales is rather noisy relative to the
discount factor. For a fixed discount factor, as sales become increasingly noisy, the
bound becomes tighter.
The second task is to show that the bound developed earlier can be exceeded under

explicit collusion. This is done by directly constructing an equilibrium in which firms
exchange sales reports in every period (see Proposition 2). Firms charge monopoly
prices and report truthfully. In this case, firms’sales are highly correlated and so the
likelihood that their reports will agree is also high. If a firm were to cut its price,
sales become less correlated and it cannot accurately predict its rival’s sales. Even
if the deviating firm strategically tailors its report, the likelihood of an agreement is
low. Thus a strategy in which differing sales reports lead to non-cooperation is an
effective deterrent. When the correlation between firms’sales is high, the chances of
triggering a punishment without a deviation are small and so this equilibrium can
achieve high profits even for relatively low discount factors. It turns out that noisier
sales only make the inference problem for the deviating firm harder and thus decrease
the incentive to cut price.
The key to our results is that the bound developed in Proposition 1 depends

only on the marginal distribution of sales– precisely, on how noisy these are– and
not on the correlation between sales. The equilibrium constructed in Proposition 2,
however, depends on the correlation structure and, as mentioned above, is actually
reinforced by noise. Thus we are able to identify conditions under which the bound
on tacit collusion is tight while the equilibrium under explicit collusion approximates
the monopoly outcome.
We emphasize that the analysis in this paper is of a different nature than that un-

derlying the so-called "folk theorems" (see Sugaya, 2013). These show that for a fixed
monitoring structure, as players become increasingly patient, near-perfect collusion
can be achieved in equilibrium. In this paper, we keep the discount factor fixed and
change the monitoring structure to drive a wedge between tacit and explicit collusion.
Our goal is only to identify some natural circumstances in which this happens– we do
not attempt a full identification of monitoring structures which distinguish between
the two.
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In our model, firms share sales information and this allows them to better monitor
each other. There are, of course, other pieces of information that may be communi-
cated to facilitate the cartel. Firms may coordinate on market shares after exchanging
privately known cost information (as in Athey and Bagwell, 2001 and Escobar and
Toikka, 2013). Another view is that communication allows the cartel to coordinate on
one among many repeated game equilibria (see Green, Marshall and Marx, 2013). But
there is no formal "meta-theory" of how players coordinate on a single equilibrium.
Our explanation of the gains from communication does not rely on equilibrium selec-
tion. We exhibit an equilibrium under explicit collusion that dominates all equilibria
under tacit collusion.

Related literature

There is a vast literature on repeated games under different monitoring assumptions.
Under perfect monitoring, given any fixed discount factor, the set of perfect equilib-
rium payoffs with and without communication is the same. Under public monitoring,
again given any fixed discount factor, the set of (public) perfect equilibrium payoffs
with and without communication is also the same. Thus, in these settings there is no
difference between tacit and explicit collusion. The reason, of course, is that all rele-
vant information is commonly known and so there is nothing useful to communicate.
Compte (1998) and Kandori and Matsushima (1998) study repeated games with

private monitoring when there is communication among the players. In this setting,
they show that the folk theorem holds– any individually rational and feasible outcome
can be approximated as the discount factor tends to one. This line of research has
been pursued by others as well, in varying environments (see Fudenberg and Levine
(2007) and Obara (2009) among others). Aoyagi’s (2002) work is, in particular,
closely related because he also considers a secret price cutting model with a similar
monitoring structure and communication.3 He shows that monopoly outcomes can be
approximated as the discount factor tends to one. Harrington and Skrzypacz (2011)
also study explicit collusion but allow for transfers. All of these papers thus show that
communication is suffi cient for cooperation. But as Kandori and Matsushima (1998)
recognize, “One thing which we did not show is the necessity of communication for
a folk theorem (p. 648, their italics)."
In a remarkable paper, Sugaya (2013) shows the surprising result that in very

general environments, the folk theorem holds without any communication. Thus, in
fact, communication is not necessary for a folk theorem. The analysis of repeated
games with private monitoring is known to be diffi cult– and more so if communication
is absent. Although Sugaya’s result was preceded by folk theorems for some limiting
cases where the monitoring was almost perfect (or almost public), the fact that such
a result holds even when monitoring is of very low quality is quite unexpected. An
important component of Sugaya’s proof is that players implicitly communicate via

3Zheng (2008) explores a similar monitoring structure in the context of general symmetric games.
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their actions.4 Thus, he shows that with enough time, there is no need for explicit
communication.
In a different vein, Awaya (2014a) studies the prisoners’dilemma with private

monitoring and shows that for a fixed discount rate, there exist environments in which
without communication, the only equilibrium is the one-shot equilibrium whereas
with communication, almost perfect cooperation can be sustained. This paper is a
precursor to the current one.
Key to our result is a method of bounding the set of payoffs under tacit collu-

sion. In a recent paper, Pai, Roth and Ullman (2014) also provide a bound on the
equilibrium payoffs that is effective when monitoring quality is low. The measure
of monitoring quality used by Pai et al. is based on how the joint distribution of
the private signals is affected by players’actions. But the bound obtained by them
applies to the payoffs from explicit as well as from tacit collusion, and so does not
help in distinguishing between the two. In contrast, our measure, and hence the
bound in Proposition 1, is based solely on the marginal distributions and not on any
correlation between players’signals (sales). On the other hand, the equilibrium con-
struction in Proposition 2 relies primarily on the properties of the joint distribution.
The fact that correlation can vary while keeping the marginal distributions fixed is
key to our main result. A method developed by Cherry and Smith (2011) is also
unable to distinguish between tacit and explicit collusion.
The monitoring structure we study was introduced by Aoyagi (2002) and then

also explored in Zheng (2008) and Awaya (2014a). These papers all assume that the
correlation between signals depends on actions in a particular way– it is high when
players take similar actions and low when they do not. We also follow Aoyagi (2002) in
postulating the way that firms communicate. But our Proposition 2, which constructs
an equilibrium with communication, is very different in nature from Aoyagi’s result.
In his paper, the monitoring structure is fixed and an equilibrium is constructed for
discount factors tending to one. In our result, the discounting is held fixed and an
equilibrium is constructed for noisy but correlated monitoring structures. As noted
above, because of Sugaya’s (2013) result, the first exercise is unable to show that
communication is necessary for collusion– which is, of course, the goal of this paper.
Our paper provides a theoretical basis for distinguishing between tacit and explicit

collusion. There is strong empirical evidence in support of this distinction that comes
from the study of cartels in different industries. Genesove and Mullin (2001) examine
this question by looking at a cartel in the sugar refining industry and find strong
support that higher prices and profits emerge when firms communicate. Clark and
Houde (2014) find the same to be true in the retail gasoline market in Canada. The
same conclusion has been reached in laboratory experiments as well, by Fonseca and
Normann (2012) and Cooper and Kühn (2014) among others.

4This idea was used by Hörner and Olzewski (2006) to prove a folk theorem with almost perfect
monitoring.
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The remainder of the paper is organized as follows. The next section outlines
the nature of the market. Section 3 analyzes the repeated game under tacit collusion
whereas Section 4 does the same when collusion is explicit. The findings of the earlier
sections are combined in Section 5 to derive the main result. In Section 6 we calculate
explicitly the gains from communication in an example with linear demands. Omitted
proofs are collected in an Appendix.

2 The market

There are two firms in the market, labelled 1 and 2. The firms produce differentiated
products at a constant cost, which we normalize to zero. Each firm sets a price
pi ∈ Pi = [0, pmax], for its product and given the pair of prices p1 and p2, the sales
Y1 and Y2 are stochastic. Prices affect sales via two channels. First, they affect
expected sales in the usual way– an increase in p1 decreases firm 1’s expected sales
and increases firm 2’s expected sales. Second, they affect how correlated are the sales
of the two firms in a manner specified below. As in Aoyagi (2002), sales are more
correlated when the difference in firms’prices is small.

Expected demand. The expected demand of firm i is determined as follows:

E [Yi | p1, p2] = Qi (pi, pj) (1)

where Qi is a continuous function that is decreasing in pi and increasing in pj.We will
suppose that the firms are symmetric so that Qi = Qj. Note that the first argument
of Qi is always the firm’s own price and the second is its competitor’s price. The
expected profit of firm i is then

πi (pi, pj) = piQi (pi, pj)

and we suppose that πi is strictly concave in pi.
Let G denote the one-shot game where the firms choose prices pi and pj and the

profits are given by πi (pi, pj) . Under the assumptions made above, there exists a
symmetric Nash equilibrium (pN , pN) of the resulting one-shot game and let πN be
the resulting profits of a firm.5

Suppose that (pM , pM) is the unique solution to the monopolist’s problem:

max
pi,pj

∑
i

πi (pi, pj)

and let πM be the resulting profits per firm. We assume that monopoly pricing
(pM , pM) is not a Nash equilibrium.
For technical reasons we will also assume that a firm’s expected sales are bounded

away from zero.
5If the one-shot game has multiple symmetric Nash equilibria, let (pN , pN ) denote the one with

the lowest equilibrium profits.
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Figure 1: Monitoring Structure

Distribution of sales. We will suppose that given prices (p1, p2), the two
firms’sales (Y1, Y2) are jointly distributed according to a bivariate log normal density
f (y1, y2 | p1, p2); equivalently, the log sales (lnY1, lnY2) are jointly normally distrib-
uted. Prices affect the means µi of the normal distribution as well as the correlation
coeffi cient ρ, but, for simplicity, do not affect the (identical) variance σ2.6 Specifically,
µi = lnQi (pi, pj)− 1

2
σ2 so that (1) holds.7 The correlation between firms’(log) sales

is high when they charge similar prices and low when their prices are dissimilar.
For our purposes, a benefit of the (log) normal specification is that the variance

and correlation parameters can vary independently.
Figure 1 is a schematic illustration of such a monitoring structure. When both

firms charge the same price, their (log) sales have the same mean µ and a high
correlation, depicted by the narrower contours of the resulting normal density. When
prices are different, say firm 1 charges a lower price, then the (log) sales have different
means µ1 > µ2 and low correlation, now depicted by the wider contours. This is
formalized as:

6A heteroskedastic specification in which the variance increased with the mean log sales can be
easily accommodated.

7Recall that if lnY is normally distributed with mean µ and variance σ2, then E [Y ] =
exp

(
µ+ 1

2σ
2
)
.
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Assumption 1 There exists ρ0 ∈ (0, 1) and a symmetric function γ (p1, p2) ∈ [0, 1]
such that ρ = ρ0γ (p1, p2) and γ satisfies the following conditions: (1) for all p,
γ (p, p) = 1; and (2) for all p1 ≤ p2, ∂γ/∂p1 > 0 and ∂2γ/∂p2

1 > 0 and so, γ is an
increasing and convex function of p1.

8

Note that ∂ρ/∂p1 = ρ0∂γ/∂p1, and so for fixed γ, an increase in ρ0 represents an
increase in the sensitivity of the correlation to prices.
This kind of correlation structure can result, for example, in a symmetric Hotelling-

type market in which consumers have identical but random "transport costs". When
firms charge similar prices, their sales are similar no matter what the realized trans-
port costs are. In other words, when firms charge similar prices, their sales are highly
correlated. When firms charge dissimilar prices, their sales are again similar if the
realized transport costs are high because consumers are not so price sensitive. But
their sales are quite dissimilar if the realized costs are low because now consumers
are very price sensitive. In other words, when firms charge dissimilar prices, the cor-
relation between their sales is low. Of course, the same kind of reasoning applies if
we substitute search costs for transport costs.

3 Tacit collusion

Let Gδ (f) denote the infinitely repeated game with private monitoring in which firms
use the discount factor δ < 1 to evaluate profit streams. Time is discrete. In each
period, firms choose prices pi and pj and given these prices, their sales are realized
according to f as described above. As in Stigler (1964), each firm i observes only its
own realized sales yi; it observes neither j’s price pj nor j’s sales yj. We will refer to
f as the monitoring structure.
Let ht−1

i =
(
p1
i , y

1
i , p

2
i , y

2
i , ..., p

t−1
i , yt−1

i

)
denote the private history observed by firm

i after t− 1 periods of play and let H t−1
i denote the set of all private histories of firm

i. In period t, firm i chooses its prices pti knowing h
t−1
i and nothing else.

A strategy si for firm i is a collection of functions (s1
i , s

2
i , ...) such that s

t
i : H t−1

i →
∆ (Pi) . Of course, since H0

i is null, s
1
i ∈ ∆ (Pi) . We will denote by sti

(
pi | ht−1

i

)
the

probability that firm i sets a price pi following the private history ht−1
i . Thus, we are

allowing for the possibility that firms may randomize. A strategy profile s is simply
a pair of strategies (s1, s2).
A sequential equilibrium of Gδ (f) is strategy profile s such that for each i and

every private history ht−1
i such that the continuation strategy of i following ht−1

i ,
denoted by si |ht−1i

, is a best response to E[sj |ht−1j
| ht−1

i ]. Since f has full support,
the set of sequential equilibrium outcomes (price paths) is the same as the set of Nash
equilibrium outcomes (see Mailath and Samuelson, 2006, p. 396).
We remind the reader that as yet there is no communication between the firms.
8Some examples satisfying the assumption are γ (p1, p2) = min (p1, p2) /max (p1, p2) and

γ (p1, p2) = 1/1 + |p1 − p2| .
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3.1 Equilibrium under tacit collusion

The purpose of this subsection is to provide an upper bound to the joint profits of
the firms in any equilibrium under tacit collusion. The task is complicated by the
fact that there is no known characterization of the set of equilibrium payoffs of a
repeated game with private monitoring. Because the players in such a game observe
different histories– each firm knows only its own past prices and sales– such games
lack a straightforward recursive structure and the kinds of techniques available to
analyze (public perfect) equilibria of repeated games with public monitoring (see
Abreu, Pearce and Stacchetti, 1990) cannot be used here.
Instead, we proceed as follows. Suppose we want to determine whether there is

an equilibrium of Gδ (f) such that the sum of firms’discounted average profits are
within ε of those of a monopolist, that is, 2πM . If there were such an equilibrium,
then both firms must set prices close to the monopoly price pM often (or equivalently,
with high probability). Now consider a secret price cut by firm 1 to p, the static best
response to pM . Such a deviation is profitable today because firm 2’s price is close
to pM with high probability. How this affects firm 2’s future actions depends on the
quality of monitoring, that is, how much firm 1’s price cut affects the distribution
of 2’s sales. If the quality of monitoring is poor, firm 2 can keep on deviating to p
without too much fear of being punished. In other words, a firm has a profitable
deviation, contradicting that there were such an equilibrium.
This reasoning shows that the bound on equilibrium profits depends on three

factors of the market: (1) the trade-offbetween the incentives to deviate and effi ciency
in the one-shot game9; (2) the quality of the monitoring, which determines whether
the short-term incentives to deviate can be overcome by future actions; and, of course
(3) the discount factor.
We consider each of these factors in turn.

Incentives versus effi ciency in the one-shot game. Define, as above, p =
arg maxpi πi (pi, pM) , the static best-response to pM . Let α ∈ ∆ (P1 × P2) be a joint
distribution over firms’prices. We want to find an α such that (i) the sum of the
expected profits from α is within ε of 2πM ; and (ii) it minimizes the (sum of) the
incentives to deviate to p. To that end, for ε ≥ 0, define

Ψ (ε) ≡ min
α

∑
i

[πi (p, αj)− πi (α)] (2)

subject to ∑
i

πi (α) ≥ 2πM − ε

where αj denotes the marginal distribution of α over Pj.

9By "effi ciency" we mean how effi cient the cartel is in achieving high profits and not "social
effi ciency."
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The function Ψ measures the trade-off between the incentives to deviate (to the
price p) and firms’profits. Precisely, if the firms’profits are within ε of those of
a monopolist, then the total incentive to deviate is Ψ (ε) . It is easy to see that
Ψ is (weakly) decreasing. Lemma A.1 establishes that it is convex and satisfies
limε→0 Ψ (ε) > 0.
Since (pN , pN) is feasible for the program defining Ψ when ε = 2πM − 2πN , it

follows that Ψ (2πM − 2πN) ≤ 0. We emphasize that Ψ is completely determined by
the one-shot game G.
Define Ψ−1 by

Ψ−1 (x) = sup {ε : Ψ (ε) = x} (3)

Quality of monitoring. Consider two price pairs p = (p1, p2) and p′ = (p′1, p
′
2)

and the resulting distributions of firm i’s sales: fi (· | p) and fi (· | p′) . If these two
distributions are close together, then it will be diffi cult for firm i to detect the change
from p to p′. Thus, the quality of monitoring can be measured by the "distance"
between the two distributions. In what follows, we use the so-called total variation
metric to measure this distance.

Definition 1 The quality of a monitoring structure f is defined as

η = max
p,p′
‖fi (· | p)− fi (· | p′)‖TV

where fi is the marginal of f on Yi and ‖g − h‖TV denotes the total variation distance
between g and h.10

It is important to note that the quality of monitoring depends only on themarginal
distributions fi (· | p) over i’s sales and not on the joint distributions of sales f (· | p) .
In particular, the fact that the marginal distributions fi (· | p) and fi (· | p′) are close–
η is small– does not imply that the underlying joint distributions f (· | p) and f (· | p′)
are close. When f (· | p) is a bivariate log normal, η can be explicitly determined as

η = 2Φ
(

∆µmax
2σ

)
− 1 (4)

where Φ is the cumulative distribution function of a univariate standard normal and
∆µmax = maxp,p′

∣∣lnQi (pi, pj)− lnQi

(
p′i, p

′
j

)∣∣ is the maximum possible difference in
log expected sales. As σ increases, η decreases and goes to zero as σ becomes arbi-
trarily large.

3.1.1 A bound on tacit collusion

The main result of this section develops a bound on equilibrium profits under tacit
collusion. An important feature of the bound is that it is independent of any corre-
lation between firms’sales and depends only on the marginal distribution of sales.
10The total variation distance between two densities g and h on X is defined as ‖g − h‖TV =

1
2

∫
X
|g (x)− h (x)| dx.
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Figure 2: Bound on Profits from Tacit Collusion

Proposition 1 In any equilibrium of Gδ (f) , the repeated game without communi-
cation, the profits

π1 + π2 ≤ 2πM −Ψ−1
(

4π δ2

1−δη
)

where π = maxpj πi (p, pj) and η is the quality of monitoring.

Before embarking on a formal proof of Proposition 1 it is useful to outline the main
ideas (see Figure 2 for an illustration). A necessary condition for a strategy profile s
to be an equilibrium is that a deviation by firm 1 to a strategy s1 in which it always
charges p not be profitable. This is done in two steps. First, we consider a fictitious
situation in which firm 1 assumes that firm 2 will not respond to its deviation. The
higher the equilibrium profits, the more profitable would be the proposed deviation in
the fictitious situation– this is exactly the effect the function Ψ captures in the one-
shot game and Lemma A.2 shows that Ψ captures the same effect in the repeated
game as well. Second, when the monitoring is poor– η is small– firm 2’s actions
cannot be very responsive to the deviation and so the fictitious situation is a good
approximation for the true situation. Lemma A.6 measures precisely how good this
approximation is and quite naturally this depends on the quality of monitoring and
the discount factor.
It is usual to derive necessary conditions for an equilibrium by considering "one-

shot" deviations in which a player cheats in one period and then resumes equilibrium
play.11 But in games with private monitoring, such deviations affect the deviating
11Pai et al. (2014) consider such a deviation.
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players’beliefs about the other player’s signals thereafter and so affect his subsequent
(optimal) play. The deviation we consider– a permanent price cut– is rather naive
but has the feature that future play, while suboptimal, is straightforward. Notice that
profits both from the candidate equilibrium and from the play after the deviation are
evaluated in ex ante terms.
Observe that if we fix the quality of monitoring η and let the discount factor δ

approach one, then the bound becomes trivial (since limδ→1 Ψ−1
(

4π δ2

1−δη
)

= 0) and
so is consistent with the folk theorem. On the other hand, if we fix the discount
factor δ and decrease the quality of monitoring η, the bound converges to 2πM −
Ψ−1 (0) < 2πM and is effective. One may reasonably conjecture that if there were
"zero monitoring" in the limit, that is, if η → 0, then no collusion would be possible.
But in fact 2πN < 2πM − Ψ−1 (0) so that even with zero monitoring, Proposition
1 does not rule out the presence of collusive equilibria. This is consistent with the
finding of Awaya (2014b).12

Proof of Proposition 1. We argue by contradiction. Suppose that Gδ (f) has an

equilibrium, say s, whose average profits13 π1 (s)+π2 (s) exceed 2πM−Ψ−1
(

4π δ2

1−δη
)
.

If we write ε = 2πM − π1 (s)− π2 (s) , then this is equivalent to η < 1−δ
δ2

1
4π

Ψ (ε) .
Given the strategy profile s, define

αtj = Es
[
stj
(
ht−1
j

)]
∈ ∆ (Pj)

where the expectation is defined by the probability distribution over t−1 joint histo-
ries

(
ht−1
i , ht−1

j

)
determined by s. Note that αj depends on the strategy profile s and

not just sj. Let αj =
(
α1
j , α

2
j , ...

)
denote the strategy of firm j in which it plays αtj

in period t following any t− 1 period history. The strategy αj replicates the ex ante
distribution of prices pj resulting from s but is non-responsive to histories.
Let si denote the strategy of firm i in which it plays p with probability one

following any history. From Lemma A.2∑
i

[πi (si, αj)− πi (s)] ≥ Ψ (ε)

From Lemma A.6 we have for i = 1, 2

|πi (si, sj)− πi (si, αj)| ≤ 2
δ2

1− δπη

12Awaya (2014b) constructs an example in which there is zero monitoring– the distribution of a
player’s signals is the same for all action profiles– but, nevertheless, there are non-trivial equilibria.
13We use πi (s) to denote the discounted average payoffs from the strategy profile s as well as the

payoffs in the one-shot game.
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and∑
i

(πi (si, sj)− πi (s)) ≥ −
∑
i

|πi (si, sj)− πi (si, αj)|+
∑
i

(πi (si, αj)− πi (s))

≥ −4
δ2

1− δπη + Ψ (ε)

which is strictly positive. But this means that at least one firm has a profitable
deviation, contradicting the assumption that s is an equilibrium. �

4 Explicit collusion

We now turn to a situation in which firms can explicitly collude. By this we mean
that prior to choosing prices in any period, firms can communicate with each other,
sending one of a finite set of messages to each other. The sequence of actions in any
period is as follows: firms set prices, receive their private sales information and then
simultaneously send messages to each other. Messages are costless– the communica-
tion is "cheap talk"– and are transmitted without any noise. The communication is
unmediated.
Formally, there is a finite set of messages Mi for each firm. A t− 1 period private

history of firm i now consists of the complete list of its own prices and sales as well as
the list of all messages sent and received. Thus a private history is now of the form

ht−1
i =

(
pτi , y

τ
i ,m

τ
i ,m

τ
j

)t−1

τ=1

and the set of all such histories is denoted by H t−1
i . A strategy for firm i is now a pair

(si, ri) where si = (s1
i , s

2
i , ...), the pricing strategy, and ri = (r1

i , r
2
i , ...) , the reporting

strategy, are collections of functions: sti : H t−1
i → ∆ (Pi) and rti : H t−1

i × Pi × Yi →
∆ (Mi) .
Call the resulting infinitely repeated game with communication Gcom

δ (f) . Sequen-
tial equilibrium is defined as before.

4.1 Equilibrium strategies

We will now identify some properties of the monitoring structure f that will allow the
firms to achieve near-perfect collusion, that is, the sum of their profits will be close
to those of a monopolist. The log-normal monitoring structure has two parameters–
the variance of log-sales σ2 and the correlation between log-sales, ρ0, when the firms
charge identical prices. Of course, the discount factor δ is key parameter as well.
Monopoly pricing will be sustained using a grim trigger pricing strategy together

with a threshold sales-reporting strategy in a manner first identified by Aoyagi (2002).
Since the price set by a competitor is not observable, the trigger will be based on
the communication between firms, which is observable. The communication itself

13



consists only of reporting whether one’s sales were "high"– above a commonly known
threshold– or "low". Firms start by setting monopoly prices and continue to do so as
long as the two sales reports agree– both firms report "high" or both report "low".
Differing sales reports trigger permanent non-cooperation as a punishment.
Specifically, consider the following strategy (s∗i , r

∗
i ) in the repeated game with

communication where there are only two possible messagesH ("high") and L ("low").
The pricing strategy s∗i is:

• In period 1, set the monopoly price pM .

• In any period t > 1, if in all previous periods, the reports of both firms were
identical (both reported H or both reported L), set the monopoly price pM ;
otherwise, set the Nash price pN .

The communication strategy r∗i is:

• In any period t ≥ 1, if the price set was pi = pM , then report H if log sales
ln yti ≥ µM ; otherwise, report L.

• In any period t ≥ 1, if the price set was pi 6= pM , then report H if ln yti ≥
µi + 1

ρ

(
µM − µj

)
; otherwise, report L.

(µM = lnQi (pM , pM)− 1
2
σ2, µi = lnQi (pi, pM)− 1

2
σ2 and µj = lnQj (pM , pi)− 1

2
σ2.)

Denote by (s∗, r∗) the resulting strategy profile. We will establish that if firms are
patient enough and the monitoring structure is noisy (σ is high) but correlated (ρ0 is
high), then the strategies specified above constitute an equilibrium. But before doing
this, it is useful to calculate the lifetime average profits if firms follow the proposed
strategies.

4.1.1 Optimality of communication strategy

Suppose firm 2 follows the strategy (s∗2, r
∗
2) and until this period, both have made

identical sales reports. Recall that a punishment will be triggered only if the reports
disagree. Thus, firm 1 will want to maximize the probability that its report agrees
with that of firm 2. Since firm 2 is following a threshold strategy, it is optimal for firm
1 to do so as well. If firm 1 adopts a threshold of λ such that it reports H when its
log sales exceed λ, and L when they are less than λ, the probability that the reports
will agree is

Pr [lnY1 < λ, lnY2 < µM ] + Pr [lnY1 > λ, lnY2 > µM ] (5)

The optimal reporting threshold is (see Lemma A.7)

λ (p1) = µ1 +
1

ρ
(µM − µ2) (6)
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If firm 1 deviated and cut its price to p1 < pM , then clearly the expected (log)
sales of the two firms are such that µ1 > µM > µ2. Thus, λ (p1) > µ1 > µM , which
says, as expected, that once firm 1 cuts its price– and so experiences stochastically
higher sales– it should optimally under-report relatively to the equilibrium reporting
strategy r∗1. On the other hand, if firm 1 did not deviate and set a price pM , then the
(6) implies that it is optimal for it to use a threshold of µM = λ (pM) as well.
We have thus established that if firm 2 plays according to (s∗2, r

∗
2) , then following

any price p1 that firm 1 sets, the communication strategy r∗1 is optimal. The optimality
of the proposed pricing strategy s∗1 depends crucially on the probability of triggering
the punishment and we now establish how this is affected by the extent of a price
cut.
Thus, if firm 1 sets a price of p1, the probability that its report will be the same

as that of firm 2 (and so the punishment will not be triggered) is given by

β (p1) ≡
∫ λ(p1)−µ1

σ

−∞

∫ µM−µ2
σ

−∞
φ (z1, z2; ρ) dz2dz1 +

∫ ∞
λ(p1)−µ1

σ

∫ ∞
µM−µ2

σ

φ (z1, z2; ρ) dz2dz1

(7)
where φ (z1, z2; ρ0) is a standard bivariate normal density with correlation coeffi cient
ρ0 ∈ (0, 1) .14 Note that while λ (p1), µ1, µ2 and the correlation coeffi cient ρ depend on
p1, σ is independent of p1. Observe also that for any p1 ≤ pM , β (p1) ≥ Φ

(µM−µ2
σ

)
≥

1
2
where Φ denotes the cumulative distribution function of the standard univariate

normal. This is because firm 1 could always adopt a communication strategy in
which after a deviation to p1 < pM , it always reports L independently of its own
sales, effectively setting λ (p1) = ∞. This guarantees that firm 1’s report will be
the same as firm 2’s report with a probability equal to Φ

(µM−µ2
σ

)
. Since µM ≥ µ2,

Φ
(µM−µ2

σ

)
≥ 1

2
. This means that the probability of detecting a deviation is less than

one-half.

4.1.2 Equilibrium profits

If both set prices pM and follow the proposed reporting strategy, the probability that
their reports will agree is just β (pM) , obtained by setting λ (p1) = µ1 = µ2 = µM
and ρ = ρ0 in (7). Sheppard’s formula for the cumulative of a bivariate normal (see
Tihansky, 1972) implies that

β (pM) = 1
π

arccos (−ρ0)

which is increasing in ρ0 and converges to 1 as ρ0 goes to 1.
The lifetime average profit π∗ resulting from the proposed strategies is given by

(1− δ)πM + δ [β (pM) π∗ + (1− β (pM))πN ] = π∗ (8)

14The standard (with both means 0 and both variances 1) bivariate normal density is φ (z1, z2; ρ) =
1

2π
√
1−ρ2

exp
(
− 1
2(1−ρ2)

(
z21 + z

2
2 − 2ρz1z2

))
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and it is easy to see that for any fixed δ,

lim
ρ0→1

π∗ = πM

4.1.3 Equilibrium with communication

Proposition 2 There exists a δ such that for all δ > δ, once σ and ρ0 are large
enough, then (s∗, r∗) constitutes an equilibrium of Gcom

δ (f) , the repeated game with
communication.

Proof. Suppose that in all previous periods, both firms have followed the proposed
strategies and their reports have agreed. If firm 1 deviates to p1 < pM in the current
period, it gains

∆1 (p1) = (1− δ) π1 (p1, pM) + δ [β (p1) π∗ + (1− β (p1))πN ]− π∗ (9)

where π∗ is defined in (8). Thus,

∆′1 (p1) = (1− δ) ∂π1

∂p1

(p1, pM) + δβ′ (p1) [π∗ − πN ]

We will show that when σ is large enough, for all p1, ∆′1 (p1) > 0. Since ∆1 (pM) = 0,
this will establish that a deviation to a price p1 < pM is not profitable. Now observe
that from Lemma A.8,

lim
σ→∞

∆′1 (p1) = (1− δ) ∂π1
∂p1

(p1, pM) + δ 1

π
√

1−ρ20γ(p1,pM )2
× ρ0

∂γ
∂p1

(p1, pM)× [π∗ − πN ]

≥ (1− δ) ∂π1
∂p1

(pM , pM) + δ 1

π
√

1−ρ20γ(0,pM )2
× ρ0

∂γ
∂p1

(0, pM)× [π∗ − πN ]

where the last inequality follows from the fact that since π1 is concave in p1,
∂π1
∂p1

(p1, pM) >
∂π1
∂p1

(pM , pM) and the fact that γ (p1, pM) is increasing and convex in p1.
Let δ be the solution to

(1− δ) ∂π1
∂p1

(pM , pM) + δ 1

π
√

1−γ(0,pM )2
× ∂γ

∂p1
(0, pM)× [π∗ − πN ] = 0 (10)

which is just the right-hand side of the inequality above when ρ0 = 1. Such a δ exists
since ∂π1

∂p1
(pM , pM) is finite and, by assumption, ∂ρ

∂p1
(0, pM) is strictly positive. Notice

that for any δ > δ, the expression on the left-hand side is strictly positive.
Now observe that

1

π
√

1−ρ20γ(1,pM )2
× ρ0

∂γ
∂p1

(0, pM)× [π∗ − πN ]

is increasing and continuous in ρ0 (recall that π
∗ is increasing in ρ0). Thus, given any

δ > δ, there exists a ρ0 (δ) such that for all ρ0 = ρ0 (δ)

(1− δ) ∂π1

∂p1

(pM , pM) + δ 1

π
√

1−ρ20γ(0,pM )2
× ρ0

∂γ
∂p1

(0, pM)× [π∗ − πN ] = 0
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Note that ρ0 (δ) is a decreasing function of δ and for any ρ0 > ρ0 (δ) , the left-hand
side is strictly positive.
A deviation by firm 1 to a price p1 > pM is clearly unprofitable.
This completes the proof.

Aoyagi (2002) was the first to introduce threshold reporting strategies. He shows
that for a given monitoring structure (ρ0 and σ fixed) as the discount factor δ goes
to one, these strategies constitute an equilibrium. The idea– as in all the "folk
theorems"– is that even when the probability of a deviation being detected is low, if
players are patient enough, future punishments are a suffi cient deterrent even if they
are distant.
In contrast, Proposition 2 shows that for a given discount factor (δ high but

fixed), as ρ0 goes to one and σ goes to infinity, there is an equilibrium with high
profits. Its logic, however, is different from that underlying the "folk theorems".
Here the punishment power derives not from the patience of the players; rather it
comes from the noisiness of the monitoring. A deviating firm will then find it very
diffi cult to predict its rival’s sales and hence, even it "lies" optimally, a deviation is
very likely to trigger a punishment.

5 Gains from communication

Proposition 1 shows that the profits from any equilibrium under tacit collusion cannot
exceed

2πM −Ψ−1
(

4π δ2

1−δη
)

whereas Proposition 2 provides conditions under which there is an equilibrium under
explicit collusion that with profits 2π∗ (as defined in (8)). The two results together
lead to the formal version of the result stated in the introduction. Let δ be determined
as in (10).

Theorem 1 For any δ > δ, there exist (σ (δ) , ρ0 (δ)) such that for all (σ, ρ0) �
(σ (δ) , ρ0 (δ)) there is an equilibrium under explicit collusion with total profits 2π∗

such that
2π∗ > 2πM −Ψ−1

(
4π δ2

1−δη
)

As ρ0 → 1, π∗ → πM and as σ → ∞, η → 0. Thus, in the limit the difference in
profits between explicit and tacit collusion is at least Ψ−1 (0) > 0.
The workings of the main result can be seen in Figure 3, which is drawn for the

case of linear demand (see the next section for details). First, notice that the profits
from explicit collusion depend on ρ0 and not on σ (but σ has to be suffi ciently high to
guarantee that the suggested strategies form an equilibrium). The bound on profits
from tacit collusion, on the other hand, depends on σ and not on ρ0. For small values
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2πM

2π∗

2πM −Ψ−1(0)

ρ0

6

σ(δ) σ

Tacit bound

Explicitt

Figure 3: Gains from Communication

of σ, the bound is ineffective and says only that these do not exceed joint monopoly
profits. As σ increases, the bound becomes tighter but at intermediate levels the
profits from the equilibrium under explicit collusion do not exceed the bound. Once
σ > σ (δ) , explicit collusion results in strictly higher profits than tacit collusion. In
the limit, the bound is 2πM −Ψ−1 (0).

6 Linear demand

In this section, we illustrate the workings of our results when (expected) demand is
linear.
Suppose that15

Qi (pi, pj) = max (A− bpi + pj, 1)

where A > 0 and b > 1. For this specification, the monopoly price pM = A/2 (b− 1)
and monopoly profits πM = A2/4 (b− 1) . There is a unique Nash equilibrium of
the one-shot game with prices pN = A/ (2b− 1) and profits πN = A2b/ (2b− 1)2 .
A firm’s best response if the other firm charges the monopoly price pM is p =
A (2b− 1) /4b (b− 1) . The highest possible profit that firm 1 can achieve when charg-
ing a price of p is π = π1 (p, pM) = A2 (2b− 1)2 /16b (b− 1)2 .
It remains to specify how the correlation between the firms’log sales is affected

15This specification of "linear" demand is used because ln 0 is not defined.
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Figure 4: Unprofitable Deviations

by prices. In this example we adopt the following specification:

ρ =
ρ0

1 + |p1 − p2|

which, of course, satisfies Assumption 1.
Then, recalling (2), it may be verified that for ε ∈ [0, πM/2b

2]

Ψ (ε) = ε+ A
8b(b−1)2

(
A− 2

√
2 (b− 1) (2b− 1)

√
ε
)

which is achieved at equal prices. Note that Ψ (0) = πM/2b (b− 1) and Ψ−1 (0) =
πM/2b

2.
Finally, from (4)

η = 2Φ
(

∆µmax
2σ

)
− 1

where ∆µmax = lnQ2 (0, pM)− lnQ2 (pM , 0) .

A numerical example Suppose A = 120 and b = 2. Let δ = 0.7 and ρ0 = 0.95.
For these parameters, πM = 3600, π = 4050 and ∆µmax = 5.19. Also, the profits from
the equilibrium under explicit collusion, π∗ = 3524 (approximately).
Figure 3 depicts the bound on profits from tacit collusion as a function of σ using

Proposition 1. For low values of σ (approximately σ = 60 or lower), the bound
is ineffective– it equals 2πM– and as σ → ∞, converges to 2πM − Ψ−1 (0). As
shown, the profits under explicit collusion exceed the bound when σ > σ (δ) = 200
(approximately).
Figure 4 verifies that the strategies (s∗, r∗) constitute an equilibrium– a deviation

to any p1 < pM is unprofitable as ∆ (p1) < 0 (as defined in (9)). This is verified for
σ = 60 and, of course, the same strategies remain an equilibrium for higher values of
σ.
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7 Conclusion

We have provided theoretical support for the idea that communication facilitates
greater collusion. Where do the gains from communication come from? When the
monitoring is poor, under tacit collusion, a price cut cannot be detected with any
confidence and this is the basis of the bound developed in Proposition 1. Under
explicit collusion, however, the probability that a price cut will trigger a punishment
is significant relative to the short-term gains. Thus, communication reduces the type
II error associated with imperfect monitoring and this is the driving force behind the
main result.
We conjecture that the fact that communication facilitates greater collusion holds

quite generally beyond the circumstances we have identified in this paper– that the
monitoring quality be low and this in turn requires that sales be rather volatile. We
view our result as only a first step towards distinguishing between the two forms of
collusion and recognize its limitations.
First, we did not identify the best equilibrium under explicit collusion; we only

constructed an equilibrium. This equilibrium was based on very simple grim trigger
strategies and these, because of their unforgiving nature, are known to perform badly.
Moreover, the communication strategies are not very good at detecting deviations–
the probability that a price cut will be trigger a punishment is less than one-half.
Second, the upper bound on profits under tacit collusion provided here bites only

when the monitoring quality is rather poor. The development of better payoffbounds
for repeated games with private monitoring remains a challenge.

A Appendix

A.1 Tacit collusion

The first lemma derives some simple properties of the function Ψ. This function
delineates the trade-off between effi ciency and incentives in the one-shot game and is
central to the bound for equilibrium payoffs of the repeated game developed below.

Lemma A.1 Ψ is non-increasing, convex and satisfies limε→0 Ψ (ε) = Ψ (0) > 0.

Proof. The fact that Ψ is non-increasing follows trivially from its definition. To see
that Ψ is convex, note that

πi (α) =

∫
πi (pi, pj) dα (pi, pj)

Suppose α′ is the solution to the program above for ε = ε′ and similarly, suppose α′′

is the solution for ε = ε′′. Then since the constraint is a linear function of α, for any
θ ∈ [0, 1], θα′ + (1− θ)α′′ is feasible for ε = θε′ + (1− θ) ε′′. The convexity of Ψ now
follows since the objective function is also linear in α.
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The fact that Ψ (ε) converges to Ψ (0) as ε→ 0 follows from the Berge Maximum
Theorem. To see that Ψ (0) > 0, note that for ε = 0 the only feasible solution to the
optimization problem defining Ψ is (pM , pM) . Since this is not a Nash equilibrium,
Ψ (0) > 0.

A.1.1 Non-responsive strategies

The induced ex ante distribution over Pj in period t induced by a strategy profile s
is

αtj (s) = Es
[
stj
(
ht−1
j

)]
∈ ∆ (Pi) (11)

Given a strategy profile s, recall that αj denotes the strategy of firm i in which it
plays αtj (s) in period t following any t− 1 period history. The strategy αj replicates
the ex ante distribution of prices resulting from s but is non-responsive to histories.
The following lemma shows that the function Ψ, which determines the incentives

versus effi ciency trade-off in the one-shot game, embodies the same trade-off in a
repeated setting if the non-deviating player follows a non-responsive strategy. It shows
that to minimize the average incentive to deviate while achieving average profits
within ε of 2πM one should split the incentive evenly across periods. The lemma
resembles an intertemporal "consumption smoothing" argument (recall that Ψ is
convex).

Lemma A.2 (Smoothing) For any strategy profile s whose profits are greater than
2πM − ε, ∑

i

[πi (si, αj (s))− πi (s)] ≥ Ψ (ε)

where si denote the strategy of firm i in which it plays p with probability one following
any history.

Proof. Define

ε (t) = 2πM − Es
[∑

i

πi
(
st
(
ht−1

))]
as the difference between the sum of effi cient profits 2πM and the sum of expected
profits in period t. Now clearly (1− δ)

∑∞
t=1 δ

tε (t) ≤ ε.
Then, ∑

i

[πi (si, αj (s))− πi (s)]

= Es

[
(1− δ)

∞∑
t=1

δt
∑
i

[
πi
(
p, ptj

)
− πi

(
pti, p

t
j

)]]

≥ (1− δ)
∞∑
t=1

δtΨ (ε (t))
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where the first equality follows from the fact that the induced distribution over prices
ptj is the same under (si, αj) as it is under s. The second inequality follows from the
definition of Ψ.
Now note that Lemma A.1 guarantees that a solution to the problem

min
{ε(t)}

(1− δ)
∞∑
t=1

δtΨ (ε (t))

subject to

(1− δ)
∞∑
t=1

δtε (t) ≤ ε

is to set ε (t) = ε for all t. Thus, we have that

(1− δ)
∞∑
t=1

δtΨ (ε (t)) ≥ Ψ (ε)

A.1.2 Weak monitoring

For a fixed strategy pair (s1, s2), let λtj be the induced probability distribution over

firm j’s private histories htj ∈ H t
j = (Pj × Yj)t ⊂ R2t. Similarly, let λ

t

j be the
probability distribution over j’s private histories that results from the strategy pair
(si, sj) .

16 We wish to determine the total variation distance between λtj and λ
t

j.
The total variation distance between two distributions G and G over Rn is equal

to ∥∥G−G∥∥
TV

= 1
2

sup
‖ϕ‖∞≤1

∣∣E [ϕ]− E [ϕ]
∣∣ (12)

where E and E denote the expectations with respect to the distribution G and G,
respectively and the supremum is taken over all measurable functions ϕ with sup norm
‖ϕ‖∞ ≤ 1. Note that the definition in (12) is equivalent to the one in Definition 1.
See, for instance, Levin, Peres and Wilmer (2009).
As a first step, we decompose the total variation distance between two probabil-

ity distributions into the distance between their marginals and that between their
conditionals.

Lemma A.3 Given two distributions G and G over Rm ×Rn,∥∥G−G∥∥
TV
≤
∥∥GX −GX

∥∥
TV

+ sup
x

∥∥GY |X −GY |X
∥∥
TV

where GX is the marginal distribution of G on Rm and GY |X (· | x) is the conditional
distribution of G on Rn given X = x (and similarly for G).

16Recall that si denotes the strategy of firm i in which it sets p with probability one following any
history.
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Proof. In what follows we denote by E all expectations with respect to G and by
E, all expectations with respect to G.
Given any function ϕ : Rm ×Rn → [−1, 1] , we have

1
2

∣∣E [ϕ]− E [ϕ]
∣∣ = 1

2

∣∣EX [EY |X [ϕ]
]
− EX

[
EY |X [ϕ]

]∣∣
≤ 1

2

∣∣EX [EY |X [ϕ]
]
− EX

[
EY |X [ϕ]

]∣∣+ 1
2

∣∣EX

[
EY |X [ϕ]

]
− EX

[
EY |X [ϕ]

]∣∣
≤ 1

2
sup
‖ϕ‖∞≤1

∣∣EX [ϕ]− EX [ϕ]
∣∣+ 1

2
EX

[∣∣EY |X [ϕ]− EY |X [ϕ]
∣∣]

≤
∥∥GX −GX

∥∥
TV

+ EX

[∥∥GY |X −GY |X
∥∥
TV

]
≤

∥∥GX −GX

∥∥
TV

+ sup
x

∥∥GY |X −GY |X
∥∥
TV

and so ∥∥G−G∥∥
TV

= 1
2

sup
‖ϕ‖∞≤1

∣∣E [ϕ]− E [ϕ]
∣∣

≤
∥∥GX −GX

∥∥
TV

+ sup
x

∥∥GY |X −GY |X
∥∥
TV

Next we show that given a history ht−1
j , the total variation distance between the

two conditional distributions cannot exceed the monitoring quality.

Lemma A.4 For any ht−1
j ,∥∥∥λtj (· | ht−1

j

)
− λtj

(
· | ht−1

j

)∥∥∥
TV
≤ η

Proof. Let Sj
(
· | ht−1

j

)
denote the distribution of prices that j’s strategy sj in-

duces after j’s private history ht−1
j . Similarly, let Si

(
· | ht−1

i

)
denote the distribution

of prices that i’s strategy induces after i’s private history ht−1
i . Let Ŝi

(
· | ht−1

j

)
=

E
[
Si
(
· | ht−1

i

)
| ht−1

j

]
denote j’s expectation about i’s distribution of prices, given

j’s own history ht−1
j . Finally, let Ŝ

(
p | ht−1

j

)
= Ŝi

(
pi | ht−1

j

)
Sj
(
pj | ht−1

j

)
denote the

joint distribution of prices that j expects given j’s private history ht−1
j (recall that

firms’choices are independent).
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Now, for any ϕ : Pj × Yj → [−1, 1]∣∣∣∣∣
∫
Pj×Yj

ϕdλtj
(
· | ht−1

j

)
−
∫
Pj×Yj

ϕdλ
t

j

(
· | ht−1

j

)∣∣∣∣∣
=

∣∣∣∣∣
∫
Pi

∫
Pj

∫
Yj

ϕdFj (yj | p) dSj
(
pj | ht−1

j

)
dŜi
(
pi | ht−1

j

)
−
∫
Pj

∫
Yj

ϕdFj (yj | p, pj) dSj
(
pj | ht−1

j

)∣∣∣∣∣
=

∣∣∣∣∣
∫
P

∫
Yj

ϕdFj (yj | p) dŜ
(
p | ht−1

j

)
−
∫
P

∫
Yj

ϕdFj (yj | p, pj) dŜ
(
p | ht−1

j

)∣∣∣∣∣
=

∣∣∣∣∣
∫
P

∫
Yj

ϕ [fj (yj | p)− fj (yj | p, pj)] dyjdŜ
(
p | ht−1

j

)∣∣∣∣∣
≤

∫
P

[∫
Yj

|ϕfj (yj | p)− ϕfj (yj | p, pj)| dyj

]
dŜ
(
p | ht−1

j

)
≤ 2

∫
P

ηdŜ
(
p | ht−1

j

)
= 2η

where the second equality follows from the fact that∫
Pj

∫
Yj

ϕdFj (yj | p, pj) dSj
(
pj | ht−1

j

)
=

∫
Pi

∫
Pj

∫
Yj

ϕdFj (yj | p, pj) dSj
(
pj | ht−1

j

)
dŜi
(
pi | ht−1

j

)
and the second inequality follows from the definition of total variation.
Thus,∥∥∥λtj (· | ht−1

j

)
− λtj

(
· | ht−1

j

)∥∥∥
TV

= 1
2

sup
‖ϕ‖∞≤1

∣∣∣∣∣
∫
Pj×Yj

ϕdλtj
(
· | ht−1

j

)
−
∫
Pj×Yj

ϕdλ
t

j

(
· | ht−1

j

)∣∣∣∣∣
≤ η

Combining the preceding two results we obtain

Lemma A.5 For all t, ∥∥∥λtj − λtj∥∥∥
TV
≤ tη

Proof. The proof is by induction. For t = 1, there is no history and Lemma A.4
implies the result directly.
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Now suppose that the result holds for t− 1. Using Lemma A.3, we have∥∥∥λtj − λtj∥∥∥
TV
≤

∥∥∥λt−1
j − λt−1

j

∥∥∥
TV

+ sup
ht−1j

∥∥∥λtj (· | ht−1
j

)
− λtj

(
· | ht−1

j

)∥∥∥
TV

≤ (t− 1) η + η

by the induction hypothesis and Lemma A.4.

The next result verifies the intuition that when the monitoring quality is low, the
profits of a deviator who undertakes a permanent price cut are not too different from
those when its rival follows a distributionally equivalent non-responsive strategy. The
importance of the lemma is in quantifying this difference.

Lemma A.6 Let α be the non-responsive strategy as defined in (11). Then,

|πi (si, sj)− πi (si, αj)| ≤ 2
δ2

1− δπη

where π = maxpj πi (p, pj) .

Proof. As above, let λtj be the distribution over firm j’s private histories htj induced

by (si, sj) and let λ
t

j be the distribution over j’s private histories induced by (si, sj) .
Then,

πi (si, sj) = (1− δ)
∞∑
t=1

δt
∫
Ht−1
j

E
[
πi (p, sj) | ht−1

j

]
dλj

(
ht−1
j

)
Also, if Sj

(
· | ht−1

j

)
denotes the distribution over j’s prices induced by the strategy

sj following the history ht−1
j , then

πi (si, αj) = (1− δ)
∞∑
t=1

δt
∫
Pj

πi (p, pj) dα
t
j (pj)

= (1− δ)
∞∑
t=1

δt
∫
Pj

πi (p, pj)

(∫
Ht−1
j

dSj
(
pj | ht−1

j

)
dλj

(
ht−1
j

))

= (1− δ)
∞∑
t=1

δt
∫
Ht−1
j

E
[
πi (p, sj) | ht−1

j

]
dλj

(
ht−1
j

)
since by definition

αtj (pj) =

∫
Ht−1
j

Sj
(
pj | ht−1

j

)
dλj

(
ht−1
j

)
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Thus,

|πi (si, sj)− πi (si, αj)|

≤ (1− δ)
∞∑
t=1

δt

∣∣∣∣∣
∫
Ht−1
j

E
[
πi (p, sj) | ht−1

j

] (
dλj

(
ht−1
j

)
− dλj

(
ht−1
j

))∣∣∣∣∣
≤ 2 (1− δ)

∞∑
t=1

δt (t− 1) ηπ

= 2
δ2

1− δπη

where the second inequality is a consequence of Lemma A.5 and the fact that, as in
(12), given any two distributions λ and λ,

∣∣E [ϕ]− E [ϕ]
∣∣ ≤ 2 ‖ϕ‖∞ ×

∥∥λ− λ∥∥
TV
for

any bounded measurable function ϕ.

A.2 Explicit collusion

Lemma A.7 Suppose firm 2 follows the strategy (s∗2, r
∗
2) . Following a price of p1, the

optimal reporting threshold for firm 1 is

λ (p1) = µ1 +
1

ρ
(µM − µ2)

Proof. If firm 1 sets a price of p1, and uses a reporting threshold of λ, then the
probability that the sales reports agree (see (5)) can be rewritten (after standardizing
the variables) as

∫ λ−µ1
σ

−∞

∫ µM−µ2
σ

−∞
φ (z1, z2; ρ) dz2dz1 +

∫ ∞
λ−µ1
σ

∫ ∞
µM−µ2

σ

φ (z1, z2; ρ) dz2dz1

where φ is a standard bivariate normal density with correlation coeffi cient ρ ∈ (0, 1)
of the form in Assumption 1.
Maximizing this with respect to λ results in the first-order condition∫ µM−µ2

σ

−∞
φ
(
λ−µ1
σ
, z2; ρ

)
dz2 =

∫ ∞
µM−µ2

σ

φ
(
λ−µ
σ
, z2; ρ

)
dz2

Dividing by the marginal density of Z1 at
λ−µ1
σ
, and writing in terms of the cumulative

distribution, we obtain

ΦZ2|Z1

(
µM−µ2

σ
| λ−µ1

σ

)
= 1− ΦZ2|Z1

(
µM−µ2

σ
| λ−µ1

σ

)
(13)
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This says that the optimal λ is such that µM−µ2
σ

is the median of the distribution
ΦZ2|Z1 of Z2 conditional on Z1 = λ−µ1

σ
. But since φZ2|Z1 is also normal, its median is

the same as its mean, ρλ−µ1
σ
. Thus the optimal strategy is to choose λ such that

µM−µ2
σ

= ρλ−µ1
σ

from which the result follows.

Lemma A.8 For any p1 ≥ 1,

lim
σ→∞

β′ (p1) =
1

π
√

1− ρ2
0γ (p1, pM)2

× ρ0

∂γ

∂p1

(p1, pM)

Proof. First, we derive β′ (p1) . Since λ is optimally chosen, the envelope theorem
guarantees that

∂β (p1)

∂λ
= 0

and so
∂β (p1)

∂µ1

= −∂β (p1)

∂λ
= 0

as well.
Thus, we have

β′ (p1) =
∂β (p1)

∂ρ

∂ρ

∂p1

+
∂β (p1)

∂µ2

∂µ2

∂p1

Now, since we can write

β (p1) = 2Φ
(
λ(p1)−µ1

σ
, µM−µ2

σ
; ρ
)

+ Φ
(
λ(p1)−µ1

σ

)
+ Φ

(µM−µ2
σ

)
− 1

where

Φ (z1, z2; ρ) = Pr [Z1 ≥ z1, Z2 ≥ z2] =

∫ ρ

−1

φ (z1, z2; θ) dθ

using Sheppard’s formula17 (see Tihansky, 1972) and Φ is the cumulative distribution
function of a standard univariate normal. Thus,

∂β (p1)

∂ρ
= 2φ

(
λ(p1)−µ1

σ
, µM−µ2

σ
; ρ
)

which converges to 2φ (0, 0; ρ) = 1

π
√

1−ρ2
as σ →∞.

17This employs a change of variables to the original formula.
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Finally,

∂β (p1)

∂µ2

=
1

σ

∫ λ−µ1
σ

−∞
φ
(
z1,

µM−µ2
σ

; ρ
)
dz1 −

∫ ∞
λ−µ1
σ

φ
(
z1,

µM−µ2
σ

; ρ
)
dz1


=

1

σ

[
2Φ
(

1−ρ2
ρ

µM−µ2
σ

)
− 1
]
φ
(µM−µ2

σ

)
in a manner analogous to (13). This converges to 0 as σ →∞.
This completes the proof.
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