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1 Introduction

The simplest form of a Tullock contest �see Tullock (1980) �is a "lottery contest",

in which each player�s probability of winning the prize is the ratio of the e¤ort he

exerts and the total e¤ort exerted by all players. Tullock (1980) also considers a

more general class of contests, in which the probability of success is taken to be the

ratio between the individual and the total "productivities" of the e¤orts, where the

productivity of e¤ort is linked to the e¤ort by a power function with a positive expo-

nent1. Tullock�s framework is a frequent choice in modelling contests with imperfect

discrimination, and Baye and Hoppe (2003) have identi�ed a variety of economic

settings (rent-seeking, innovation tournaments, patent races) which are strategically

equivalent to Tullock contests. In addition, Tullock contests arise by design, e.g., in

sport competition, internal labor markets �an axiomatic justi�cation for the class of

success functions has been o¤ered in a number of studies; see, e.g., Skaperdas (1996)

and Clark and Riis (1998).

The existence of (pure strategy) Nash equilibria in Tullock contests with complete

information has long been known; such equilibria were studied, e.g., by Perez-Castrillo

and Verdier (1992) for symmetric Tullock contests, and by Cornes and Hartly (2005)

for asymmetric contests. Szidarovszky and Okuguchi (1997) established existence

and uniqueness of equilibrium for contests with a proportional success function more

general than that of Tullock (1980), where each player�s probability to win is given

by the ratio between the productivity of that player�s e¤ort and the sum of produc-

tivities of all players, and the "production function for lotteries"2 of each player �

determining his e¤ort�s productivity � is twice continuously di¤erentiable, strictly

increasing, concave, and vanishing at zero.

Although the bulk of research on Tullock contests had the complete information

case at its focus, there is a growing number of works dedicated to the study of

pure strategy equilibria in Tullock contests with incomplete information. To mention

some key contributions, Hurley and Shogren (1998), Malueg and Yates (2004), and

Fey (2008) consider two-player Tullock lottery contests in the independent private

1The exponent r determines the type of returns to scale of the production function for lotteries:

the returns are decreasing when r < 1, constant when r = 1; and increasing when r > 1:
2We borrow this term from Szidarovszky and Okuguchi (1997).
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value framework. Ryvkin (2010) extends the equilibrium existence results of Fey

(2008) into the symmetric multi-player setting, while allowing a general Szidarovszky

and Okuguchi (1997) type of the contest success function and a general continuous

distribution of the players�cost parameters. Warneryd (2012) also considers mutli-

player contests, but in his model the (continuously distributed) value for the prize

is common, and the are two types of players who are either completely informed or

uninformed about the value. Wasser (2013) proves an equilibrium existence result for

general private-value imperfectly discriminating contests, under the assumption that

the contest success function is continuous everywhere.3

The purpose of this work is to establish an equilibrium existence result for a broad

class of Tullock contests with incomplete (and generally asymmetric) information. In

our setting, each player�s value for the prize, his cost of e¤ort, and the contest success

function (specifying the probability distribution that is used to allocate the prize

for each pro�le of e¤orts) may depend on the state of nature. The set of states of

nature need not be �nite or countable. Players have a common prior belief, but upon

realization of a state of nature, and prior to taking action, each player observes some

event that contains the realized state of nature. The information of each player at the

moment of taking action is described by a (�nite or countable) partition of the set of

states of nature. An incomplete information contest is therefore formally described

by a set of players, a probability space describing players�uncertainty and their prior

belief, a collection of partitions of the state space describing the players�information,

a collection of state-dependent functions describing the players�values and costs, and

a state-dependent success function. This representation accommodates the Harsanyi

types model, in which players�type sets are �nite or countable �see Jackson (1993)

and Vohra (1999). (In a similar framework, but with �nitely many states of nature,

Einy et al (2001, 2002), Forges and Orzach (2011), and Malueg and Orzach (2009,

2012) study common-value �rst- and second-price auctions.)

An incomplete information contest will be termed a generalized Tullock contest if

its success function has the following three properties at each state of nature: (i) when

the total e¤ort is positive, each player�s probability of winning the prize is continuous

3Wasser (2012) also considers modi�ed Tullock lottery contests in which the proportional success

function is made continuous when all e¤orts are zero, by adding a positive �xed "noise" parameter

to the numerator and the denominator of the ratio.
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with respect to the e¤orts of all players; (ii) each player�s probability of winning is

non-decreasing and concave in his own e¤ort (and hence exhibits decreasing returns);

(iii) if only one player exerts positive e¤ort, then his probability of winning is 1 �i.e.,

his e¤ort is perfectly discriminated in this case. We will also assume that all players�

cost functions are strictly increasing, convex, continuous, and vanishing at zero.

The proportional success function underlying the Tullock lottery contest obviously

satis�es (i)�(iii), and so do the more general proportional success functions considered

in Szidarovszky and Okuguchi (1997); in fact, in order to satisfy (i)�(iii) the produc-

tion functions for lotteries in Szidarovszky and Okuguchi (1997) set-up need not be

di¤erentiable. Furthermore, our assumptions allow for a great deal more interdepen-

dence between the players�e¤orts in determining the winning probabilities compared

to what is entailed by the additive separability in aggregating e¤ort productivities in

proportional success functions.

Unlike in earlier works, the success function in a generalized Tullock contest may

well vary with the state of nature.4 We do not limit the set of states of nature be �nite

or countable, although each player can have at most countably many information sets

(corresponding to "types" in the Harsanyi framework). In this aspect our work di¤ers

from Ryvkin (2010), Warneryd (2012), and Wasser (2013), who do allow types sets

that are a one-dimensional continuum. However, as has already been mentioned,

in Ryvkin (2010) the players are ex ante symmetric, while the generalized Tullock

contests that we consider need not exhibit any symmetry. Further, in Warneryd

(2012) the common value for the prize is given by the type of each informed player (as

the players can either possess full information about the value or have no information

at all besides their prior belief), and in Wasser (2013) the private value for the prize

is assumed to be non-decreasing in the player�s type5. Importantly, our model of

generalized Tullock contests (which accommodates both private or common values)

imposes no restrictions on how the value depends on the state of nature, or on the

players�private information.

4We will introduce an assumption (numbered as (vi) in the text) that will limit the variability of

the success function with the state of nature, but only when the set of states of nature is uncountable.
5Another notable di¤erence between our model and Wasser (2013) is, as has already been men-

tioned, in his assumption that the contest success function is continuous for all e¤ort pro�les, which

is not the case even in the simplest Tullock lottery contest.
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We will show that any generalized Tullock contest has a pure strategy Bayesian

Nash equilibrium. Our proof uses the equilibrium existence theorem of Reny (1999),

and, to our knowledge, is the �rst work on Tullock contests to rely on this tool. The

main step of the proof is showing that a generalized Tullock contest is a better-reply-

secure game, which is one of the main premises for Reny�s theorem6. Better reply

security of the expected payo¤ functions is a weakening of the usual continuity re-

quirement (the latter would have allowed us to use of the standard Nash�s equilibrium

existence theorem7). However, the expected payo¤ functions are not continuous when

all strategies prescribe zero e¤ort at some states of nature, due to the inherent dis-

continuity of all contest success functions satisfying (i)�(iii) above at the zero e¤ort

pro�le. Thus, it is the possibility to rely on the property of better reply security,

weaker than continuity, that allows establishing equilibrium existence, due to the

theorem of Reny (1999).

The rest of the paper is organized as follows: Section 2 describes the general

setting of contests with incomplete information and introduces generalized Tullock

contests, and Section 3 contains our result on the existence a pure strategy Bayesian

Nash equilibrium.

2 Generalized Tullock contests

2.1 Contests with Incomplete Information

A group of players N = f1; :::; ng; with n � 2; compete for a prize by choosing a

level of e¤ort in R+. Players� uncertainty about the state of nature is described
6The other conditions, which are the compactness of the players�strategy sets and quasi-concavity

of the (expected) payo¤ functions in players� own strategies, hold (either directly or through an

equivalent modi�cation) in our model, as the proof will show.
7The use of Nash�s existence theorem is still a viable alternative when there are �nitely many

states of nature. In the latter case, Einy et al (2013) (the discussion paper upon which the current

work is based) provide a proof that �rst considers �truncated�contests in which players choose e¤orts

from a compact interval with a positive lower bound, on which the expected payo¤ functions are

continuous, thereby allowing the use of the Nash�s theorem to deduce the existence of equilibrium.

The crux of the proof is to show that a limit point of the sequence of equilibria of truncated contests

with a lower bound on players�e¤orts approaching zero is an equilibrium in the original contest.
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by a probability measure p (representing the players� common prior belief) over a

measurable space (
;z) of states of nature. The private information about the state

of nature of player i 2 N is described by an z-measurable and at most countable

partition �i of 
 (w.l.o.g. we will assume that p(�i) > 0 for each �i 2 �i). The value
for the prize of each player i is given by an z-measurable and integrable random

variable Vi : 
 ! R++, i.e., if ! 2 
 is realized then player i�s (�private�) value

for the prize is Vi(!). The cost of e¤ort of each player i 2 N is given by a jointly

measurable function ci : 
� R+ ! R+, such that:

(i) for every x 2 R+ the random variable ci(�; x) is integrable;
and

(ii) for any ! 2 
 the function ci(!; �) is strictly increasing, continuous, convex,
and vanishing at 0.

An incomplete information contest starts by a move of nature that selects a state !

from 
 according to the distribution p: Every player i 2 N observes the element �i(!)

of �i which contains ! �the set of states of nature between which i cannot distinguish

given !. Then players simultaneously choose their e¤ort levels, which results in a

pro�le of e¤orts (x1; :::; xn) 2 Rn+. The prize is awarded to the players in a probabilistic
fashion, according to a state-dependent success function � : 
 � Rn+ ! �n�1 that

attributes to each ! 2 
 and a pro�le of e¤ort levels x 2 Rn+ a probability distribution
�(!; x) in the (n� 1)-dimensional simplex �n�1 � Rn+; according to which the prize
recipient is chosen if ! is realized. Hence, the payo¤of player i 2 N; ui : 
�Rn+ ! R,

is given for every ! 2 
 and x 2 Rn+ by

ui(!; x) = �i (!; x) � Vi(!)� ci (!; xi) : (1)

Thus, an incomplete information contest is described by a collection (N; (
;z; p); f�igi2N ;
fVigi2N ; fcigi2N ; �):
In an incomplete information contest, a pure strategy of player i 2 N is a �i-

measurable function Xi : 
 ! R+ (i.e., Xi is constant on every element of �i);

that represents i�s choice of e¤ort in each state of nature following the observation

of his private information. We denote by Si the set of strategies of player i, and by

S = �ni=1Si the set of strategy pro�les. For any strategy Xi 2 Si and �i 2 �i; Xi (�i)

will stand for the constant value that Xi (�) obtains on �i. Also, given a strategy
pro�le X = (X1; :::; Xn) 2 S; we will denote by X�i the pro�le obtained from X by
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suppressing the strategy of player i 2 N: Throughout the paper we restrict attention
to pure strategies.

Let X = (X1; :::; Xn) be a strategy pro�le. We denote by Ui(X) the expected

payo¤ of player i, i.e.,

Ui(X) � E[ui(�; (X1 (�) ; :::; Xn (�))]:

For �i 2 �i; we denote by Ui(X j �i) the expected payo¤ of player i conditional on
�i; i.e.,

Ui(X j �i) � E[ui(�; (X1 (�) ; :::; Xn (�)) j �i]:

An n-tuple of strategies X� = (X�
1 ; :::; X

�
n) is a (Bayesian Nash) equilibrium if

Ui(X
�) � Ui(X�

�i; Xi) (2)

for every player i 2 N , and every strategy Xi 2 Si; or equivalently,

Ui(X
� j �i) � Ui(X�

�i; xi j �i) (3)

for every i 2 N; every �i 2 �i; and every e¤ort xi 2 R+ of player i (viewed here as a
strategy in Si with a constant value xi on the set �i).

2.2 Generalizing Tullock Contests in the Incomplete Infor-

mation Setup

The subclass of incomplete information contests that we now introduce is character-

ized by some simple properties of the contest success function. For x 2 Rn+ we denote
by x�i 2 Rn�1+ the pro�le of e¤orts obtained from x by suppressing the e¤ort of player

i, and by 0 2 Rn+ the zero vector (i.e., the pro�le of zero e¤orts in our context). A
generalized Tullock contest is an incomplete information contest in which the success

function � has the following properties at every ! 2 
:
(iii) � (!; �) is continuous on Rn+�f0g;
(iv) for every i 2 N and x�i 2 Rn�1+ ; �i (!; x�i; xi) is non-decreasing and concave

in the e¤ort xi of player i;

and
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(v) for every i 2 N and xi > 0; �i (!;0�i; xi) = 1; i.e., if all players but imake zero

e¤ort at !, any positive e¤ort by i guarantees that he gets the prize with probability

1 at that state of nature.8

If the set of states of nature 
 is �nite or countable, no restriction will be put

on the dependence of the success function � on the state of nature. Only if 
 is

uncountable, we will assume that each player�s chance of success, �i (�; x) ; is constant
given his information set �i; this will hold, in particular, when the chances of success

are common knowledge of the players at every state of nature:

(vi) If 
 is uncountable, then for every i 2 N and x 2 Rn+; �i (�; x) is measurable
with respect to �i.

A Tullock lottery contest is a particular case of a generalized Tullock contest, in

which the state-independent success function �T is given for each x 2 Rn+nf0g and
i 2 N by

�Ti (x) =
xiPn
j=1 xj

: (4)

It is easy to see that �T satis�es conditions (iii), (iv) and (v). More generally, con-

ditions (iii)�(v) are satis�ed by any success function � that is given for any ! 2 
;
x 2 Rn+nf0g and i 2 N by

�i (!; x) =
gi (!; xi)Pn
j=1 gj (!; xj)

; (5)

where for every ! 2 
 and j 2 N the state-dependent production function for lotter-

ies gj(!; �) : R+ ! R+; describing the productivity of j�s e¤orts, is strictly increas-

ing, continuous, concave, and vanishes at 0; and gj(�; xj) is �i-measurable for every
xj 2 R+: Thus, incomplete information contests with success functions given by (5)
are also generalized Tullock contests.9 In particular, the functional form in (5) can

accommodate the commonly assumed contest success functions with gi (!; xi) = xri ;

if the "impact parameter" r belongs to (0; 1]:

8Notice that (v) implies (iv) for x�i = 0�i (due to the assumption that �i (!;0) � 1), and hence
it would have su¢ ced to state property (iv) only for x�i 2 Rn�1+ �f0�ig.

9Existence of equilibrium in contests with success functions belonging to this class was estab-

lished for the complete information case by Szidarovszky and Okuguchi (1997), under an additional

assumption that each gj(!; �) is twice continuously di¤erentiable.
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3 Existence of Equilibrium

This section contains our equilibrium existence result.

Theorem. Every generalized Tullock contest has a (pure strategy) Bayesian Nash

equilibrium.

Proof. Let C = (N; (
;z; p); f�igi2N ; fVigi2N ; fcigi2N ; �) be a generalized Tul-
lock contest.

Step 1. This step is needed only if 
 is uncountable. In this case, we will

construct an equivalent generalized Tullock contest with at most countable set of

states of nature, each of which occurs with positive probability.

Let 
0 be the set of all positive probability elements of �; where � = _i2N�i is
the coarsest partition of 
 that re�nes each �i. Note that, as each �i is at most

countable, so is 
0. De�ne the probability distribution p0 on 
0 by p0(f!0g) = p (!0)
for every !0 2 
0; and, for every i 2 N; consider the partition �0i of 
0 that consists
of the sets �0i = f!0 2 
0 j !0 � �ig for every �i 2 �i: Furthermore, for every !0 2 
0;
x 2 Rn+; and i 2 N; de�ne

V 0i (!
0) � E[Vi (�) j !0] and c0i (!0; xi) � E[ci (�; xi) j !0];

and also note that

�0i (!
0; x) � �i (!; x) if ! 2 !0

is well-de�ned as �i is �i-measurable by condition (vi). It is easy to see that the

functions fV 0i gi2N are integrable on 
0; and that fc0igi2N and �0 satisfy conditions (i)�
(v) with 
0 as the new set of states of nature (speci�cally, the continuity of c0i(!

0; �)
in condition (ii) is an implication of the dominated convergence theorem and the

assumptions on ci). Thus, C 0 = (N; (
0; 2

0
; p0); f�0igi2N ; fV 0i gi2N ; fc0igi2N ; �0) also

constitutes a generalized Tullock contest. Denote by u0i (�; �) the state-dependent
payo¤ function of player i in C 0; and by U 0i his expected payo¤ function.

Since every strategy Xi of player i 2 N obtains the constant value Xi (�i) on each

�i 2 �i, it is identi�able with his strategy X 0
i in C

0 that obtains the value Xi (�i) on

each �0i 2 �0i (where �i = [�0i up to a zero-probability set); the map Xi �! X 0
i is a
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bijection. Given a strategy pro�le X = (X1; :::; Xn); observe that for every !0 2 
0

E[ui(�; (X1 (�) ; :::; Xn (�)) j !0]

= �0i (!
0; x) � E[Vi (�) j !0]� E[ci (�; xi) j !0]

= �0i (!
0; x) � V 0i (!0)� c0i (!0; xi)

= u0i(!
0; (X 0

1 (!
0) ; :::; X 0

n (!
0)):

It follows that

Ui(X) = E[ui(�; (X1 (�) ; :::; Xn (�))]

=
X
!02
0

E[ui(�; (X1 (�) ; :::; Xn (�)) j !0] � p (!0)

=
X
!02
0

u0i(!
0; (X 0

1 (!
0) ; :::; X 0

n (!
0)) � p0 (f!0g)

= U 0i(X
0):

The contests C and C 0 are therefore equivalent (under the above identi�cation of

strategies).

We conclude that it entails no loss of generality to assume that the set of states of

nature 
 in the given contest C is at most countable, and that each state in 
 occurs

with positive probability.10 These assumptions on C will be maintained henceforth.

Step 2. We will now construct a "bounded" variant of the given contest C; in

which the strategy sets are compact.

Since the cost function of each player is strictly increasing and convex in the

player�s e¤ort, limxi!1 ci(�; xi) = 1; and hence limxi!1E[ci(�; xi) j �i] = 1 by

Fatou�s lemma for every i 2 N and �i 2 �i. It follows that every i 2 N and

�i 2 �i there exists Qi�i > 0 such that E[Vi(�) j �i] < E[ci(�; Qi�i) j �i]: Since
E[ci(�; 0) j �i] = 0; and E[ci(�; xi) j �i] is continuous in xi on the interval

�
0; Qi�i

�
(the

latter property follows from the dominated convergence theorem and the monotonicity

of ci(�; xi) in xi); there exists 0 < Q
i

�i
< Qi�i such that

E[Vi(�) j �i] < E[ci(�; Q
i

�i
) j �i] < E[Vi(�) j �i] + 1: (6)

10If 
 is countable in the original contest C, simply strike out all zero-probability states of nature

to obtain an equivalent contest.
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Consider a variant C of the given contest C; in which the e¤ort set of each player i

is restricted to be the bounded interval
h
0; Q

i

�i

i
given his information set �i: In C;

the set of strategies of player i, Si, is identi�able with the compact and metrizable

product set ��i2�i
h
0; Q

i

�i

i
via the the bijection Xi  ! (Xi (�i))�i2�i, and player

i�s expected payo¤ function Ui is concave in i�s own strategy (as the state-dependent

payo¤ function ui(�; x) is concave in the variable xi, which follows from conditions

(ii) and (iv)).

For each i 2 N; the expected payo¤ function Ui is not continuous on S = �ni=1Si;
but we will show that it is continuous on S+; where S+ � S is the set that consists of
strategy-pro�les X such that X (�) 6= 0 on 
: Indeed, consider a sequence

�
Xk
�1
k=1
�

S+ of strategy pro�les that converge (pointwise) to a pro�le X 2 S+: Then

lim
k!1

E[�i
�
�; Xk (�)

�
� Vi(�)] = E[�i (�; X (�)) � Vi(�)]

by the dominated convergence theorem and the fact that � is continuous on Rn+�f0g
by condition (iv), and

lim
k!1

E[ci
�
�; Xk

i (�)
�
] = E[ci (�; Xi (�))]

by the dominated convergence theorem11 and the continuity of the cost function which

is ensured by condition (ii). It now follows from (1) that limk!1 Ui
�
Xk
�
= Ui (X) :

Each function Ui is, moreover, lower semi-continuous in the variable Xi 2 Si; i.e.,
for a �xed X�i 2 S�i � �j 6=iSj and every sequence

�
Xk
i

�1
k=1
� Si that converges

(pointwise) to Xi; lim infk!1 Ui
�
X�i; X

k
i

�
� Ui (X�i; Xi). Indeed, since the ith com-

ponent of the success function, �i; is lower semi-continuous in xi 2 R+ as follows
from conditions (iii) and (v), and the cost function is continuous in xi 2 R+; using
(1) we obtain lim infk!1 ui

�
�; X�i (�) ; Xk

i (�)
�
� ui (�; X�i (�) ; Xi (�)) : It follows from

Fatou�s lemma that lim infk!1 Ui
�
X�i; X

k
i

�
� Ui (X�i; Xi) :

Given the compactness of Si and the concavity of Ui in the variable Xi 2 Si;
for each i 2 N; existence of equilibrium in C is guaranteed by Theorem 3.1 of Reny

(1999), provided C is in addition better-reply-secure: if (a)
�
Xk
�1
k=1
� S is a sequence

such that the (pointwise) limit X � limk!1X
k exists and X is not a Bayesian Nash

11The cost of i is bounded from above by the function that is equal to ci(�; Q
i

�i) on each �i; which

is integrable by the second inequality in (6).

10



equilibrium in C; and (b) wi � limk!1 Ui(X
k) exists for every i 2 N; then there must

be some player i that can secure a payo¤greater than wi atX; i.e., there exist Yi 2 Si,
zi > wi; and an open neighborhood W � S�i of X�i such that Ui(X 0

�i; Yi) � zi for
every X 0

�i 2 W:

Step 3. We will show that C is, indeed, better-reply-secure.

Let
�
Xk
�1
k=1
; X, and (wi)i2N be as above. If X 2 S+; then the functions (Ui)i2N

are continuous at X and hence wi = Ui(X) for every i 2 N: Since X is not an

equilibrium by assumption, there exist i 2 N and Yi 2 Si such that

Ui(X�i; Yi) > wi + " (7)

for some " > 0: It can be assumed w.l.o.g. that Yi is strictly positive, as Ui is

lower semi-continuous in the ith variable. By the continuity of Ui at (X�i; Yi) 2 S+;
Ui(X

0
�i; Yi) � zi � wi + "

2
for every X 0

�i in some open neighborhood W of X�i; and

thus i can secure at X a payo¤ greater than wi:

Assume now that X 2 SnS+; thus, X (!�) = 0 for some !� 2 
: Since 
 is

at most countable, which can be assumed w.l.o.g. following step 1 of the proof,

the set (�n�1)

 (where, recall, �n�1 denotes the n � 1-simplex in Rn) is metrizable

and hence sequentially compact in the product topology. We can therefore consider

an accumulation point (ep (!))!2
 of the sequence f�� �!;Xk (!)
��
!2
g

1
k=1: Assume

w.l.o.g. (passing to a subsequence if necessary) that limk!1
�
�
�
!;Xk (!)

��
!2
 =

(ep (!))!2
 : De�ne, for every ! 2 
 and i 2 N;
ewi (!) � epi(!) � Vi(!)� ci (!;Xi (!)) :

By the continuity of the cost function and the dominated convergence theorem, wi =

E ( ewi (�)) :
Since ep (!�) is a probability vector, there exists i 2 N for whom

epi (!�) < 1: (8)

For any 0 < " < Q; consider a strategy Y "i 2 Si given by Y "i (�) � maxfXi(�); "g: (In
particular, Y "i (�i(!

�)) = ".) Then for any ! 2 
 with X (!) 6= 0;

lim
"!0+

ui(!;X�i (!) ; Y
"
i (!)) = lim

"!0+
[�i (!;X�i (!) ; Y

"
i (!)) � Vi(!)� ci (!; Y "i (!))] = ewi (!) ;

(9)
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since �i is continuous at X (!) 6= 0 and therefore lim"!0+ �i (!;X�i (!) ; Y
"
i (!)) =

limk!1 �i
�
!;Xk (!)

�
= epi (!) : And for any ! 2 
 with X (!) = 0;

lim
"!0+

ui(!;X�i (!) ; Y
"
i (!)) = lim

"!0+
[�i (!; 0�i; ") � Vi(!)� ci (!; ")] = Vi(!) � ewi (!)

(10)

by property (v) of �; with a strict inequality for ! = !� as follows from (8) and the

assumption that every Vi(!) is strictly positive: It is then implied by (9) and (10)

and the dominated convergence theorem that12

lim
"!0+

Ui(X�i; Y
"
i ) > E ( ewi (�)) = wi: (11)

Now �x some " > 0 for which Ui(X�i; Y
"
i ) > wi+ " (it exists by (11)), and denote

Yi � Y "i : By de�nition, (X�i; Yi) satis�es (7), and repeating the arguments following

(7) shows that i can secure a payo¤ greater than wi: Thus C is better-reply-secure.

We conclude that C possesses some Bayesian Nash equilibrium X�. In particular,

X� satis�es (3) for every i 2 N; �i 2 �i; and xi 2
h
0; Q

i

�i

i
: But note that every

xi > Q
i

�i
leads to a negative expected payo¤ to player i conditional on �i 2 �i (this

follows from the �rst inequality in (6)), which can be improved upon by lowering

the e¤ort on �i to zero. Thus, in contemplating a unilateral deviation from X�
i (�i)

conditional on �i; player i is never worse o¤by limiting himself to e¤orts 0 � xi � Q
i

�i
:

But this means that X� satis�es (3) for every xi 2 R+: Since this is the case for every
i 2 N and every �i 2 �i; X� is a Bayesian Nash equilibrium of the original contest

C. �

Our theorem makes no assumptions about players�private information, and ap-

plies regardless of whether players have private or common values, or whether their

costs of e¤ort are the same or di¤erent. It also implies existence of a Bayesian Nash

equilibrium in a generalized Tullock contest in Harsanyi�s types model, where each

player�s uncertain type represents his private information, and players have a com-

mon prior distribution over all possible realizations of types, provided each player�s

type set is at most countable. (In the discrete case, these two models of incomplete

information games are equivalent �see Jackson (1993) and Vohra (1999).)

12Recall that the cost of i is bounded from above by an integrable function that is equal to

ci(�; Q
i

�i) on each �i; and that w.l.o.g. (following step 1 of the proof) p (f!
�g) > 0:

12



The remark below, which follows from Theorem 1 of Ewerhart and Quartieri

(2013), states su¢ cient conditions under which an equilibrium in a generalized Tullock

contest is unique.

Remark. Suppose that in a generalized Tullock contest: (a) 
 is �nite, (b) the

state-dependend production functions (gi(!; �))i2N;!2
 in (5) are twice di¤erentiable
and �i(!; 0) < 1 for every i 2 N and ! 2 
; (c) players�state-dependent cost func-
tions (ci(!; �))i2N;!2
 are twice di¤erentiable, and (d) each player i�s value function
vi has the form vi (!) = v (!) � ki (!) ; where v : 
 ! R++; and ki : 
 ! R++ is

�i-measurable. Then the contest has a unique (pure strategy) Bayesian Nash equilib-

rium.
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