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Abstract

A graph-theoretic framework is developed to study decentralized settlement in
a general payment network. This paper argues settlement efficiency through exam-
ining how much settlement fund needs to be provided to settle all given obligations.
Observing that required amount of settlement fund depends on in which order those
obligations are settled, we focus on a pair of problems that derives its lower-bound
and upper-bound, each formalized as a numbering problem on flow network. Our
main finding is that twist nature of underlying directed graph (who obliged to whom)
is a key factor to form settlement efficiency. The twist nature is captured through
our original concepts; arrow-twisted, and vertex-twisted. Lower-bound of required
settlement fund tends to be larger when underlying directed graph is twisted in
arrow-twisted sense, while upper-bound tends to be smaller when it is twisted in
vertex-twisted sense.

Keywords: settlement, payment network, interconnected financial system, graph-
theoretic model
JEL classification: D53, D85, G20

1 Introduction

The paper proposes a graph-theoretic framework to study decentralized settlement
in a general payment network. We formalize and examine a pair of problems that have
important applications in interbank settlement systems.

Following simple example hints our framework, also quickly introduces our problems.

The environment for our problems is summarized in the left of Figure 1, which shows
a distribution of obligations among economic subjects. Each of the three vertices specifies
an economic subject, or a participant in the settlement system. Each of the three arrows
traces each relation of obligation between two subjects. Each of the numbers indicates
individual amount of each obligation. To summarize the environment, each of the three
subjects has one obligation and one claim, each with 10 amount. We suppose each obli-
gation needs to be settled via a transfer of settlement fund in each specified amount. For
our analysis, we only allow each unit of obligation to be settled at one time, prohibiting
settlement in multiple times.
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Figure 1:

Under these suppositions, we investigate settlement efficiency, or how much settlement
fund needs to be provided to settle all the obligations. We notice that relative order of
settlement is crucial. In the middle of Figure 1, each order of settlement is expressed
by each number written in the upper-right of each amount of obligation. In this order
of settlement, only the subject on the top needs to input settlement fund in the amount
of 10, as indicated in boldface. The two other subjects need not input settlement fund
because they can recirculate the payments they receive. The figure is interpreted to
express a possible settlement procedure for our given distribution of obligations. Under
this settlement procedure, 10 amount of settlement are required in total. In contrast,
under a different settlement procedure as depicted in the right of Figure 1, total required
amount of settlement is now 20 as confirmed similarly.

Supposing any relative order of settlement be possible to realize, the paper specifically
examines lower-bound and upper-bound of total required amount of settlement fund. The
lower-bound would be attained when order is optimally chosen by a central planner, that is
each central bank for the case of settlement in interbank settlement systems. The upper-
bound would be possible when order is formed under ill-coordination among subjects.
The paper examines these specified problems in a general setting.

Settlement efficiency is one of critical concern in recent interbank settlement systems.
Traditionally, interbank settlement systems processed transactions on a net basis; pay-
ments are collected and settled only at certain designated time –typically once a day– ,
and participant banks make net payments; the difference between payments received and
payments owed. Realizing that net settlement systems are prone to cascades of defaults,
many of interbank settlement systems now adopt real-time gross settlement (RTGS) sys-
tems that settle each payment on an individual basis.

Though RTGS systems reduce the risk of cascades of defaults compared to net settle-
ment systems, it tends to require considerable settlement fund. When participants hold
insufficient funds for settlement, typically central banks provide settlement fund through
intraday lending. For well-functioning of settlement systems, it is crucial to provide suffi-
cient settlement fund. The critical question there is how much settlement fund is required
for settlements in each interbank settlement system. This study investigates the question
by presenting two formal problems pertaining to each lower-bound and upper-bound of
required fund. Accordingly, it is a benchmark for further research into that issue.

One of the main contribution of this paper is to provide a mathematical framework
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for decentralized settlement. The framework enables to express every possible settlement
procedures, which allows us to argue settlement efficiency. Eisenberg and Noe (2001) pro-
vided a different framework for decentralized settlement. His framework is not to examine
settlement efficiency, by effectively supposing settlement always with infinitely small unit
of installment. There, settlement efficiency is assumed highest possible. Our framework
is able to examine settlement in arbitrary unit of installment each as a different environ-
ment, that means settlement in infinitely small unit is encompassed as one environment.
Rotemberg (2011) firstly pointed out in a persuading manner that settlement efficiency
gets worse depending on which settlement procedure is realized. The paper focused on
certain class of network structure whose underlying directed graph is to be Euler graph,
and assumed specific behavioral pattern of subjects. Our research proceeds to a different
direction in examining both lower-bound and upper-bound of required settlement fund
supposing much wider settlement procedures are possible to realize. In our direction, we
show several key network factors contribute to form settlement efficiency.

Our main finding is that twist nature of underlying directed graph is a key factor
to form settlement efficiency. The twist nature never appears in the class of network
Rotemberg (2011) examined, and it is captured with our original concepts; arrow-twisted
and vertex-twisted.

Here we take up several examples to see how those concepts are defined, how they
matter for our problems, and also what they imply in economic sense. Figure 2 presents
three example environments for our problems.
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Figure 2: The left of the figure has no relevance neither to arrow-twisted nor vertex-twisted. The middle
is relevant to arrow-twisted, while the right is relevant to vertex-twisted

We start by an environment expressed in the left of the figure, which has no relevance
neither to arrow-twisted nor to vertex-twisted. Role of arrow-twisted and vertex-twisted
is explained in comparison with this example. There are four subjects va, vb, vc, and vd.
Five obligations have been formed among those subjects. The lower-bound of required
settlement fund is derived as 30, that is realized with a settlement procedure in the left
of Figure 3. The upper-bound is 70, that is realized with that in the right of the same
figure.

Now hypothetically decompose distribution of obligations into two distributions as
shown in Figure 4. In latter analysis, we formally define our decomposition. Here notice
that total amount of “decomposed” obligations for each subjects are equal to the original
amount. For example, original obligation by vd to va is 30, which is divided into 20
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Figure 3: The left settlement procedure attains the lower-bound 30 of required settlement fund for
distribution of obligations shown in the left of Figure 2, while the right attains the upper-bound 70.

and 10. Now derive lower-bound and upper-bound for each decomposed distributions of
obligations. There we hypothetically suppose each of divided obligations were settled in
each unit. The lower-bound for each of the decomposed distributions of obligations is
20, and 10. while the upper-bound is 40, 30 each. For this example, we confirm that
mere summation of the lower-bound, upper-bound comes back to each for the original
distribution of obligations, as confirmed as 20 + 10 = 30, while 40 + 30 = 70.
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Figure 4: Original distribution of obligations shown in the left of the figure is decomposed into that in
the middle, and that in the right.

Let us move to the case expressed with the middle of Figure 2, which is relevant to
arrow-twisted. The lower-bound is 40 as in Figure 5, and we are going to see how arrow-
twisted contributes to form that value. Now we have a decomposition as shown in Figure
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Figure 5: Example settlement procedure that attains lower-bound 40 for the middle of Figure 2.

4



6. We confirm that mere summation of the lower-bound for each decomposed distribution
of obligations is 30, which is less than 40. The reason is that there emerges inconsistency
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Figure 6: Original distribution of obligations shown in the left of the figure is decomposed into that in
the middle, and that in the right.

of synchronization among hypothetically divided obligations. Focus on three obligations,
by vf to va, by vb to vc, and by vd to ve. Observe that for each of the decomposed
distributions of obligations, the three obligations are to be settled in an order along with
direction indicated by the arrows when each lower-bound is attained. But for the original
distribution of obligations, there is no order that is consistent with both of such two
orders. This inconsistency is thought to generate negative spillover in the sense that the
lower-bound is larger than that without the inconsistency. The inconsistency is captured
with our notion of arrow-twisted in general.

For our distribution of obligations, suppose obligation by vf to va is to be settled
in two units, 20 and 10 as shown in the left of Figure 7. Then, the lower-bound is
now 30 as shown in the right of the same figure. We confirm that the inconsistency of
synchronization is resolved and the lower-bound gets smaller. Further notice that input of
settlement fund by vf remains zero for those specific example settlement procedures. This
indicates that inconsistency of synchronization is interpreted to arise from an externality
when we suppose subject who inputs settlement fund incur corresponding financing cost,
and also subject who owes obligation can choose unit of settlement.
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Figure 7: For the left distribution of obligations, the right shows an example settlement procedure that
attains its lower-bound 30.

Let us proceed to the case expressed with the right of Figure 2, which is relevant to
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vertex-twisted. The upper-bound is 60 as in Figure 8, and we are going to see how vertex-
twisted contributes to form that value. We have a decomposition as shown in Figure 9.
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Figure 8: Example settlement procedure that attains upper-bound 60 for the right of Figure 2.

We confirm that mere summation of the upper-bound for each decomposed distribution
of obligations is 70 = 50 + 20, which is larger than 60. The reason is that there emerges
inconsistency of synchronization now regarding subjects. For each of the decomposed
distribution of obligations, settlement needs to be executed along with the reverse of di-
rection indicated by each arrows. Now for the original distribution of obligations, focus on
three subjects vf , vb, and vd each has multiple obligations to make and receive. The obli-
gations cannot be settled in a way that each of the three subjects make all their payments
before their receipts as much as possible and also consistent with both of the orders for
decomposed distributions of obligations each attains upper-bound of required settlement
fund. This inconsistency is thought to generate positive spillover in the sense that the
upper-bound is smaller than that without the inconsistency. This type of inconsistency
of synchronization is captured with our notion of vertex-twisted in general. Confirm that
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Figure 9: Original distribution of obligations shown in the left of the figure is decomposed into that in
the middle, and that in the right.

the inconsistency indicated by vertex-twisted is dismissed in Figure 10, where direction of
obligation among vf , vb, vd is oppositely formed.

The remainder of this study is organized as follows. Section 2 introduces our framework
and supplies definitions essential for statement of our problems, and Section 3 presents
our problems formally. Section 4 offers preliminary analyses, introducing the central
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Figure 10: For the left distribution of obligations, the right shows an example settlement procedure
that attains its upper-bound 70.

concept of closed cycle decomposition alongside several fundamental results. Section 5
displays the first half of our analyses, where we introduce three network properties—
domination, arrow-twisted and vertex-twisted—and show how they help characterize the
problems. Those properties combined with others are proposed as the key characteristics
for our problems. Section 6 extends our analysis in detail, examining several types of
transformation of networks in relation to the key characteristics. Section 7 reviews relevant
earlier literature, and Section 8 concludes. The Appendix includes proofs for several
theorems and additional results relevant to specific literature.

2 Model and Definitions

Our framework consists of five elements, which are expressed with five characters: V ,
A, f , s, p. The base elements are V and A, where V is a set of vertices which expresses
economic subjects, while A = {(v, w, n)|v, w ∈ V, n = 1, 2, ..} is a set of arrows each of
which is an ordered pair of vertices with each index, and expresses payment relation
between a pair of subjects. Indices are used to distinguish different payments among the
same subjects. If there is no such multiplicity, all the indices are set as 0, and the indices
are usually not mentioned in order to avoid notational cumbersome. We do not allow any
arrow from and to the same vertex, or exclude payments from and to the same subject.
< V,A > constitutes a directed graph. An example directed graph is shown in the left of
Figure 11.

We are to add additional elements f , s, p to < V,A > to constitute two types of
Networks ; < V,A, f > and < V,A, f, s, p >, where < V,A, f > is to express distribution
of obligations, and < V,A, f, s, p > is to indicate its relevant settlement procedure. Firstly,
f : A → R+ is called as flow, which expresses each amount for each payment. Secondly,
s : A → {1, 2, .., |A|} is called as sequence, which is one-to-one mapping where |A| denotes
the total number of arrows, and economically it expresses relative order of settlement.
Lastly, p : V → R0+ is called as potential, which expresses amount of settlement fund
input by each subject.

We simply term < V,A, f > as f-Network and < V,A, f, s, p > as fsp-Network. The
middle of Figure 11 shows an example of f-Network, and the right of the figure shows an
example of fsp-Network constructed by adding s, p to the left f-Network.
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Figure 11: V = {va, vb, vc, vd}, A = {(va, vb), (va, vc), (vb, vc), (vc, vd), (vd, va)} , f((va, vb)) =
f((vb, vc)) = 10, f((va, vc)) = 20, f((vc, vd)) = f((vd, va)) = 30, s((va, vb)) = 4, s((va, vc)) =
3, s((vb, vc)) = 2, s((vc, vd)) = 5, s((vd, va)) = 1, p(va) = p(vc) = 0, p(vb) = 10, p(vd) = 30

In order to state our problems, we are to define two properties for the Networks,
each of which is to express each economic assumption. One is termed as closed prop-
erty of f-Network, which is to express amounts to make payment and to receive are
balanced for each subject, which we call distribution of obligations are balanced. Given
f-Network < V,A, f >, aggregate amount of payments to receive for v ∈ V is denoted
as f I

v ≡
∑

v′∈V f((v′, v)), while aggregate amount of payments to make for v ∈ V as
fO
v ≡

∑
v′∈V f((v, v′)). Now closed property is defined as follows.

Definition 1. closed property: balanced distribution of obligations
f-Network < V,A, f > is closed if f I

v = fO
v for every v ∈ V .

The middle of Figure 11 is an example of closed f-Network.

The other property is e-covered(exact covered) property for fsp-Network, which is to
express settlement procedure is to be proper in a sense that each subject input suffi-
cient amount of settlement fund as well as any of input settlement fund is not to be
redundant under attached order of settlement. Given fsp-Network < V,A, f, s, p >,
suppose periods proceed as t = 0, 1, .., |A| where relative order, or sequence s corre-
sponds to each period t in a way that payments to be executed at the beginning of
period t are argas(a) = t. Aggregate periodical payments to receive for v ∈ V at
period t is denoted as f I

v,t =
∑

v′∈V 1{s(v′,v)=t}f((v
′, v)), while that to make is denoted

as fO
v,t =

∑
v′∈V 1{s(v,v′)=t}f((v, v

′)). Then periodical holding of money for each subject
v ∈ V at the last of period t is denoted as pt(v) = pt−1(v) + (f I

v,t − fO
v,t) for t = 1, 2, .., |A|

and p0 = p(v). settlement fund input by each subject is sufficient when every periodical
holding is sufficient. Sufficiency condition is defined as covered property. < V,A, f, s, p >
is covered if pt(v) ≥ 0 for every v ∈ V and every t = 0, 1, .., |A|. Property of e-covered
is defined as covered property added with property of no redundant settlement fund, as
stated below.

Definition 2. e-covered property: proper settlement procedure
fsp-Network < V,A, f, s, p > is e-covered (exact covered) if

(no shortage) < V,A, f, s, p > is covered, and
(no redundancy) there is no other p′ : V → R0+ such that < V,A, f, s, p′ > is covered,
and p′(v) ≤ p(v) for every v ∈ V , and p′(v′) < p(v′) for some v′ ∈ V .
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The right of Figure 11 shows an example of e-covered fsp-Network.

For < V,A, f, s > on closed < V,A, f >, e-covered < V,A, f, s, p > is uniquely derived.
When < V,A, f, s, p > is e-covered, we term circulation for < V,A, f, s > is

∑
v∈V p(v).

3 Payment Circulation Problem

We define our problem to derive lower-bound of required settlement fund as minimum
Payment Circulation Problem (min PCP) which is formally stated as follows;

(min PCP in original form)
Given a closed f-Network < V,A, f >,
mins,p

∑
v∈V p(v),

s.t. fsp-Network < V,A, f, s, p > is covered.

Our problem to derive upper-bound of required settlement fund is formalized as max-
imum Payment Circulation Problem (max PCP) as follows;

(max PCP in original form)
Given a closed f-Network N f =< V,A, f >,
maxs,p

∑
v∈V p(v),

s.t. fsp-Network < V,A, f, s, p > is e-covered.

We term value derived by each min/max PCP as min/max circulation.

Though this paper focuses on these min/max PCP, we can view that the problems
belong to a further abstract problem;

Find a set of fsp-Networks which satisfies condition X.

In the latter literature section, economic researches in the field of settlement system,
emergence of money, and currency area are reviewed in reference to this general form,
and our contribution is stated along with the view.

3.1 First thought on the min/max PCP

Let us take up a candidate of approach to derive min/max circulation, which is only
partially successful, and whose failure motivates our approach.

Suppose our input is f-Network shown in the left of Figure 12. Then, we have that
the middle of the figure shows an fsp-Network which attains the minimum circulation,
while the right of the figure is that for the maximum circulation. First for the case of the
minimum, we observe that sequence is taken in a way that number is increasing along
with direction indicated by the arrows. Actually, start by vd, move to va, then vc, back
to vd, sequence for corresponding arrows is increasing as 1, 3, 5. For the different route:
from vd, va, vb, vc, and back to vd, sequence is also increasing as 1, 2, 4, 5. For the case
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of the maximum, we observe that sequence is taken in a way that number is increasing
along with the opposite direction. Confirm that starting by vd and move to vc, va back
to vd, sequence is 1, 2, 3. It is similarly confirmed for the other route.

Conversely, we could formulate each of the above ways of taking sequence as an al-
gorithm to derive each min/max circulation combined with some appropriate detailed
procedures. These simple algorithms will actually solve min/max PCP for certain class
of f-Networks, but not in general. For example, the algorithms do not work for f-Network
as shown in the middle of Figure 2.

Our approach departs from constructing algorithms, instead grasp the problems in a
topological manner so that relevant economic contexts are to be revealed.
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Figure 12: For the left f-Network, the middle fsp-Network attains the minimum circulation, while the
right fsp-Network attains the maximum circulation.

4 Preliminary Analysis

This section presents key notions and results for our latter analyses.
We say a f-Network < V,A, f > is not connected when we can divide into V =

V1 ∪ V2, V1 ∩ V2 = ∅ such that there is no arrow (v, v′) ∈ A where v and v′ belongs to
different set with respect to V1, V2. In that case, it is apparent if we divide < V,A, f >
into two f-Networks along with such V1, V2 and associate arrows and flow, we derive
min/max circulation for the original f-Network just as summation of that for each divided
f-Network. Throughout this article, without loss of generality we focus on f-Networks that
are connected.

4.1 Closed Cycle Decomposition

Our approach bases on an observation that closed f-Network can be decomposed
into several closed f-Networks. Decomposition of f-Network is an algebraic notion on
f-Networks, which is naturally derived from addition on real number.

Figure 13 shows an example of decomposition on f-Network. N f is decomposed into
N f

1 and N f
2 , which is denoted as N f = N f

1 +N f
2 .
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Figure 13: Nf =< V,A, f > is the same as the left of Figure 11. Nf
1 =< V1, A1, f1 >, where

V1 = {va, vc, vd}, A = {(va, vc), (vc, vd), (vd, va)}, f((va, vc)) = f((vc, vd)) = f((vd, va)) = 20. Nf
2 =<

V2, A2, f2 >, where V2 = {va, vb, vc, vd}, A = {(va, vb), (vb, vc)(vc, vd), (vd, va)}, f((va, vb)) = f((va, vc)) =

f((vc, vd)) = f((vd, va)) = 0. Cycle value for Nf
1 is 20, which is expressed in the center of the f-Network,

while it is 10 for Nf
2 .

Formally, we term that a f-NetworkN f =< V,A, f > is decomposed into
{
N f

k =< Vk, Ak, fk >
}

k=1,2,..,K

if V = ∪1≤k≤KVk and A = ∪1≤k≤KAk, and ∀a ∈ A, f(a) =
∑

k∈K′ fk(a), where K ′ =

{k′′|a ∈ Ak′′}. We denote N f =
∑K

k=1N
f
k for the decomposition.

We find a specific type of decomposition is critical for analyses of min/max PCP, which
we term as closed cycle decomposition. Decomposition in Figure 13 is actually a closed
cycle decomposition, where each of decomposed f-Networks is closed, and each consists of
one cycle. For our formal statement of closed cycle decomposition, we define cycle and
several relevant terminologies.

Given a directed graph < V,A >, we denote a set of vertices included in A′ ⊆ A
as VA′ , and denote a set of arrows which includes v ∈ V as Av. For a directed graph
< V,A >, A′ ⊆ A is a path from v ∈ VA′ to v′ ∈ VA′ if we can order vertices in VA′

such that (v, v1, v2, .., v
′) where each consecutive ordered pair of vertices consists A′. The

same arrow is not allowed to appear more than once in a path, but it is allowed for the
same vertex. A′ ⊆ A is a cycle if A′ is a path between the same vertex. We say a cycle
is punctured if it includes the same vertex, and say non-punctured if not. For a directed
graph G, we denote CG as the set of cycles included in G, and call it as the cycle set of
G.

Our formal definition of closed cycle decomposition is as follows.

Definition 3. closed cycle decomposition
A f-Network N f =< V,A, f > with G =< V,A > is closed cycle decomposed into{

N f
k =< Vk, Ak, fk >

}
1≤k≤K

if

1) N f =
∑K

k=1N
f
k is a decomposition, and

2) ∀k = 1, 2, ..., K, each N f
k consists of mutually different one cycle and is also closed.

We specifically write N f =
∑

c∈C < V c, c, f c > for a closed cycle decomposition with
C ⊆ CG, where f c is referred as cycle value for c. Note that closed cycle decomposition
is allowed to include decomposed f-Networks which consist of one punctured cycle.

We have following result for closed cycle decomposition.
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Theorem 1 (Ford and Fulkerson (1962)).
Any closed f-Network can always be closed cycle decomposed.

The theorem ensures that our observation of closed cycle decomposition in Figure 13
is not just luck. However, it is shown that closed cycle decomposition in Figure 13 is a
rather special case regarding uniqueness of closed cycle decomposition. We say f-Network
is uniquely closed cycle decomposed if there is no other closed cycle decomposition for the
same f-Network such that cycle sets are different1. Uniqueness of closed cycle decomposi-
tion is characterized with the notion of disjoint. Intuitively, two sets of cycles are disjoint
if we cannot create the other cycle using the arrows included in the two sets. Formally,
given a set of cycles C in some directed graph, we say C ′, C ′′ ⊆ C are disjoint(regarding
C) if ∀K ∈ C and K ⊂ AC′∪C′′ , K /∈ C \ (C ′ ∪ C ′′). We say C is a disjoint set if
∀C ′, C ′′ ⊆ C, C ′ and C ′′ are disjoint.

Corollary 1 (Uniqueness of closed cycle decomposition).
Given a closed f-Network N f =< V,A, f > with G =< V,A >, N f is uniquely closed

cycle decomposed if and only if CG is a disjoint set.

We turn to decomposition on fsp-Network, which is similarly defined with that on
f-Network. Figure 14 is an example of decomposition on fsp-Network.
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Figure 14: example for decomposition on fsp-Network

Formally, we say fsp-Network N fsp =< V,A, f, s, p > is decomposed into fsp-Networks{
N fsp

k =< Vk, Ak, fk, sk, pk >
}

k=1,2,..,K
if

(1) < V,A, f > is decomposed into {< Vk, Ak, fk >}k=1,2,..,K ,
(2) each sequence sk is consistent with s in the sense that the ordering is preserved, and
(3)

∑
k pk(v) = p(v) for every v ∈ V .

When a decomposition on fsp-Network N fsp =< V,A, f, s, p > is also a closed cycle
decomposition on corresponding f-Network, we write as: < V,A, f, s, p >=

∑
c∈C <

V c, c, f c, sc, pc >.
Notice that in Figure ?? and 14, e-covered fsp-Network is decomposed into fsp-

Networks which are all e-covered.

1For uniqueness of closed cycle decomposition, we ignore trivial differences such that difference is only
on sets of vertices, such that whether isolated vertices are included or not
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Theorem 2. decomposition on e-covered fsp-Network
Given a closed f-Network < V,A, f >, for any e-covered fsp-Network N fsp =< V,A, f, s, p >,

there exists decomposition N fsp =
∑

c∈C < V c, c, f c, sc, pc > such that < V c, c, f c, sc, pc >
is e-covered for every c ∈ C.

Proof. See Appendix A.2.

5 Key Characteristics for the min/max PCP

Purpose of this section is to reveal key characteristics for the min/max PCP. Rear-
ranging the original min/max PCP utilizing closed cycle decomposition leads us to find
them.

Notice that in Figure ??, fsp-Network that attains min circulation is expressed with
decomposed fsp-Networks. Figure 14 shows that for the case of maximum. Stepping
further, the next two theorems show that each of the min/max PCP is rewritten in a
form to choose fsp-Networks for closed cycle decomposed f-Networks of given f-Network,
while the original form is just to choose fsp-Network for given f-Network.

Theorem 3. min PCP in decomposed form
Given a closed f-Network N f =< V,A, f >, the following problem gives the same value

with the min PCP on N f ;
mins,C∈C

Nf ,{fc}c∈C

∑
c∈C

∑
v∈V c pc(v).

s.t. N f =
∑

c∈C < V c, c, f c > is a closed cycle decomposition,
< V c, c, f c, sc, pc > is e-covered for every c ∈ C, and
< V,A, f, s, p >=

∑
c∈C < V c, c, f c, sc, pc >

Proof. see the appendix A.3.

Theorem 4. max PCP in decomposed form
Given a closed f-Network N f =< V,A, f >, the following problem gives the same value

with the max PCP on N f ;
maxs,C∈C

Nf ,{fc}c∈C

∑
c∈C

∑
v∈V c pc(v).

s.t. N f =
∑

c∈C < V c, c, f c > is a closed cycle decomposition,
< V c, c, f c, sc, pc > is e-covered for every c ∈ C, and
< V,A, f, s, p >=

∑
c∈C < V c, c, f c, sc, pc > is e-covered.

Proof. See Appendix A.4.

The above decomposed forms of the min/max PCP need to be rearranged so as to
reveal their own worth. Each of the decomposed form problems is to be separated into
decomposition choice part and sequence choice part. We first define a sub-problem for
each min/max PCP, each of which corresponds to the sequence choice part.

(sub-problem for min PCP)
Given a closed f-Network N f and its closed cycle decomposition that is characterized

with C ∈ CNf and {f c}c∈C,

13



min{sc,pc}c∈C

∑
c∈C(

∑
v∈V c pc(v)− f c)

s.t. < V c, c, f c, sc, pc > is exact covered for every c ∈ C, and
< V,A, f, s, p >=

∑
c∈C < V c, c, f c, sc, pc >.

(sub-problem for max PCP)
Given a closed f-Network N f and its closed cycle decomposition that is characterized

with C ∈ CNf and {f c}c∈C ,
min{sc,pc}c∈C

∑
c∈C((|c| − 1)f c −

∑
v∈V c pc(v)),

s.t. < V c, c, f c, sc, pc > is e-covered for every c ∈ C, and
< V,A, f, s, p >=

∑
c∈C < V c, c, f c, sc, pc > is e-covered.

, where |c| denotes the number of arrows which constitute cycle c.
Denote each value as Rmin/max(N f , C, {f c}c∈C).
Next lemma ensures Rmax(.) has some value for any closed cycle decomposition.

Lemma 1.
Given a closed f-Network < V,A, f > and its closed cycle decomposition < V,A, f >=∑

c∈C < V c, c, f c > Then we can always take fsp-Network < V,A, f, s, p > and associated
e-covered fsp-Networks {< V c, c, f c, sc, pc >}c∈C such that < V,A, f, s, p >=

∑
c∈C <

V c, c, f c, sc, pc > is e-covered.

Proof. Take arbitrary v-number sv : V → {1, 2, .., |V |}. Denote each set of vertices
Vk = argv∈V sv(v) = k for k = 1, 2, .., |V |. Take sequence on arrows ak ∈ A that starts
from v ∈ Vk so that

∑k−1
1 |Vk−1 < s(ak) <

∑k
1 Vk. Such sequence s let us take pc that

each decomposed fsp-Networks is e-covered. Now for each vertex v ∈ V , take any two
out-arrows a′ = (v, v′), a′′ = (v, v′′) ∈ A. Then, there is no in-arrow a′′′ = (v′′′, v) ∈ A
such that s(a′) < s(a′′′) < s(a′′). It is true for any two out-arrows. When we take
p(v) =

∑
c∈C pc(v) for each v ∈ V , it says that the combined fsp-Network < V,A, f, s, p >

is also e-covered.

Now we rewrite the min/max PCP in each separated form.

(min PCP in separated form)
Given a closed f-Network N f =< V,A, f >,
minC∈C

Nf ,{fc}c∈C

∑
c∈C f c +Rmin(N f , C, {f c}c∈C)

s.t. N f =
∑

c∈C < V c, c, f c > is a closed cycle decomposition.

(max PCP in separated form)
Given a closed f-Network N f =< V,A, f >,
maxC∈C

Nf ,{fc}c∈C

∑
c∈C(|c| − 1)f c −Rmax(N f , C, {f c}c∈C)

s.t.N f =
∑

c∈C < V c, c, f c > is a closed cycle decomposition

For a given closed f-Network N f , let xmin/max(N f ) denote each min/max circulation.

In the rest of this sections, we are to reveal certain network properties help characterize
each of the decomposition choice part and the sequence choice part of min/max PCP. We
show arrow-twist property is key to the sequence choice part of min PCP, while vertex-twist
property to the same part of max PCP, and domination property is to the decomposition
choice part both for min/max PCP.
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5.1 Property of arrow-twist and min PCP

Let f-Network shown in the left of Figure 15 be our input for the min PCP. We know
that fsp-Network shown in the right of the figure realizes its min circulation 40. The min
circulation is derived with a closed cycle decomposition shown in Figure 16. We confirm
that the residual is solved as 10. In search of sources of the non-zero residual, we focus
on two of the decomposed cycles. For each of the cycles, take sequence in a way that it
is increasing along with direction indicated by its arrows. Suppose we start by the arrow
(vf , va). Then, focusing on two of the other arrows (vb, vc) and (vd, ve), in the left cycle
sequence for (vb, vc) needs to be smaller than (vd, ve) while it is opposite for the right
cycle. That is the source of non-zero value for residual, which is captured with the notion
of arrow-twisted. Below we formally define arrow-twisted and related notions.

For Networks which include G =< V,A > and sequence s on A, let cycle c consists
of arrows (a1, a2, ..an, an+1 = a1) where ak = (vk, vk+1) for k = 1, 2, .., n, then the arrow-
reverse number is defined as ratwi(c, s) =

∑n
k=1 1{s(ak)>s(ak+1)}. When there exist multiple

ways to index arrows for a cycle and accordingly multiple values of arrow-reverse number
(which is possible when it is punctured), set arrow-reverse number as the minimum among
those. We say cycles in C ⊆ CG are in arrow-twisted relation, or just say they are arrow-
twisted if we cannot take any sequence s such that ratwi(c, s) = 1 for every c ∈ C. We say
cycles in C ⊆ CG are minimum arrow-twisted when there exists no arrow-twisted cycles
C ′ ⊂ C. Going back to Figure 16, the two of the decomposed cycles are arrow-twisted
and minimum arrow-twisted. Note that minimum arrow-twisted cycles are not always a
pair, as confirmed in Figure 17.

Property of arrow-twist for given f-Network among its cycle sets refers to whole re-
lations of arrow-twisted among its sets of cycles as well as their arrow-reverse numbers.

For arrow-twist property, following lemma is fundamental for our analyses.

Lemma 2. arrow-twisted and Rmin(.)
Given a closed f-Network N f and its closed cycle decomposition that is characterized

with C ∈ CNf and {f c}c∈C,
Rmin(N f , C, {f c}c∈C) = 0 if and only if C is not arrow-twisted.

Proof. When C is not arrow-twisted, then we can always take sequence so that arrow-
reverse number for every c ∈ C is one. It lets us take

∑
v∈V c pc(v) = f c for every c ∈ C.

Conversely, when Rmin(.) = 0, we can always take arrow-reverse number is one for all
c ∈ C under any sequence that realises Rmin(.) = 0.

We have a basic result for the case of disjoint.

Lemma 3.
For given closed f-Network < V,A, f > with G =< V,A > and its cycles C ⊆ CG, we

have
C is not disjoint if C is arrow-twisted.
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For the left directed graph, the rest three cycles are minimum arrow-twisted.
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Proof. For a closed f-Network, suppose some of its cycles C is arrow-twisted. Denote
A as the set of arrows which constitutes C. Since C is arrow-twisted, we can take at
least two cycles using arrows in A such that the two cycles have at least two common
arrows which are not successive. Otherwise it is straight that we take sequence in a way
that arrow-reverse number is all one for every possible cycles in A, which let C be not
arrow-twisted.

If two cycles have two common arrows which are not successive, we can immediately
take another cycle using part of arrows both from the two cycles. It says C is not disjoint,
which ends our proof.

The next theorem shows that min circulation is derived in a straight way for the case
of disjoint.

Theorem 5. min PCP for f-Network whose cycle set is disjoint
For a closed f-Network N f =< V,A, f > with G =< V,A >, if CG is disjoint, then

xmin(N f ) =
∑

c∈CG
f c, and

with its closed cycle decomposition N f =
∑

c∈CG
< V c, c, f c >.

Proof. From Lemma 2 and 3, we need not consider into sequence choice part for the min
PCP in separated form. Further, Corollary 1 states that there exists only one closed cycle
decomposition for the case of disjoint, which ends our proof.

We show our additional results after introducing domination property in latter part.

5.2 Property of vertex-twist and max PCP

Let f-Network shown in the left of Figure 18 be our input for the max PCP. We know
that fsp-Network shown in the right of the figure realizes its max circulation 110. The
max circulation is derived with a closed cycle decomposition shown in Figure 19. We
confirm that the residual is solved as −10. Let us focus on two of the decomposed cycles.
For each of the cycle, take sequence in a way that it is increasing along with direction
indicated by its arrows. Suppose we start by the arrow (vf , va). Now examine in which
order each vertex appears under supposed sequence. Focusing on the three of the vertices
vf , vb, vd, in the left cycle sequence for vb needs to come before vd while it is opposite for
the right cycle. That is the reason for non-zero value for residual, and it is captured with
the notion of vertex-twisted. Below we define vertex-twisted and related notions.

We prepare a different type of sequence for our model. For < V,A >, define vertex-
sequence (sequence for vertex) sv : V → {1, 2, .., |V |} as one-to-one mapping.

Let cycle c consists of v1v2..vnvn+1 with vn+1 = v1, then vertex-reverse number is
defined as rvtwi(c, sv) =

∑n
k=1 1{sv(vk)>sv(vk+1)}. When there exist multiple ways to index

vertices for a cycle and accordingly multiple values of vertex-reverse number (which is
possible when it is punctured), set vertex-reverse number for the cycle as the minimum
among those. We say cycles in C ⊆ CG are in vertex-twisted relation, or just say they
are vertex-twisted if we cannot take any vertex-sequence sv such that rvtwi(c, s) = 1 for
every c ∈ C. We say cycles in C ⊆ CG are minimum vertex-twisted when there exists no
vertex-twisted cycles C ′ ⊂ C.
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Note that although any punctured cycle as in Figure 20 is vertex-twisted by itself,
notion of vertex-twisted is not trivial in the sense that cycles which are not punctured can
be also vertex-twisted as already shown in Figure 19, and as in Figure 21.

Property of vertex-twist for given f-Network refers to whole relations of vertex-twisted
among its sets of cycles as well as their vertex-reverse numbers.

Notice that if cycles in C are arrow-twisted, then they are also vertex-twisted as stated
in the following Lemma 4. The reverse is not always true as easily confirmed.

Lemma 4. arrow-twisted and vertex-twisted
Given G =< V,A > and CG, then for any C ⊆ CG,
C are vertex-twisted if C are arrow-twisted.

Proof. Suppose C is not vertex-twisted. Then the definition says that we can take vertex-
sequence sv on vertices in C such that vertex-reverse number is one for all c ∈ C. Take
sequence sc on arrows for each c ∈ C such that sc((v, v′)) = sv(v). We have ratwi(c, sc) = 1
for every c ∈ C. Since we can always take a sequence for arrows on C such that it is
consistent with all the sc, we know C is not arrow-twisted.

For vertex-twist property, the following result is fundamental for our analyses.

Lemma 5. vertex-twisted and Rmax(.)
Given a closed f-Network N f and its closed cycle decomposition that is characterized

with C ∈ CNf and {f c}c∈C,
Rmax(N f , C, {f c}c∈C) = 0 if and only if C is not vertex-twisted.

Proof. When C is not vertex-twisted, then from its definition, we can always take vertex-
sequence sv on vertices in C such that vertex-reverse number is |c| − 1 for all c ∈ C.
Denote each set of vertices Vk = argv∈V sv(v) = k for k = 1, 2, .., |V |. take sequence on
arrows ak ∈ A that start from v ∈ Vk so that

∑k−1
1 |Vk−1 < s(ak) <

∑k
1 Vk. Since there

exist no vertex-twisted, such sequence s let us take pc that each decomposed fsp-Networks
is e-covered and

∑
v∈V c pc(v) = (|c|−1)f c. What needs to be shown is that combined fsp-

Network with the decomposed fsp-Network is e-covered. For each vertex v ∈ V , take any
two out-arrows a′ = (v, v′), a′′ = (v, v′′) ∈ A. Then, there is no in-arrow a′′′ = (v′′′, v) ∈ A
such that s(a′) < s(a′′′) < s(a′′). It is true for any two out-arrows. It says that the
combined fsp-Network is e-covered.

For the converse direction, take a sequence s that realizes Rmax(N f , C, {f c}c∈C) = 0.
Under the sequence s, for each cycle c ∈ C with its set of vertices V c, take a vertex
vc ∈ V c such that s((v, vc)) = argmina∈cs(a) and call it head-vertex for c. Then, for every
vertices v′ ∈ V c \ vc with its arrow (v′, v) ∈ c, there is no arrow a = (v′′, v′) ∈ C such
that s(a) < s((v′, v)) since otherwise it immediately leads to Rmax(N f , C, {f c}c∈C) > 0.
It is true for every cycles c ∈ C. Then, we can naturally define partial order < on v ∈ V c

from sequence s in a way that each head-vertex is largest and gets smaller along with the
direction opposite to that indicated by the arrows. We can always take vertex-sequence
consistent with the order <, and under such vertex-sequence, vertex-reverse number is 1
for every cycles c ∈ C. It says C is not vertex-twisted.
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Figure 21: example for vertex-twisted cycles : for directed graph at the left, two cycles in the
right are vertex-twisted.

We have a basic result for the case of disjoint.

Lemma 6.
For given closed f-Network < V,A, f > with G =< V,A > and its cycles C ⊆ CG, we

have
C is not disjoint if C is vertex-twisted.

Proof. For a closed f-Network, suppose some of its cycles C is vertex-twisted. When there
exists any punctured cycle, it is immediate C is not disjoint. Suppose not. Denote A
as the set of arrows which constitutes C. Since C is vertex-twisted, we can take at least
two cycles using arrows in A such that the two cycles have at least two common vertices
which are not included in successive common arrows of the two cycles. Otherwise it is
straight that we take sequence in a way that vertex-reverse number is all one for every
possible cycles in A, which let C be not vertex-twisted.

If two cycles have such two common vertices, we can immediately take another cycle
using part of arrows both from the two cycles. It says C is not disjoint, which ends our
proof.

The next theorem shows that max PCP are derived in a straight way for f-Networks
which are disjoint.

Theorem 6. max PCP for f-Network whose cycle set is disjoint
For a closed f-Network N f =< V,A, f > with G =< V,A >, if CG is disjoint, then

xmax(N f ) =
∑

c∈CG
(|c| − 1)f c

with its closed cycle decomposition N f =
∑

c∈CG
< V c, c, f c >.

Proof. From Lemma 6, when C is disjoint, then C is not vertex-twisted. Further, Corol-
lary 1 states that there exists only one closed cycle decomposition with cycles CG for the
case of disjoint. From Lemma 5 and with the same procedure of taking sequence shown
in its proof, we always take sequence and potential so that associated fsp-Network is
e-covered and has

∑
c∈CG

(|c| − 1)f c.

We show our additional results after introducing domination property.
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5.3 Property of domination and min/max PCP

For a closed f-Network shown in the left of Figure 22, min circulation is derived as 30,
which for example is realized with a fsp-Network in the right of the figure.

In Figure 23, observe that the same f-Network is closed cycle decomposed into different
number of closed f-Networks. The minimum circulation is derived with the decomposition
that has smaller number of cycles, that is captured with notion of domination formally
defined below.
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Figure 23:

Given a directed graph G and its cycle set CG, a set of cycles C ⊆ CG is termed as
dominated by another set of cycles C ′ ⊆ CG when there exist the same f-Network N f
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and closed cycle decomposition N f =
∑

c∈C < V c, c, f c >=
∑

c′∈C′ < V c′ , c′, f c′ > with∑
c∈C f c <

∑
c′∈C′ f c′ . Note that dominated is well-defined since closed cycle decom-

position with the same cycle set C leads to unique value of
∑

c∈C f c for a given closed
cycle decomposition, though there exist room for the choice of flow for each cycle. We
especially say c ∈ CG singular dominates C ′ ⊆ CG if c dominates C ′. We say C ⊆ CG

is undominated in CG if there is no C ′ ⊆ CG which dominates C. We say a set of cycle
C has no domination if there exists no C ′, C ′′ ⊆ C such that C ′ dominates C ′′. A set of
cycles C is undominated in CG if C is not domintated by any C ′ ⊆ CG.

Note that any punctured cycle dominates the set of its component non-punctured
cycles. For example in Figure 23, a punctured cycle vavgvbvcvgvdvevgvfva dominates
{vavgvfva, vcvgvbvc, vevgvdve}. Though number of decomposed cycles seemingly a deter-
minant of dominated relation, Figure 24 shows it is not always true.
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Theorem 7. min circulation under no arrow-twisted
Given a closed f-Network N f =< V,A, f > on G =< V,A >, if there exist no arrow-

twisted cycles in CG, then,
xmin(N f ) =

∑
c∈C f c with any closed cycle decomposition N f =

∑
c∈C < V c, c, f c >

such that C ⊆ CG is undominated in CG.

Proof. Lemma 2 ensures Rmin(.) is always zero. Definition of undominated ensures our
choice of closed cycle decomposition.

Theorem 8. max circulation under no vertex-twisted
Given a closed f-Network N f =< V,A, f > on G =< V,A >, if there exist no vertex-

twisted cycle (punctured cycle) nor vertex-twisted cycles in CG, then,
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xmax
Nf =

∑
c∈C(|c| − 1)f c

with any closed cycle decomposition N f =
∑

c∈C < V c, c, f c > such that C ⊆ CG is
undominated in CG.

Proof. Take a closed cycle decomposition C ∈ CNf , {f c}c∈C that is undominated in
CG. By taking sequence for given f-Network shown in the proof of Lemma 5. We can
take e-covered fsp-Networks for decomposed f-Networks with pc so that

∑
v∈V c pc(v) =∑

c∈C(|c| − 1)f c for every c ∈ C and combined fsp-Network is e-covered.

Note that f-Networks with punctured cycles are excluded from the above theorem,
since any punctured cycle is vertex-twisted by itself. The next theorem allows punctured
cycles but not for the other vertex-twisted cycles. For G =< V,A >, denote Cp

G ⊂ CG as
the set of punctured cycles for G, and denote Cnp

G ⊆ CG \Cp
G as the set of non-punctured

cycles for G.

Theorem 9. max circulation under no vertex-twisted except for punctured cycles
Given a closed f-Network N f =< V,A, f > on G =< V,A >, if there exists no

vertex-twisted cycles, then,
xmax
Nf =

∑
c∈C(|c| − 1)f c

with any closed cycle decomposition N f =
∑

c∈C < V c, c, f c > such that C ⊆ CG is
undominated in Cnp

G .

Proof. When there exits no vertex-twisted cycles in Cnp
G , take closed cycle decomposition

for Cnp
G with undominated cycles. Suppose we can make a punctured cycle c from two of

the cycles c′, c′′. Consider closed cycle decomposition that has c instead of c′ and c′′ for
the amount of flow z. In separated form, it always increase the former part by z since
|c| = |c′| + |c′′|. However, since c itself is vertex-twisted, it always Rmax(.) part at least
by z. We confirm that taking into account a punctured cycle generated by the two cycles
never increase circulation of that without it. Any punctured cycle is able to be constituted
by iterating combination of two cycles, which always leads to the same result.

Among closed cycle decomposition within Cnp
G , the largest circulation is realized with

cycles which are undominated from its definition. It ends our proof.

Property of domination for given f-Network refers to whole relations of dominated
among its sets of cycles.

5.4 The Key Characteristics

We have seen properties of arrow-twist, vertex-twist, and domination help characterize
the min/max PCP. In addition, notice that number of vertices is also an important prop-
erty for the max PCP, which we capture with a notion of weighted. For a closed f-Network
N f =< V,A, f >, given a closed cycle decomposition N f =

∑
c∈C < V c, c, f c >, we call

each cycle c ∈ C is weighted by |V c − 1|. Property of weight for given f-Network refers to
weighted amounts for decomposed cycles for every possible closed cycle decompositions.

For our following analyses, we call arrow-twist, vertex-twist, domination, and weight
are the key characteristics of the min/max PCP.
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6 Effects of Network Transformations

The previous section introduced key characteristics and showed relevant basic results.
This section examines in more detail how those characteristics work. For that purpose,
we specifically examine how min/max circulation are affected when our input, f-Network
is transformed into some other f-Network in various manner.

6.1 Definitions of Local Operations, Semi-Global Operations

We take up five types of transformations as shown in Figure 25. Suppose our original
input for min/max PCP is that shown in the left of the figure, which consists one cycle
vavbvcvdvevf with flow 10. For the f-Network, shown in the right part of the figure are
transformed f-Networks, each of which is derived through following operations : arrow
separation on an arrow (va, vb) into (va, vg) and (vg, vb) with added vertex vg for the
upper-left, arrow slicing on (va, vb, 0) into (va, vb, 0) and (va, vb, 1) for the upper-middle,
vertex contraction on va, vd to va for the upper-right, cycle addition vavdvevbvcvfva with
flow 20 for the lower-right, cycle separation on cycle vavbvcvdvevfva in the amount of 10
for the lower-right. We call first three of the operations; arrow separation, arrow slicing,
vertex contraction as local operations, while semi-global operations for the latter two.
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Figure 25:

Formally, given a f-Network < V,A, f >, each operation is defined as follows. We
say arrow separation on a = (v, v′) ∈ A into a′ and a′′ with v′′ to have < V,A′, f ′ >
when A′ = A ∪ a′ ∪ a′′ \ a and a′ = (v, v′′), a′′ = (v′′, v′) with f ′(a′) = f ′(a′′) = f(a),
while f ′(a′′′) = f(a′′′) for every a′′′ ∈ A \ a. We say arrow slicing on a ∈ A into a and
a′ to have < V,A′, f ′ > when arrows a, a′ are between the same vertices, A′ = A ∪ a′,
f(a) = f ′(a) + f ′(a′), and f ′(a′′) = f(a′′) for every a′′ ∈ A \ a. We say vertex contraction
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for N f =< V,A, f > on v, v′ ∈ V to v to have < V ′, A′, f ′ > when V ′ = V \ v′, and
all the arrows from or to v′ in A are replaced by arrows from or to v in A′, and f ′ is
determined accordingly. We exclude vertices v, v′ such that both (v, v′), (v′, v) exists in A.
We say cycle addition c ⊆ A with its flow f c on N f =< V,A, f > to N f ′

=< V ′, A′, f ′ >
when V ′ = V ∪ Vc, A

′ = A ∪ Ac, and f ′(a) = f(a) + f c for every a ∈ c and f ′(a) = f(a)
otherwise. Note that flow increase is a special case of cycle addition. We say a closed graph
G =< V,A > is separated cycle graph if any two cycles c, c′ ∈ CG have no common vertex.
We say cycle separation for N f =< V,A, f > on cycle c ⊆ C<V,A> in the amount of fk(≤
mina∈c f(a)) to have N f ′

=< V,A′, f ′ > when for some a1 = (v1, v
′
1), a2 = (v2, v

′
2) ∈ c

such that v′1 ̸= v2 and v′2 ̸= v1, we take a
′
1 = (v1, v

′
2), a

′
2 = (v2, v

′
1), and f ′(a1) = f(a1)−fk,

f ′(a2) = f(a2)− fk, f ′(a′1) = f(a′1) + fk, f ′(a′2) = f(a′2) + fk.

Note that those five operations are sufficient to examine network transformations in
the following sense. For any given two closed f-Networks, we can always attain some closed
f-Network from each of the two f-Networks through combinations of arrow slicing, vertex
contraction, cycle addition. Notice that though arrow separation and cycle separation are
redundant there, each has its own worth. Arrow separation reveals simpler cases within
vertex contraction, while cycle separation reveals effects which are not directly captured
by each of the other operations alone.

For latter reference, Table 6.1 summarizes our results in this section. It shows how
each of the operations affects min/max circulation in total, as well as how each of the
key characteristics contributes to the effect. For example, we read that arrow separation
has no effect regarding min circulation, while it tends to increase max circulation through
affecting weight property.

min. circulation max. circulation

dom. a-twi. total wei. dom. v-twi. total

arrow sep. − − −10 ↑ − − ↑11
Local arrow slice. ↓ ↓ ↓12 − ↓ ↑ −13

vertex cont. ↓ ↓ ↓14 ↓ ↑ ↓ ↓15
semi- cycle add. ⇓16 ⇑18 ⇓ ⇑ − ⇑17 ⇓17,19 ⇓
Global cycle sep. ↑22 ↓23 ↓ ↑ − ↓24 ↑25 ↓↑

Table 1: Effects of Operations in relation to the Key Characteristics
“↑”(“↓”) and “⇑”(“⇓”) show that the corresponding operation has weakly increasing(decreasing) effect
through the corresponding property on either problem, while “−” means no effect. “⇑”,“⇓” especially
express possibility of “multiplier effect”. Numbers in the cells show those for related theorems.

6.2 Effects of Local Operations

arrow separation

For the min PCP, arrow separation has no effect.

Theorem 10. no effect of arrow separation on min circulation
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Given a closed f-Network N f =< V,A, f >, for any arrow separation on a ∈ A to
have N f ′

, we have
xmin(N f ′

) = xmin(N f ).

Proof. For any sequence onN f , we can take a sequence onN f ′
such that the relative orders

are all the same and separated arrows have successive numbers. Under the sequence,
circulation for N f ′

is the same as that on N f . Conversely, for any sequence on N f ′
, we

can take sequence on N f such that the relative orders are the same when we correspond
either of the two of separated arrows in N f ′

to arrow a in N f . Under that sequence,
circulation for N f is equal to or smaller than that for N f ′

.

Observe that arrow separation has no effect on either property of domination or arrow-
twist, which leads to no effect on min circulation.

Theorem 11. increasing effect of arrow separation on max circulation
Given a closed f-Network N f =< V,A, f >, for any arrow separation on a ∈ A to

have N f ′
, we have

xmax(N f ′
) = xmax(N f ) + f(a).

Proof. Denote arrow separation on a = (v, v′) into a′ = (v, v′′) and a′′ = (v′′, v′′′). Given
a sequence which realizes the maximum circulation for N f , it is always possible to take
sequence s for N f ′

such thats(a′) > s(a′′) while the other orderings are unchanged. Cir-
culation under the sequence s for N f ′

is xmax(N f ) + f(a). Conversely, suppose there
exists sequence for N f ′

such that its circulation is larger than xmax(N f )+f(a). Then, we
can always take sequence for N f such that orderings are the same when we correspond
either of a′ or a′′ to a. It decreases circulation by at most f(a), which contradicts max
circulation for N f is xmax(N f ).

Observe that arrow separation has no effect on either property of domination or vertex-
twist but has effect on weight property, which is the source of increase of max circulation.

arrow slicing

Theorem 12. decreasing effect of arrow slicing on min circulation
Given a closed f-Network N f =< V,A, f >, for any arrow slicing on a ∈ A to have

N f ′
, we have
xmin(N f ′

) ≤ xmin(N f ).

Proof. Given a sequence which realizes the minimum circulation for the original f-Network,
take sequence for arrow-sliced f-Network so that sliced arrows have successive number,
and maintain the ordering for the other arrows. It never increase the circulation.

Arrow slicing has decreasing effect on min circulation both through affecting property
of domination and arrow-twist. Figure 26 shows effect through domination, and Figure
27 shows effect through arrow-twist.

We observe that decreasing effect through domination property can be partly cancelled
out through arrow-twist property by generating new arrow-twisted cycles, as shown in
Figure 28.
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Figure 26: arrow slicing (decrease of min circulation through domination)
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Figure 27: arrow slicing (decrease of min circulation through arrow-twist)
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Figure 28: arrow slicing (partly cancel-out effect on min circulation through arrow-twist): Observe that
there is no arrow-twisted cycles in the left fsp-Network. In the right shows an arrow-sliced fsp-Network,
whose directed graph is shown in Figure 17, where there emerges a cycle which dominates cycles in the
left fsp-Network as well as arrow-twisted cycles. It realizes the minimum circulation 70, which is larger
than the maximum flow 65. The difference amounts to cancel-out effect by arrow-twist.
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Theorem 13. no effect of arrow slicing on max circulation
Given a closed f-Network N f =< V,A, f >, for any arrow slicing on a ∈ A to have

N f ′
=< V,A′, f ′ >, we have
xmax(N f ′

) = xmax(N f ).

Proof. See Appendix A.5.

We observe that arrow separation affect vertex-twist and domination in opposite di-
rection, and we can interpret the effects are canceled out regarding max circulation. More
clearly, when we confine us to non-punctured cycles, we observe that arrow slicing never
affect v-twit nor domination, which amounts to no effect on max circulation in total.

vertex contraction

Theorem 14. decreasing effect of vertex contraction on min circulation
Given a closed f-Network N f =< V,A, f >, for any vertex contraction for N f on

v, v′ ∈ V to have N f ′
, we have

xmin(N f ′
) ≤ xmin(N f ).

Proof. The original sequence for the generated f-Network let the associated fsp-Network
still covered.

Vertex contraction has decreasing effect both through affecting domination and arrow-
twist. Figure 29 shows effect through domination, where vertex contraction generates a
cycle which dominates existent cycles. Figure 30 shows effect through arrow-twist, where
vertex contraction let arrow-reverse number for two arrow-twisted cycles be less.
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Figure 29: Vertex Contraction (decrease of min circulation through domination)

Theorem 15. decreasing effect of vertex contraction on max circulation
Given a closed f-Network N f =< V,A, f >, for any vertex contraction on v, v′ ∈ V to

have N f ′
=< V,A′, f ′ >, we have

xmax(N f ′
) ≤ xmax(N f ).

Proof. We say s : A → {1, 2, .., |A|} and s′ : A′ → {1, 2, .., |A′|} are the same sequence
when s(a) = s′(a) for every a ∈ A supposing each of v, v′ ∈ V is equal with v ∈ V ′. For
any same sequence s, s′, take associated exact covered fsp-Network < V,A, f, s, p > and
< V,A′, f ′, s′, p′ >, then we have

∑
v′′∈V \(v,v′) p(v

′′) =
∑

v′′∈V \v p
′(v′′), and p(v) + p(v′) ≥

p′(v).
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Figure 30: Vertex Contraction (decrease of min circulation through arrow-twist)

Vertex contraction affects vertex-twist, which itself has decreasing effect of max cir-
culation as show in Figure 31, while its decreasing effect can be canceled out through
affecting domination as shown in Figure 32. Notice that cycle set is unaffected in the
former example.

When we confine us to non-punctured cycles, we interpret that vertex contraction
never affect domination.

351352

303

304 305

306
207208

259

35

55

30

30

30
20

352354

305

307 308

301203209

256

35

35

30

50

30

Figure 31: vertex contraction (decrease of max circulation through vertex-twist)
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Figure 32: vertex contraction (no effect on max circulation)

29



6.3 Effects of Semi-Global Operations

cycle addition

We especially take up two special cases for the cycle addition which clarify hetero-
geneity of effects through domination and arrow-twist.

We say a directed graph < V,A > is a separated-cycles graph when it consists of cycles
which have no common vertex each other.

Theorem 16. decreasing multiplier effect of cycle addition on min circulation
Given a closed f-Network N f =< V,A, f > where < V,A > is a separated-cycles

graph, make cycle addition c with f c to N f ′
=< V ′, A′, f ′ > so that c has at least one

common vertex with n cycles but has no common arrows with any of the cycles. Then,
xmin(N f ′

)− xmin(N f )− f c = −f c ∗ n+
∑

c′∈C max {f c − f(c′), 0}.

Proof. It is straight since the cycle addition always add a punctured cycle which consists
of n+ 1 cycles.

We say multiplier for the above N f and N f ′
is m = (xmin(N f ′

)− xmin(N f )− f c)/f c.
We know that the multiplier is as large as n if f c is sufficiently small, but it decreases

as f c gets larger, which is
∑

c′∈C fc′

fc if f c > maxc′∈C f c′ .
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Figure 33: cycle addition (decreasing multiplier effect on min circulation through domination): min
circulation decreases by 60 ∗ 3−max {60− 80, 0} −max {60− 50, 0} −max {60− 30, 0} − 60 = 80.

The following theorem contrasts effect of cycle addition on max circulation to that on
min circulation.

Theorem 17. no effect of cycle addition on max circulation: separated non-punctured
graph

Given a closed f-Network N f =< V,A, f > where < V,A > is a separated non-
punctured cycle graph, make cycle addition non-punctured cycle c with f c to N f ′

=<
V ′, A′, f ′ > so that c has k ≤ 2 common vertices with n cycles but has no common arrows
with any of the cycles. Then,

xmax(N f ′
) = xmax(N f ) + (|c| − 1)f c.

Proof. Denote G =< V,A >, G′ =< V ′, A′ >. When k ≤ 2, there never appear vertex-
twisted cycles other than punctured cycles including c. Theorem 9 ensures that the
maximum circulation for N f ′

is mere summation of that of N f and (|c| − 1)f c.
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Next theorem shows effects through arrow-twist on min circulation, which has opposite
effect of domination. The theorem also shows that arrow-twist is actually a determining
property on min circulation for certain cases.

Theorem 18. increasing multiplier effect of cycle addition on min circulation
Given a closed f-Network which consists of only one non-punctured cycle N f =<

V, c, f c >. make cycle addition non-punctured cycle c′ with f c′ to have N f ′
=< V ′, A′, f ′ >

so that it has n arrow-reverse number with c and there exist no punctured cycle. Then,
xmin(N f ′

)− xmin(N f )− f c = n ∗min
{
f c, f c′

}
Proof. We say two arrow-twisted cycles c, c′ are base n arrow-twisted cycles if each cy-
cle consists 2 ∗ (n + 2) arrows, and they have (n + 2) common vertices so that they
have n arrow-twists. The left graph of Figure 15 includes base 1 arrow-twisted cycles;
{vavbvcvdvevfva, vavdvevbvcvfva}.

Suppose cycle addition is executed so that the added cycle is base n arrow-twisted
with the other cycle. Then, closed cycle decomposition for N f ′

is realized either with
{c, c′}, or with cycles which consists of 4 arrows; two arrows from common arrows of
c, c′ and each one arrow from cycles c, c′, and either or both of c, c′. It is straight the
minimum circulation is derived as above. For cycles which are n arrow-twisted but not
base n arrow-twisted, our previous results for Local Operations ensures that constructed
f-Network can always be transformed into that with two base n arrow-twisted cycles while
the minimum circulation is unchanged.

Note that the multiplier is as large as n if f c′ is small enough, but decreases as f c′ is
larger, which is n∗fc

fc′ if f c′ > f c.

The theorem indicates how sequence needs to be taken to attain min circulation under
existence of arrow-twisted cycles. As confirmed in the right of Figure 34, cycle with larger
flow is endowed priority to the other in the sense that sequence is increasing along with
the former cycle while not for the latter.
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Figure 34: cycle addition (increasing multiplier effect on min circulation through arrow-twist): cycle
addition with its flow 50 lets minimum circulation increase by 1 ∗min {30, 50}+ 50 = 80.

There exists more complicated case where both properties of domination and arrow-
twist take part, as shown in Figure 35.

Next we see effects of vertex-twist on max circulation. We take up a special class of f-
Networks. Given G =< V,A >, we say two cycles c, c′ ∈ CG are n opposite cycles for n =
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Figure 35: cycle addition (effect on min circulation through both domination and arrow-twist): cycle
addition with its flow 50 lets minimum circulation decrease by 50(minus the added cycle value) through
domination part, but arrow-twist partly cancels out the decrease by 5.

1, 2, .. if c, c′ have n+2 common vertices and no common arrow, and the common vertices
appear exactly the opposite order. For example, in the left of Figure 18, vavbvcvdvfva and
vbvfvd are 1 opposite cycles.

Theorem 19. decreasing multiplier effect of cycle addition on max circulation: n opposite
cycles

Given a closed f-Network which consists of only one non-punctured cycle N f =<
V, c, f c >, make cycle addition non-punctured cycle c′ with f c′ to have N f ′

so that it has
either c, c′ are n opposite cycles. Then,

xmax(N f ′
)− xmax(N f )− (|c′| − 1)f c′ = −n ∗min

{
f c, f c′

}
Proof. When the cycles are n opposite cycles, Theorem 9 says that we only need to
examine a closed cycle decomposition where all cycles are non-punctured. We have such a
closed cycle decomposition which consists of n+2 cycles with flow min

{
f c, f c′

}
, and either

of the cycle c, c′ with flow |f c−f c′|. Without loss of generality, suppose f c ≤ f c′ . For n+2
cycles with f c, sum of maximum number of reverse equals to the number of cycles n+ 2.
We have xmax

Nf = f c∗(|c|+|c′|−n−2)+(f c′−f c)(|c′|−1) = (|c|−1)f c+(|c′|−1)f c′−n∗f c.

Figure 36 is an example for the decreasing multiplier effect. Note that the multiplier is
as large as n if f c′ is small enough, but decreases as f c′ is larger, which is n∗fc

fc′ if f c′ > f(c).
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Figure 36: cycle addition (decreasing multiplier effect on max circulation through vertex-twist : cycle
addition with its flow 10 lets the max circulation for the combined f-Network turn to be 15 ∗ 5 + 10 ∗
2 − 1 ∗ min {10, 20} = 85, which is less than 15 ∗ 5 + 10 ∗ 2, the summation of max circulation for two
combined f-Networks.
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As a special case of cycle addition, we define flow increase. For a closed f-Network
N f =< V,A, f >, we say flow increase on N f to N f ′

=< V,A, f ′ > when f ′(a) ≥ f(a)
for every a ∈ A and there exists a′ ∈ A such thatf ′(a′) > f(a′), and N f ′

is still closed.

Theorem 20. Regime Change for min circulation
For a closed f-Network N f =< V,A, f >, suppose < V,A, f, s, p > realizes the min

circulation. We consider flow increase on N f to N f ′
=< V,A, f ′ >. Then,

there exists f ′ such that the minimum circulation is not attained with the original
sequence s if and only if there exists arrow-twisted cycles.

Proof. When there exists no arrow-twisted cycles, the same sequence always gives the
minimum circulation for any flow increase since flow increase never change domination.
Next, suppose there exist arrow-twisted cycles for < V,A, f >, then for each sequence
which realizes the minimum circulation we always find a cycle c where there exists more
than one reverse. Take such sequence s and some other sequence s′ which lets reverse for
the cycle c be one. Circulation for s is less than that for s′ by certain amount with the
original flow f . When we increase flow for the cycle c, difference of circulations between
under s and s′ gets smaller in proportion to the increase. There exits some point where
the original amount of difference is canceled-out and more increase lets circulation for s
be larger than that for s′, which completes our proof.

Regime Change for min circulation is only through arrow-twist since domination is
unaffected by flow increase. Figure 37 shows an example.
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Figure 37: Regime Change; flows are increased for vavbvcvdvevfva by 30 (from the upper left to the
lower left f-Network). The upper right realizes min circulation for the original f-Network. The lower
middle is an exact covered fsp-Network for the new f-Network with the same sequence. The lower right
realizes the minimum circulation for the new f-Network, where the sum of potentials is actually smaller
than that of the lower middle by 10.
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Theorem 21. Regime Change for max PCP
For a closed f-Network N f =< V,A, f > with G =< V,A >, suppose < V,A, f, s, p >

realizes max circulation. We consider flow increase on N f to N f ′
=< V,A, f ′ >. Then,

1). For any f ′, exact covered fsp-Network < V,A, f ′, s, p′ > always realizes the maxi-
mum circulation for N f ′

if there exists no vertex-twisted cycles.
2). There exists f ′ such that the maximum circulation is not attained with the original
sequence s if there exists arrow-twisted cycles in CG.

Proof. 1) is straight from the definition of vertex-twisted. 2) is the same as the counterpart
theorem for min PCP.

Figure 38 is an example for the Regime Change when vertex-twisted but not arrow-
twisted cycles exist. Note that Regime Change may not occur depending on sequence for
this case.

30
20

35

3550

254050

30
va

vb

vc

vd

ve

vf
302

206

351

358507

253409505

304

35

30

30

50

75

30
40

35

3550

456050

30 302

406

351

358507

453609505

304

35

30

30

50

95

308

407

353

352506

451604505

309

30

30

60

50

45

35

va

vb

vc

vd

ve

vf

Figure 38: Regime Change; flows are increased for vbvfvdvb by 20 (from the upper left to the lower
left f-Network). The upper right realizes the maximum circulation for the original f-Network. The lower
middle is an exact covered fsp-Network for the new f-Network with the same sequence. The lower right
realizes the maximum circulation for the new f-Network, where the sum of potentials is confirmed as
larger than that of the lower middle by 10

cycle separation

Theorem 22. increasing effect of cycle separation on min circulation: one cycle
Given a closed f-Network N f which consists of a cycle c with its flow f c. Make cycle

separation on c in the amount of fk to have a closed f-Network N f ′
. Then,

xmin(N f ′
)− xmin(N f ) = fk.

Proof. Cycle separation add two more cycles, and the all three cycles are disjoint and not
arrow-twisted. It is straight minimum circulation increases by fk.
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We prepare terminologies for the next theorem. For n arrow-twisted cycles c =
v1..vkv1, c

′ and its common arrows A = c∩ c′, replace a = (vk′ , vk′+1) ∈ A by a′ = (v, v′) /∈
A for c so that we have c′′ = v1..vk′−1vv

′vk′+2..vkv1 is a cycle. We say a ∈ A contributes
its arrow-twistedness when c′, c′′ is no more n arrow-twisted. We say c, c′ are quasi-base
n arrow-twisted cycles if every common arrows contribute its arrow-twistedness.

Theorem 23. decreasing effect of cycle separation on min circulation: quasi-base arrow-
twisted non-punctured cycles

Take a closed f-Network N f such that N f =< V c, c, f c > + < V c′ , c′, f c′ >, where
c, c′ are quasi-base arrow-twisted non-punctured cycles. Suppose f c < f c′. Make cycle
separation on c in the amount of fk(≤ f c) so that separation is not on the common arrows,
and each separated cycle has at least 2 common arrows with c′. Denote the generated f-
Network as N f ′

. Then,
xmin(N f ′

)− xmin(N f ) = −fk

Proof. Before the cycle separation, since the cycles are n arrow-twisted, the minimum
circulation is f(c′) + (n + 1) ∗ f(c). c has n + 1 reverse number under the minimum
circulation. After the separation, sum of reverse numbers for the separated cycles is n
under sequences which realizes the new minimum circulation. It is not the case when
either separated cycle has at most 1 common arrow with c′, since reverse number for each
cycle cannot be less than 1 under any sequence.

Decreasing effect of cycle separation is through decreasing the arrow-reverse number.
Effects of cycle separations are shown in Figure 39, 40.
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Figure 39: cycle separation (increasing effect on min circulation through domination)

Theorem 24. decreasing effect of cycle separation on max circulation: one cycle
Given a closed f-Network N f which consists of a cycle c with its flow f c. Make cycle

separation on c in the amount of fk(≤ f c) to have a closed f-Network N f ′
. Then,

xmax(N f ′
)− xmax(N f ) = −fk.

Proof. It is straight and omitted.

Theorem 25. increasing effect of cycle separation on max circulation: opposite non-
punctured cycles, quasi-base arrow-twisted non-punctured cycles

Take a closed f-Network N f such that N f =< V c, c, f c > + < V c′ , c′, f c′ >, where
c, c′ are either opposite non-punctured cycles or quasi-base arrow-twisted non-punctured
cycles. Suppose f c < f c′.
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Figure 40: cycle separation (decreasing effect on min circulation through arrow-twist)
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Figure 41: cycle separation (decreasing effect on max circulation through weight)
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Make cycle separation on c in the amount of fk(≤ f c) so that separation is not on
the common arrows, and each separated cycle has at least 2 common arrows with c′ when
cycles are quasi-base arrow-twisted, while each separated cycle has at least 3 common
vertices with c′ for the case of opposite cycles. Denote the generated f-Network as N f ′

.
Then,

xmax(N f ′
)− xmax(N f ) = fk

Proof. We can prove exactly the same as the case for the min PCP for the case of arrow-
twisted. For the case of opposite cycles, we have xmax(N f ) = (|c′|−1)f c′+(|c|−n)f c from
Theorem 9. By the separation, since separated cycles has at least 3 common vertices,
xmax
Nf ′ = (|c′| − 1)f c′ + (|c| − n)(f c − fk) + (|c| − n + 1)fk. It leads to xmax(N f ′

) =

(|c′| − 1)f c′ + (|c| − n)f c + fk.
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Figure 42: cycle separation (increasing effect on max circulation through arrow-twist)
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Figure 43: cycle separation (increasing effect on max circulation through vertex-twist)

7 Related Literature

Our contribution lies on the cross-point of financial economics and graph theory.
Quesnay (1758) provided the basis for graph-theoretic analysis on payment networks2.

Mainly for the analysis of the reproduction of goods, he analyzed a simpler class of pay-
ment networks, which is embedded in our general model as a special case where payments

2For network analysis in the other field of economics, Jackson (2008) provides a wide survey.
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are among three representative subjects (Proprietary, Productive, Sterile). Our notion
of closed for payment flows is a generalized expression for one of the assumptions in the
Tables.

The following main contributions to the graph-theoretic analysis on payment networks
were accomplished in three fields: settlement systems, emergence of money, and currency
area. As already stated in our introductory section, in the field of settlement systems,
Eisenberg and Noe (2001) provided a mathematical framework to examine payment net-
work but without element of order of settlement. Rotemberg (2011) firstly pointed out in
a persuading manner that order of settlement possibly matters for liquidity problem in
the field of settlement systems, taking up a specific class within Euler graph, examining
order of settlement under certain exogenous way of decentralized decision pattern. Along
with this literature, this paper provides a framework that treats a general class of payment
network, and enables to examine every possible order of settlements for given distribution
of obligations.

In the literature which covers the emergence of money, focus has been rather in show-
ing the reason of existence of monetary substance, not much in examining a general
network structure. Kiyotaki and Wright (1989) examined the circulation of the “medium
of exchange” on“Wicksellian Triangle”3, whose network structure is within the simplest
cases in our model. Many of the studies that followed (Kiyotaki and Wright (1993),Trejos
and Wright (1995),Lagos and Wright (2005)) adopted networks with one cycle. Yasutomi
(2000) in section 4 focused on diversity of network and the related “strength” of money
to the diversity. This was a major step in examining a class of graphs which contains
multiple cycles, though still without twisted relations in the terminology of this paper. His
study is interpreted to relate multiplicity of closed cycle decomposition to the emergence
of “strong” or “weak” money. From the view of the min PCP, one of its important results
is rephrased as “strong” money emerges only when the maximum flow is equal to the
minimum circulation. In its historical analysis on the multiplicity of currency, Kuroda
(2003) compared two types of graphs: the pyramid type and the horizontal type. His
study is also related to the notion of closed cycle decomposition. He examined situations
where each different type of money circulates within each set of decomposed cycles.

There are researches which focus on specific properties of payment network. In the
analysis of financial contagion, “connectedness” or “connectivity” of network is shown to
be a useful notion, as in the case of Allen and Gale (2000), Freixas, Parigi, and Rochet
(2000), Lagunoff and Schreft (2001),Cifuentes, Shin, and Ferrucci (2005), Nier, Yang,
Yorulmazer, and Alentorn (2007), Caballero and Simsek (2009),Gai and Kapadia (2010),
Castiglionesi and Navarro (2008), and Allen, Babus, and Carletti (2010). Among them,
“density” of network is proposed as an analytical tool in Zawadowski (2011). In the
field of settlement system, the existence of a cycle itself is known as a potential source
of gridlock(Beck and Sorämaki (2001)). Our original concepts of arrow-twisted, vertex-
twisted properties provide a different aspect of payment network from those papers.

Related to properties of network in a broad sense, several concepts of properties have
been proposed in the literature of social network4. Our analysis implies that properties
relevant to “payment network” in the field of economics are not necessarily the same as
those proposed for “social network”, but possibly requires its own concepts.

3 a cycle with 3 subjects and 3 arrows among them
4See Jackson (2008) for analysis on social network.
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From the graph-theoretic view, the min/max PCP can be thought of as a variant of
“numbering” problem which contains aspects of “flow” problem5. The closest “number-
ing” problem would be the Bandwidth problem6, where the objective being minimized
is determined only with its sequence, while in the min/max PCP, the objective is more
indirect, in the way that the amount of each flow takes part in. The “flow” aspect of
the min/max PCP lets us utilize the method of decomposition, which has been shown
as useful for some “flow” problem7. But its “numbering” aspect leads us to a distinct
approach– examination of relation among decomposed cycles.

8 Concluding Remarks

We set up a graph-theoretic framework to express circulation of settlement fund, or
money under network structures. From the view of the equation of exchange8, its dis-
tinguishing characteristic is to capture relative9 velocity of money through its element of
sequence. This allows us to examine relation between velocity and quantity for money
circulation. The framework has potential for wide applications in financial economics: in
the field of settlement system, emergence of money, or currency area.

Under the framework, we have presented a pair of graph-theoretic problems that are
fundamental for analysis on gross settlement systems. The problems have unique charac-
teristics from the view of network problems in that the problems have both “numbering”
and “flow” aspect. Utilizing a cycle decomposition approach, we have specified several key
network properties for the problems. We have examined the effects of network transfor-
mations to show how each network property affects minimum and maximum circulation
each.

Because we have concentrated on determining the general properties of the problems,
it is not discussed which classes of payment networks well captures networks in our real
world. Our future task is to specify appropriate classes of payment networks to execute
more detailed analysis.

Turning to the graph-theoretic view, we conducted a qualitative characterization of
the problems. One of the remaining tasks is to probe whether the problem is NP hard or
not. It is known that although many types of “flow” problems are not NP hard, many
“numbering” problems, including Bandwidth Problem, are NP hard. In our view, though
the min/max PCP would be as “easy” as many “flow” problems regarding domination
property, they will still contain “difficulty” in relation to arrow-twist and vertex-twist
property. The latter two properties would be the key for the probing.

5Diaz, Petit, and Serna (2002) provides a survey for “numbering” problems in the view of graph layout
on some dimension. For “flow” problems, see Ahuja, Magnanti, and Orlin (1993)

6See Chinn, Chvatalova, Dewdney, and Gibbs (1982) for the Bandwidth Problem.
7Goldberg, Plotkin, and Tardos (1991)
8Fisher (1911)
9The framework is not to capture absolute velocity of money. The framework clarifies the notional

difference between absolute and relative velocity of money itself.
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A Appendix

A.1 Local Minimum/Maximum

Given a covered fsp-Network N fsp =< V,A, f, s, p >, we say s attains local minimum
for A′ ⊆ A when we cannot take s′ such that 1). s′ gives the same ordering with s for
A \A′, and 2). for exact covered fsp-Network < V,A, f, s′, p′ >,

∑
v∈V p′(v) <

∑
v∈V p(v).

We similarly define local maximum.
The following theorem is useful.

Theorem 26. local minimum/maximum
Given a closed f-Network N f =< V,A, f >, if an exact covered fsp-Network N fsp =<

V,A, f, s, p > realizes the minimum/maximum circulation for N f , then, s attains local
minimum/maximum for every A′ ⊂ A.

The theorem is straight from the definition of min/max PCP.

A.2 Proof of Theorem 2.

For vertices which have multiple inflows and/or outflows, we execute “unbundling”
(see Figure 44). First “unbundle” some vertex to several “hypothetical” vertices such
that each “hypothetical” vertex has one inflow and one outflow, and has exact amount of
potential for each corresponding sequences. We can always execute such “unbundling”,
and the derived “unbundled” fsp-Network is also exact covered. We can continue this
“unbundling” until each fsp-Network has no vertex which has multiple inflows and/or
outflows, and any derived fsp-Network consists of exact covered fsp-Networks, each with
one cycle.

205

107 154

156

25

155

154

15

55 56

107

106

10

Figure 44: Example of “unbundling” procedure. “Unbundle” vertex in the left to hypothetical vertices
in the right
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A.3 Proof of Theorem 3.

Theorem 2 ensures that our search for fsp-Networks on the basis of closed cycle de-
composed f-Networks always include right fsp-Networks in the sense they realize min
circulation. What remains to be shown is that we correctly choose right fsp-Networks by
minimizing circulation for closed cycle decomposed f-Networks. Next lemma ensures that
part.

Lemma 7.
Given a closed f-Network N f =< V,A, f >,
For any closed cycle decomposition N f =

∑
c∈C < V c, c, f c >, if < V c, c, f c, sc, pc > is

exact covered for every c ∈ C, and we can take s : V → {1, 2, .., |A|} which is consistent
of {sc}c∈C, then

< V,A, f, s, p >=
∑

c∈C < V c, c, f c, sc, pc > is covered .

Proof. As long as {sc}c∈C is consistent with s, it is straight that combining covered fsp-
Networks always emerge a covered fsp-Network.

The lemma states that our search on the basis of closed cycle decomposed f-Networks
never let us find smaller circulation than “true” min circulation. Combining Theorem 2
and Lemma 7, we complete our proof.

A.4 Proof of Theorem 4.

Our proof is similar to that for Theorem 3. Theorem 2 ensures that our search for
fsp-Networks on the basis of closed cycle decomposed f-Networks always include right fsp-
Networks in the sense they realize max circulation. What remains to be shown is that we
correctly choose right fsp-Networks by maximizing circulation for closed cycle decomposed
f-Networks. Since we confine us to search cases where combined fsp-Networks become e-
covered, Lemma 7 ensures our search on the basis of closed cycle decomposed f-Networks
never let us reach larger circulation than “true” max circulation.

A.5 Proof of Theorem 13

We show that the maximum circulation for N f is always attained for N f ′
, and also

maximum circulation for N f ′
is always attained for N f . For the former part, given N fsp

which attains the maximum circulation for N f , endow successive sequence for the two
sliced arrow with the ordering of the arrows are unchanged with N fsp, which ensures the
same amount of circulation. For the latter part, we examine local maximum for sliced
vertices a, a′ ∈ A′ based on Theorem 26.

Suppose there exits sequence s for N f ′
such that it attains max circulation for N f ′

.
Take a new sequence s′ for N f ′

such that a, a′ has successive order in a way that s(a) =
s′(a) and s′(a′) = s′(a)+1, and orderings among A\a′ is the same between two sequences
s and s′. Then, circulation realized with s′ and N f ′

is equal to or smaller than that with s
and N f . When circulation gets smaller, take another sequence s′′ such that s(a′) = s′′(a′)
and s′′(a) = s′′(a′) + 1 and orderings among A \ a is the same between two sequence s
and s′′. It never changes circulation. It is clarified by dividing the above step to take a
new sequence in two steps.
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Consider we take a new sequence s′ on N f ′
through following steps. The first step

is to remove arrow a from fs-Network N f ′
with s. Take a temporal fs-Network which

maintains all the orderings among A \ a. The second step is to add arrow a with a s′.
We have following lemma.

Lemma 8.
When circulation gets smaller for fs-Network with s′ and N f ′

that that with s and N f ,
1) circulation of the temporal fs-Network needs to get less than that with s and N f ′

,
and

2) circulation of fs-Network with s′ and N f ′
is equal to or larger than that of the

temporal fs-Network, though the difference is less than that between circulation of the
temporal fs-Network and that of s and N f ′

.

Proof. Firstly, if circulation for the temporal fs-Network become larger, the sequence s
contradicts to our assumption that it leads to max circulation. It is confirmed that we can
take another sequence where a has the last order while maintaining the other orderings,
which attains the same circulation by the temporal fs-Network.

Secondly, circulation for the temporal fs-Network is not larger than that for fs-Network
with N f and s′. It is because in that case when we further remove arrow a′ from the
temporal fs-Network, circulation gets larger, which leads to a contradiction as above.

Now when we take the dividing steps on a′, circulation of temporal fs-Network needs
to the same as that with s and N f ′

. It comes from the latter part of Lemma 8, which
amounts to state that increasing flow for a′ alone did not increase its circulation under
s immediately. It tells that removing a′ never decreases circulation, and we already
confirmed it never increases.

Further, combining with the former part of the same lemma, we know that circulation
of temporal fs-Network needs to be the same as that with s′′ and N f ′

. The lemma amounts
to state that increasing flow only on a never decrease circulation, and we confirm that
increase of circulation led to a contradiction of our assumption that s and N f ′

attains
max circulation.

When two sliced arrows have successive ordering, we have no reason to distinguish
sliced arrows from the original arrow regarding circulation, which completes our proof.

A.6 Results relevant to Rotemberg (2011)

We maintain notations in Rotemberg (2011) regarding its target class of network.
The next corollary shows that Rotemberg (2011) treated one of the simplest classes

of f-Network with no arrow-twisted cycles.

Corollary 2. case for Rotemberg (2011)
For a closed f-Network N f =< V,A, f > which is in a class of CK

N with flow z 10 , we
have

xmin
Nf = z.

10We obey the definition of Rotemberg (2011) on CK
N . N subjects indexed by i ∈ [0, 1, .., N − 1] are

arrayed in a circle so that N − 1 is followed by firm 0. Each subject i has payment in the amount of z
to subjects i+ j with j ≤ K, where the addition is taken modulo N . 2K ≤ N − 1 is assumed. CK

N is an
associated f-Network.
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Proof. Since CK
N is based on an Euler graph, we can take a cycle c which consists of all

the arrows. Further, since flow for each arrow is equal in the amount of z, we can take
a closed cycle decomposition with unique undominated cycle c with flow f(c) = z. Since
Euler graph has no arrow-twisted cycles, the minimum circulation is realized with c, and
the derived value is z.

The next corollary shows that Rotemberg (2011) treated one of the simplest classes
of f-Network with no vertex-twisted cycles.

Corollary 3. case for Rotemberg (2011)
For a closed f-Network N f =< V,A, f > which is in a class of CK

N with flow z ,
suppose N/(K!) is integer. Then, we have

xmax
Nf = z

∑K
k=1 k ∗ (N

k
− 1)

Proof. When N/(K!) is integer, there exists no vertex-twisted cycles within Cnp
G for any

associated graph G. Further, we have Cnd,np
Nf = Cud,np

Nf . We can take C ∈ Cnd,np such that

|C| =
∑K

k=1 k and each c ∈ C consists of N
k
vertices for k = 1, 2, ..K. Considering into

weight N
k
−1 for each cycle with k vertices, we have the value as stated in the theorem.

Note that if N/(K!) is not integer, then there exists vertex-twisted cycles within
Cnp

G . We proceed to examine effects of several network transformation on each maximum
circulation.
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