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Abstract

This paper analyzes an explicit protocol of contract negotiation between a principal who has

all the bargaining power and an agent who holds some private information about his preferences.

It extends the framework of the Coase conjecture to situations in which the seller and the buyer

must determine the quantity or the quality of the good being sold. The results also provide a

foundation for renegotiation-proof contracts. The equilibrium probability that efficient contracts

are implemented goes to one as renegotiation frictions become negligible. The principal extracts

a strictly positive surplus from the relationship, in contrast to the standard Coase conjecture

with binary sales and posted prices.

1 Introduction

In the standard model of the durable-good monopolist, any sale is efficient and definitive: buyer and

seller cannot both benefit from modifying the price of the sale. In richer contractual environments,

however, a signed contract may be inefficient. For example, the parties may benefit from increasing

the quantity of the good initially sold, or by agreeing on a different quality of that good.

This issue is particularly important when the buyer holds private information, because his willing-

ness to sign some contract is informative of his type, and may thus reveal some inefficiency of the
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contract just signed. This, in turn, prompts the seller to propose a new contract, and may distort

the buyer’s ex ante incentives to accept any given contract.

Contract renegotiation with a privately informed agent has traditionally been studied from two

different angles. The first approach is axiomatic, and focuses on “renegotiation-proof” contracts.1

It essentially assumes that renegotiation leads to an efficient contract, even when one party holds

private information. The second approach focuses on simple renegotiation protocols, in which the

principal gets a single shot at renegotiating the contract, by making a take-it-or-leave-it offer. This

approach typically results in inefficient contracts.2

The second approach seems incomplete: what, in reality, should prevent the principal from propos-

ing a new contract after learning the inefficiency of the current contract? This paper studies a more

flexible negotiation protocol, in which the principal is allowed to propose a new contract following

any incoming information about the agent’s type. Put differently, the principal cannot commit not

to renegotiate a contract.

While such flexibility seems necessary to guarantee ex post efficiency, proving that it is sufficient

raises complex issues. To appreciate the difficulty, consider again the standard durable-good mo-

nopolist. Efficiency, in that context, means that the good is sold without delay, and was established

by Gul, Sonnenschein, and Wilson (1986) as the discount rate, or breakdown probability, goes to

zero.3 The proof is sophisticated even in this simple contractual environment, where each contract

amounts to a single posted price. The key question is to determine whether the seller can benefit

from distorting the allocation of the low-valuation buyer (i.e., by inefficiently delaying the sale)

to extract some rent from the high-valuation buyer. In richer environments, the question is more

complex because i) the signature of any contract may be followed by further negotiations (e.g., con-

tractual covenants, changes in quantities or qualities may be added), ii) the principal may benefit

1See Dewatripont (1989), Maskin and Tirole (1992), Battaglini (2007), Maestri (2012), and Strulovici (2011, 2013).

A similar approach has been used to study renegotiation in repeated games with complete information by Bernheim

and Ray (1989) and Farrell and Maskin (1989).
2See Hart and Tirole (1988) and Fudenberg and Tirole (1990). Wang (1998) considers a more flexible protocol, in

which the principal proposes contracts until an agreement is reached. Such protocol leaves a high commitment power

to the principal, since he cannot renegotiate any agreement. Indeed, Wang’s main result is that, with this protocol,

the principal achieves the full commitment allocation, which is also ex post inefficient.
3The result is shown for the “gap” case and the “no gap” case under some Lipschitz condition on the distribution

of types, for weak Markov equilibria (see also Sobel and Takahashi (1983) and Fudenberg, Levine, and Tirole (1985)).

Ausubel and Deneckere (1989) show that the conjecture can fail when more general equilibria are allowed. The

analysis of the Coase conjecture has been extended to various environments: interdependent values (Deneckere and

Liang (2006)), flow of new buyers (Fuchs and Skrzypacz (2010)), and outside options for the buyer (Board and Pycia

(2013)). All these models focus on the case in which the buyer can only buy one unit of the good, and a single quality

of the good is available.
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from proposing multiple new contracts at each round instead of single one,4 iii) each type of the

agent can randomize over all such contracts, and iv) in many contracting problems, the utility of

the agent need not be linear or even separable in the contract components.

This paper analyzes a flexible negotiation protocol with the following properties. At each round,

the principal can propose a menu of contracts (round zero starts with a single default contract,

which may correspond to the absence of a prior relationship, to some status quo, or to some

unmodeled previous play). The agent then chooses a contract from that menu, or holds on to the

last accepted contract. At the end of each round, negotiations break down exogenously with a fixed

probability η, in which case the last accepted contract is implemented. The breakdown probability

captures negotiation frictions: when it is equal to 1, the protocol reduces to full commitment,

and the principal typically distorts the allocation of one type of the agent, creating some ex post

inefficiency. The model focuses on a binary type structure, which satisfies a single crossing condition.

As a result, there is common knowledge of gains from renegotiation: as long as the types of the

agent have not been fully separated, there is a strictly positive surplus to be extracted.

The main finding of the paper is that, as η goes to zero, all PBE outcomes of the negotiation game

converge to an immediate, separating agreement, in which each type of the agent gets an ex-post

efficient and, hence, renegotiation-proof contract (i.e., P could not benefit from renegotiating the

outcome of the game, if given an extra opportunity to do so). Those type-specific contracts are

the same across all PBEs, and are easily characterized. Moreover, the principal always extracts,

in equilibrium, some surplus from the relationship. The closer to efficiency the initial contract is

for one type of the agent, and the more surplus the principal can extract from the other type. To

illustrate this point, consider a situation in which the initial contract is almost efficient for L, say.

In that case, there is little room for renegotiation with L. This implies, intuitively, that H cannot

gain much from pretending to be L, and receives almost no rent. More precisely, H’s rent converges

to zero as the initial contract becomes efficient for L.

This rent-extraction pattern stands in sharp contrast with the surplus allocation obtained in the

standard Coase conjecture with binary types. In that setting, the seller receives a profit vL − c

from the sale, where vL is the valuation of the low-type buyer and c is the seller’s marginal cost;

the high-valuation buyer gets a rent vH − vL from the sale; the initial contract corresponds to the

no-trade allocation (i.e., the seller holds the good). As one reduces vL, keeping other parameters

unchanged, the surplus from trade conditional on facing L, vL− c, gets smaller, and thus the initial

no-trade contract becomes more efficient for L. However, this does not improve the seller’s ability

to extract surplus from H. In fact, the seller’s expected profit, vL − c, diminishes with vL and is

4For example, the principal may propose one contract for each type of the agent.
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discontinuous as vL reaches c, since in that case the seller can credibly charge H its valuation vH .

This discontinuity of the standard Coase conjecture does not arise here. This suggests that the

seller’s inability to extract any rent in the “gap” case of the Coase conjecture depends on the very

specific contractual environment (binary sale, price posting) in which it has been analyzed.

One interpretation of the efficiency result is that renegotiation provides a dynamic implementation,

without commitment, of efficient allocations. The fact that almost efficient contracts are proposed

immediately implies that in equilibrium, renegotiation has little impact on the contracts that are

proposed initially, even though the possibility of renegotiation plays a major role on the contracts

that are initially proposed. This suggests that one should not infer that renegotiation plays a minor

role on equilibrium outcomes, even though the observed renegotiation activity seems negligible.

At a broader level, this paper analyzes a dynamic screening problem and bears some resemblance

with the literature on reputation, in which some players are trying to determine whether other

players have a “commitment” type.5 Compared to this literature, the present analysis differs in

several ways: i) the “actions” of the players (the types) are endogenous, because the principal

chooses which contracts the agent chooses from in each round, ii) the state space is large, because

it includes the last accepted contract, in addition to the principal’s belief, and iii) all types of the

agent are strategic. The richer state space, in particular, requires specific tools, and the use of a

number of inequalities which combine the nonlinear geometry of the problem (as captured by the

agent’s and the principal’s utility over the contract space) with the incentives of the players.

Finally, a distinct contribution of the paper is to establish the existence of a PBE for a negotiation

game with a (relatively) rich contract space. In the present setting, backward induction techniques

cannot be applied. Instead, the proof takes a two-step approach: first, prove the existence of an

equilibrium in an auxiliary game of perfect information between the principal and the high type of

the agent, based on Harris (1985). Second, use that equilibrium to construct an equilibrium of the

negotiation game with private information.

2 Setting and Overview of the Results

There are two players, a principal (P) and an agent (A) who negotiate a contract lying in some

compact and convex subset C of R2.

The agent has a utility function uθ : C → R where θ ∈ {L,H} denotes his type, and P has a cost

5See Fudenberg and Levine (1989), Schmidt (1993), Abreu and Gul (2000), Cripps et al. (2005), and Atakan and

Ekmekci (2012).
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function Q : C → R. It is assumed throughout that i) uL, uH and Q are strictly increasing and

twice continuously differentiable, ii) for each θ, uθ is concave and its iso-level curves are not linear

on any convex subset of their domain,6 and iii) Q is convex.

A contract C = (x1, x2) ∈ C is θ-efficient if it is the cheapest contract providing θ with some given

utility level. For each θ, let Eθ denote the set of interior θ-efficient contracts, i.e., at which θ’s

iso-utility curve and P’s iso-cost curve are tangent.

The functions uL and uH satisfy a standard single-crossing property: iso-utility curves of L are

steeper than those of H at their intersection point. This implies that the efficiency curve EL lies to

the lower right of EH . C can therefore be partitioned into three regions separated by the efficiency

curves. Contracts in the inner region are said to be in the No Rent configuration, while contracts

below EL (above EH) are in the H-Rent (L-Rent) configuration. H will denote the set of contracts

in the H-Rent configuration. To rule out pathological cases, it is assumed that the efficiency curves

EL, EH are upward sloping. To guarantee the applicability of differential techniques, it is further

assumed that for any contract C in the H-Rent or L-Rent configuration, the θ-efficient contract

that gives θ the same utility as C lies on Eθ.7

The situation is represented on Figure 1 in the context of a trade application (other applications

are described later in this section). C represents and Edgeworth box, delimited by the sum of

endowments of the agent and the principal. A contract C represents the agent’s final allocation,

and the status quo R0 represents the endowment of the agent, before any trade.

The Negotiation Game

The game unfolds as follows: the agent’s type is privately known, initially, and β0 = Pr(θ = H)

characterizes P’s prior about θ. The game starts with an initial contract R0 ∈ C representing

some status quo, the absence of a prior relationship, or the result of some earlier play. There are

countably many potential rounds, indexed by n ∈ N. At each round n, P can propose a menu

Mn of contracts in C. We assume that the number of contracts in Mn is bounded above by some

6This assumption, satisfied in the applications discussed below, holds if iso-utility curves have a nonzero curvature.

It is used in Lemma 12 to guarantee that at any tangency point of an iso-utility and an iso-cost curve, the curves do not

stay “stuck” together as one moves away from the tangency point, and is made for convenience, to avoid dealing with

multiple cases. The curvature at x0 ∈ R of a real-valued function f : x 7→ f(x) is equal to |f ′′(x0)|/(1+(f ′(x0))
2)3/2.

7If the utility and cost functions are defined on some upper orthant O = [ℓ1,+∞) × [ℓ2,+∞) containing C, one

can always extend C to a larger subset C′ of O so as to satisfy this assumption. This is for example achieved by

taking C′ to be the smallest rectangle including C and such that EL (resp. EH) hits the boundary of C′ on its right

(resp. upper) edge.
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Figure 1: Setting (trade interpretation)

constant G ≥ 2 that is arbitrary but fixed throughout the game. The agent chooses an item of Mn

or holds on to the last accepted contract, Rn. Any mixed strategy over the choice set Mn ∪{Rn} is

allowed. The contract Rn+1 that is selected by the agent becomes the new reference. At the end of

each round, renegotiation breaks down with probability η ∈ (0, 1] and the last accepted contract,

Rn+1, is implemented. Otherwise, negotiation moves on to the next round.

Letting {Rn} denote the stochastic process of contracts entering each round n, the agent’s expected

utility is equal to Vθ = E[
∑

n≥0(1 − η)nηuθ(Rn+1)], while P’s expected cost is Q = E[
∑

n≥0(1 −
η)nηQ(Rn+1)].

The parameter η represents the negotiation friction. The objective of this paper is to characterize

the PBEs of the game as the friction η goes to zero, under the following assumption. Let βn denote

the probability, at the beginning of round n, that P assigns to type H.

Assumption 1 (No Expanding Support) If βn ∈ {0, 1}, then βm = βn for all m ≥ n.

Theorem 1 For each η ∈ (0, 1], there exists a PBE satisfying Assumption 1.
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Figure 2: Renegotiation outcomes

For any contract R ∈ C, let (EH(R), EL(R)) denote the cheapest pair of H- and L-efficient contracts

such that each type θ 6= θ′ weakly prefers Eθ(R) to Eθ′(R) and to R. That pair is well defined: if

R is in the No-Rent configuration, Eθ(R) is simply the θ-efficient contract that gives θ the same

utility as R. If R is in the H-Rent configuration, then EL(R) is similarly defined, while EH(R)

is the H-efficient contract that gives H the same utility as EL(R). Because that contract gives

a strictly higher utility to H than the initial contract R, H must be getting a positive rent in

any equilibrium, hence the name of that configuration. A symmetric construction obtains if R

is instead in the L-Rent configuration. Figure 2 represents these concepts for the case of CRRA

utility functions and a linear cost function, and where C is the Cartesian product [0, x̄1]× [0, x̄2].

Theorem 2 Consider any initial contract R0 and belief β0, and fix any ε > 0. There exists η̄(ε) > 0

such that the following statements hold for any η ≤ η̄(ε) and corresponding PBE:

A) The expected utility of each type θ is bounded below by uθ(Eθ(R0))− ε.

B) The probability that each type θ gets a contract within a distance8 ε of Eθ(R0) when renegotiation

8The statement holds for any norm on R
2.
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breaks down is greater than 1− ε.

Statement B implies that the outcomes of renegotiation must get arbitrarily close to ex-post effi-

ciency as the renegotiation friction η goes to zero, since each contract Eθ(R0) is θ-efficient. The

statement is a relatively straightforward consequence of Statement A, to which the quasi-totality

of the proof is devoted.

Theorem 2 implies that P always gets some of the surplus from negotiation. When the contract is in

the No-Rent configuration, P extracts all the surplus. Even when R0 is in theH-Rent configuration,

P gets the surplus from negotiation that he would obtain only facing L, but also extracts some

additional surplus in case he is facing H. Strikingly, the surplus extracted from H is increasing

as L’s utility change so as to make the initial contract closer to efficiency: at the limit, if R0 is

L-efficient, P extracts all the surplus from renegotiating R0 with H.

Applications

1. Durable Good Monopolist. Agent A is a buyer with quasi-linear utility uθ(C) = θū(x2)+x1,

where x2 is the quantity of the good sold by P, x1 is A’s cash holding, and u is his concave utility

function.9 The initial contract R0 is equal to (0, x̄2) where x̄1 is A’s initial wealth. P’s cost is

Q(x1, x2) = cx2 + x1, where c > 0 is the marginal cost for producing the good and x2 captures,

formally, how much wealth “P leaves to A”.10

2. Labor Contract. P is a potential employer and A is a worker. −x2 represents A’s effort

and x1 is his wage. A gets utility uθ(C) = θψ(−x2) + x1, where the cost ψ of effort is increasing

in its argument, and θ is a worker-specific cost of effort. The status quo R0 = (0, 0) represents

unemployment, while P’s profit is Π(x1, x2) = −Q(x1, x2) = −x2p − x1, where p > 0 is the unit

price of the good.

3. Consumption Smoothing and Insurance. There are two periods and a single good. The

dimensions of C represent A’s consumption in each period. P is a social planner or a bank who can

help the agent smooth his consumption. The type θ may be a privately known patience/discount

factor, or a distribution parameter that describes how likely the agent is to value the good in the

second period. For example u(x1, x2) = v(x1)+ θv(x2) or u(x1, x2) = v(x1)+E[w(x2, ρ̃)|θ] where ρ̃
9The iso-level curves of uθ do not have linear pieces, as long as the second derivative ū is strictly negative, as is

easily checked. A similar condition applies to ψ in the next application.
10In effect, P’s profit is Π(t, x2) = t − cx2, where t is how much the agent pays P. Letting t = x̄1 − x1, we obtain

the formulation in terms of the cost function Q.
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is a taste shock whose distribution FOSD increases in θ and w is supermodular. R0 is A’s autarkic

income stream. Q(x1, x2) = p1x1 + p2x2, where pt is the market price for the good in period t.

4. Trade. More generally, the model describes a trade environment in which the dimensions of

C represent distinct goods, with xi denoting the quantity of good i consumed by A. Type L cares

more about the first good than the second, relative to H. P has convex preferences, and Q is the

negative of a utility function representing those preferences. R0 denotes the agent’s initial holdings

of the goods.

Overview of the proofs

The remaining of this section provides a short introduction and discussion of the proofs in this

paper.

The proof of Theorem 2 begins with three cases of increasing complexity.

1) If the type of the agent is known (and given Assumption 1), the problem reduces to a bargaining

problem with perfect information in which P has all the bargaining power. The equilibrium outcome

is essentially unique, with P extracting the entire surplus from renegotiation.

2) If the initial contract R0 is efficient for one type, say L, P cannot extract any surplus from

that type. This gives him some commitment power with respect to the other type: intuitively,

H knows that there is nothing to be gained from mimicking L, since L’s allocation won’t move.

This intuition is simplistic, however: couldn’t both types gain from P’s attempt to extract surplus

from H? While showing that P extracting all the gain from renegotiation with H constitutes an

equilibrium, showing that this is the only equilibrium is more complicated.

3) When R0 is in the No-Rent configuration, the basic intuition is similar to Case 2), because the

efficient contract that P wants to propose to each type is unattractive to the other type. The main

difficulty is to show that P extracting all surplus from renegotiation is the unique equilibrium. The

proof exploits Case 2) and is more definitely more complex. The argument derives upper bounds

on P’s expected cost over all PBEs, and works out its implications for the continuation utility of

each type.

Those preliminary results hold for any friction level. The harder part of the proof, by far, is to

show that efficiency obtains as the breakdown probability η goes to zero, when R0 is in the L-

or H-Rent configuration. This result is clearly false for arbitrary η: if η = 1, in particular, the

situation amounts to full commitment, and the optimum proposal involves distorting one of the

two types. If, for example, R0 is the H-rent configuration, P will propose an inefficient contract to

L in order to reduce H’s rent. L gets no rent and an inefficient allocation, while H gets a positive

rent and an efficient allocation. These observations are standard in the contracting literature with
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commitment, and their proofs are omitted.

Coasian dynamics and its limits

The first part of the argument is similar to the proof of the Coase conjecture (Gul et al., 1986).

Suppose that R0 is in the H-Rent configuration. To avoid giving too much rent to H, P tries to

exploit H’s concern about getting an early inefficient breakdown and resulting willingness to forego

some of his rents. However, P is also harmed by such breakdowns. For the scheme to be attractive,

H must therefore accept the low-rent contracts with sufficiently high probability. This, however,

quickly leads to a very low posterior probability of facing H, which makes P want to jump to the

efficient contract for L that entails leaving all the rent to H. As the breakdown probability goes to

zero, this mechanism forces P to leave all the rent to H, as in the Coase conjecture.

A major complication arises, however, owing to the richer contract space and bargaining possibili-

ties: P does not have to wait for H to accept low-rent contracts in order to reduce the breakdown

inefficiency: he can also propose new contracts to L (and H) that reduce this inefficiency. Unlike

the standard analysis of the Coase conjecture, in which the seller is reduced to posting a single

price at each period, here the principal can propose arbitrarily many contracts. In particular, P

could have L accept gradually more efficient contracts for L, and H randomize between those con-

tracts and low-rent H-efficient contracts. Thus, the situation is neither one of “gap” or “no gap”

configuration: here the gap may diminish gradually as the principal proposes contracts that are

increasingly more efficient for L. Addressing this difficulty is the core of the proof, and the strategy

to do so is described at the beginning of Section 4.11

Equilibrium existence and the lack of backward induction

Because of the richness of the contract space, it is impossible to use backward induction to charac-

terize equilibrium behavior near efficiency (unlike in the Coase conjecture with binary types, where

setting the price at L’s valuation is optimal for low enough probabilities of facing H). This prevents

the use of constructive proofs for the existence of an equilibrium.

Instead, equilibrium existence is shown in two steps. In the first step, the setting is simplified to a

11To pursue the comparison with the Coase conjecture, the seller could propose probabilities of getting the good: the

high valuation buyer would buy the good at a high price with some probability. With the remaining probability he,

like the low-valuation buyer, would buy a small probability of getting the good, which would gradually increase over

time. In general, there is no guarantee that proposing only two contracts at each round is without loss of generality.

As Bester and Strausz (2001) have shown that the set of implementable outcomes can require more “messages” (or

contracts) than the number of types of the agent. Since we consider all equilibria, their modified revelation principle

for optimal contracts without commitment cannot be applied here. The extent to which that principle applies to

models with an infinite horizon is also unclear.
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game between P and H, and L’s behavior is taken as given: in period n, P proposes two contracts,

Rn+1 and Cn; H randomizes between the two contracts, while L accepts Rn+1 with probability 1.

This simpler auxiliary game satisfies the assumptions of the main theorem in Harris (1985), which

guarantees that it has an equilibrium. The second step builds on the equilibrium of the auxiliary

game to construct a PBE of the original game.

3 Results holding for all friction levels

Proposition 1 The following holds for any PBE and η:

i) If the prior β puts probability 1 on some type θ, P immediately proposes the θ-efficient contract

that leaves θ’s utility unchanged and θ accepts it.

ii) If R0 is θ-efficient, P immediately proposes Eθ′(R0) (θ
′ 6= θ), and θ′ accepts it.

iii) If R0 is in the No-Rent configuration, P immediately proposes EL(R0) and EH(R0), and each

type θ accepts Eθ(R0).

iv) If R0 is in the H-Rent (L-Rent) configuration, H’s (L’s) expected utility is bounded above by

uH(EH(R0)) (uL(EL(R0))).

The next result is crucial for the analysis: for any PBE and round n, P can always propose the

contracts EH(Rn) and EL(Rn) and have them accepted by types H and L, respectively. This

deviation puts an upper bound on P’s continuation cost as a function of the current contract Rn.

The deviation will henceforth simply be referred to as the “jump.”

Lemma 1 (Jump) If Rn is in the H-Rent configuration and P proposes the contracts EH(Rn) and

EL(Rn), with EH(Rn) augmented by an arbitrarily small amount ε > 0, then H accepts EH(Rn)

with probability 1 and L accepts EL(Rn) with probability 1. Therefore, P’s continuation cost is

bounded above by Q̄n = βnQ(EH(Rn)) + (1− βn)Q(EL(Rn))

Proof. The result follows from Part iv) of Proposition 1: EH(Rn) plus any small amount gives a

strictly higher utility to H than what he can get under any continuation utility, and also gives him

strictly more utility than EL(Rn). Therefore, H accepts the contract with probability 1. Because

L strictly prefers EL(Rn) to EH(Rn) in the H-Rent configuration, and because the agent’s type is

revealed in round n unless L takes the strictly suboptimal contract EH(Rn), it is optimal for L to

accept EL(Rn). �
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Lemma 2 If R0 is in the H-Rent configuration, then in any PBE, L accepts only contracts that

are in the H-Rent configuration.

Given any PBE, any contract sequence {Rn} that is accepted by L with positive probability (until

the exogenous negotiation breakdown) will be called a choice sequence. When R0 is in the

H-Rent configuration, choice sequences will play a particular role: we will see that, without loss

of generality, any accepted contract sequence is a choice sequence, until H accepts an H-efficient

contract. Moreover, choice sequences have several important properties. First, as indicated by

Lemma 2, any choice sequence consists of contracts that are in the H-Rent configuration. Other

properties are described by the following proposition.

Proposition 2 Suppose that R0 is in the H-Rent configuration. Along any choice sequence {Rn}
i) βn converges to zero, and ii) Rn converges to an L-efficient contract, denoted C̄L.

4 Proof of Theorem 2

Without loss of generality, it suffices to prove the theorem when R0 is in the H-Rent configuration:

Proposition 1 already addresses the case in which R0 is in the No-Rent configuration, and the L-

Rent configuration can be proved by symmetry. Let us thus assume that R0 ∈ H. From Lemma 2,

L accepts only contracts in H. Moreover, any contract Cn that is only accepted by H with positive

probability can be replaced by an H-efficient contract C̃n that gives H the same utility, without

affecting anyone’s incentive (assuming that H accepts C̃n with the same probability as he was

accepting Cn) and reduces P’s cost. Therefore, we can without loss of generality focus on PBEs

in which P only proposes, at each round, a number of contracts in H, and the H-efficient contract

that gives H his continuation utility. This assumption is maintained throughout the analysis.

Organization of the proof

The proof of Theorem 2 (Part A) proceeds by contradiction. We suppose that there exists ε > 0,

a decreasing sequence {ηm}m∈N of breakdown probabilities that converges to zero, and a PBE

associated to each ηm for which H’s expected utility uH(0) at round 0 is below uH(EH(0)) − ε.

(Throughout, uθ(n) will denote θ’s continuation utility at the beginning of round n.)
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In what follows, we focus entirely on that sequence of η’s and corresponding PBEs. The expression

“as η goes to zero” will refer to the elements of that sequence and corresponding PBEs.12

The difference w0 = uH(EH(0)) − uH(0) can be thought of as a rent extraction index for type H.

It defines how much rent P is extracting from H, relative to the immediate jump: uH(0) is H’s

continuation utility while uH(EH(0)) is the maximal utility that P can give H in any equilibrium,

as shown by Proposition 1, part iv).

The proof consists of the following steps.

Step 1: For each PBE of the sequence, show that one can construct a choice sequence ending at

some finite round Ñ for which the augmented rent extraction index,

w̄Ñ = max
m≤Ñ

{uH(EH(m̃))} − uH(Ñ),

is of order η, and there exists d > 0 such that either

a) βÑ ≥ ηd and w0 ≤ ŵ
√
η, where ŵ > 0 is exogenous, or

b) βÑ < ηd.

Proving that step is the object of Part I below. Of course, Case a) above implies that w0 could not

have been greater than ε, for η small enough. Therefore, it suffices to rule out Case b).

Step 2: Show that, in Case b), there must exist a round N ≥ Ñ for which w̄N ≤ ηD
2a but w̄N ≥ w

¯
η

and βN ≤ ηd, for some exogenous constants a,D,w
¯
. This is done in Part II.

Step 3: Show that at round N , one must have w̄N ≤ w̄η1+d for some w̄ > 0. This contradicts, for

η small enough, the inequality of Step 2 involving w
¯
, which rules out Case b). (Part III).

Once Part A) of Theorem 2 has been proven, showing Part B) is relatively straightforward. The

implication is shown in Appendix F.

Part I: Macro Level

The strategy of the proof is to build a sequence of blocks (each consisting of finitely many rounds),

and choice sequence going through these blocks, with the following properties: i) within each

12Without loss of generality we focus on ε small enough so that the constant D(2ε) defined in the Appendix

(see (39)), is strictly positive.
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block, for the PBE to be profitable to P compared to an immediate jump, H must accept H-

efficient contracts with a high enough probability, which drives the posterior β closer to zero, by a

controlled amount, and ii) P’s potential gain, conditional on facing type H, shrinks geometrically

across blocks. This construction ends at some terminal block, K, such that P’s maximal potential

gain on H is of order η, and the posterior β(K) is bounded above by gKβ0 for some factor g < 1.

When β(K) > ηd for some power d > 0 that is judiciously chosen, this yields an upper bound on the

number K of blocks which, by using the geometric series backwards, implies that the initial gain

on H must have been small as well, for η small enough, contradicting the existence of a sequence

{ηm} and corresponding PBEs for which the initial rent index w0 always exceeds ε. The ulterior

parts (Parts II and III) of the proof establish that β(K) > ηd is the only viable case when η is

small enough.

We begin the proof by the following observation. For any round n and choice sequence up to round

n, let ēn = max{uH(EH(Rm)) : m ≤ n} and w̄n = ēn − uH(n).

Notation Throughout the analysis, variables with upper bars, such as w̄n, refer to specific rounds,

while variables with hats, such as ŵk refer to specific blocks (so for example, ŵk = w̄n(k), where

n(k) is the round ending block k, cf. infra).

Lemma 3 If uH(EH(R0)) > uH(0) + ε, there exists a choice sequence and a round n0 such that

i) βn0 ≤ β0 and ii) w̄n0 ∈ [ε/2, ε].

Block 1 starts at the round n0 guaranteed by Lemma 3, so that w̄n0 = ēn0 − uH(n0) ∈ (ε/2, ε).

Let û0 = uH(n0), ê0 = ēn0 , and β̂0 = βn0 ≤ β0. We construct the end of Block 1 as follows. First,

define û1 by
ê0 − û0
û1 − û0

= t > 1

where t is a fixed threshold, greater than 1, to be determined shortly. Also let n1 = inf{n : uH(n) ≥
û1} denote the first round at which H’s continuation utility exceeds the threshold û1. Because û1 <

ê0, Lemma 14, in the Appendix, guarantees that n1 is finite with probability 1, as it implies that

uH(Rn) must eventually exceed any utility level û1 such that û1 < max{uH(EH(Rm)) : m ≤ n0},
along any choice sequence, as n gets large enough.

Block 1 finishes at round n1. To get a control on how much the posterior must have dropped within

that block, let µ0 denote the probability, evaluated at round n0, that H accepts only contracts in

H until round n1 (i.e., the probability that H does not fully reveal himself). Lemma 15, in the

Appendix, shows that there must exist a pushdown choice sequence such that, upon observing that

14



sequence up to û1, the posterior probability β̂1 of facing H satisfies

β̂1 ≤
β̂0µ0

β̂0µ0 + (1− β̂0)
. (1)

At round n0, P can always jump to (EH(Rn0), EL(Rn0)), by Lemma 1. To sustain the PBE,

therefore, the net gain from continuing the PBE and extracting some rent from H, compared to

the immediate jump, must outweigh the net loss resulting from a negotiation breakdown at an

inefficient contract. While the gain only pertains to H, the loss concerns both L and H. The

argument below exploits only the loss on H. (The loss on L is exploited in later parts of the proof

of Theorem 2.)

We now compute an upper bound on this gain and a lower bound on the loss. Comparing these

bounds will yield an upper bound on P’s posterior belief of facing H after the first block, following

the pushdown choice sequence. To do so, we start with the following lemma:

Lemma 4 Along any choice sequence, H’s continuation utility at round n, uH(n), is nondecreasing

in n, and satisfies uH(n+ 1)− uH(n) ≤ η∆H where ∆H = maxC∈C uH(C)−minC∈C uH(C).

Proof. Given the current contract Rn at round n, let Rn+1 denote any contract chosen by H with

positive probability among Rn ∪ {Mn}. H’s utility satisfies the dynamic equation13

uH(n) = ηuH(Rn+1) + (1− η)uH(n+ 1). (2)

Therefore, uH(n) is a convex combination of uH(Rn+1) and uH(n+1). Because H can always hold

forever on to Rn+1, in all rounds m ≥ n, uH(n + 1) is bounded below by uH(Rn+1). Combining

these observations yields uH(n) ≤ uH(n + 1). Moreover, we have uH(n + 1) − uH(n) = η(uH(n +

1) − uH(Rn+1), which implies that the second claim of the lemma. The intuition for this part is

simple: if the utility jump was higher between two rounds, H would prefer to wait until the next

round rather than accept any contract today. �

The net gain, between rounds n0 and n1, is bounded above by β̂0(1 − µ0)a(ê0 − û0) for some

Lipschitz constant a > 0. Indeed, β̂0(1 − µ0) is the probability that the agent is of type H and

that he accepts some H-efficient contract at some round of the first block. Because H accepts only

H-efficient contract that give him at least his continuation utility,14 and because that continuation

utility is nondecreasing, by Lemma 4, the smallest utility that P can give H when singling him out

13More generally, H ’s utility satisfies the Bellman equation uH(n) = maxR∈{Rn}∪Mn
{ηuH(R)+ (1− η)uH(n+1)}.

Equation (2) then follows for all contracts that are optimal for H in round n.
14Indeed, by accepting such contract, H reveals his type, and his continuation utility is exactly the one provided

by the last accepted contract, by Proposition 1, Part i).

15



within that first block, is û0. By contrast, ê0 is an upper bound on the utility that P provides to H

if chooses the immediate jump. Therefore, the maximum rent that P can extract from H is ê0− û0.
The constant a is a Lipschitz constant that bounds utility differences for H along the H-efficient

curve EH in terms cost differences for P along that curve. That constant is based on the cost and

utility functions Q and uH along EH and is derived in the Appendix (Lemma 10).

Similarly, the expected net gain made after round n1, but seen from round n0, is bounded above

by β̂0µ0a(ê0 − û1), because β̂0µ0 is the probability of facing H and of reaching round n1, and û1 is

the smallest utility that P must provide to H at any round following n1.

To get a lower bound on the net loss, the intuition is that, as long as H accepts contracts in H, he

is getting contracts that are inefficient, and hence costly to P relative to the immediate jump to

EH(Rn0) (indeed, those contracts are far away from H’s efficiency line, since they are to the right

of L’s efficiency line, which is itself to the right of H’s efficiency line). The Appendix (Lemma 16)

shows that there exists a constant D > 0 that gives a lower bound on this loss whenever the rent

index at the beginning of each block is less than 2ε, which is without loss of generality (see Remark 2

in the Appendix). We also need to compute the probability that a breakdown occurs between rounds

n0 and n1. The key, here, is to observe that H’s utility can only jump upwards, at each round, by

at most η∆H , by Lemma 4. Therefore, there must be at least n
¯
(1) = ⌊(û1 − û0)/η∆H )⌋ steps to

get to û1, for any choice sequence.

Therefore, the breakdown probability is bounded below by15

1− (1− η)n¯
(1) = 1− exp (n

¯
(1) ln(1− η)) ≥ −n

¯
(1) ln(1− η)− 1

2
n
¯
(1)2(ln(1− η))2.

Because the gain is of order ε, which is small, while the loss conditional on a breakdown is of order

D, the probability of a breakdown must be of order ε, which means that n
¯
(1) ln(1 − η) must also

be small. The quadratic term is therefore negligible. Moreover, because we are focusing on the

case where η is small, ln(1−η) can be approximated by −η. Combining these bounds on gains and

losses yields16

βa[(ê0 − û0)(1− µ0) + (ê0 − û1)µ0] ≥ βµ0D
û1 − û0
∆H

. (3)

15The inequality comes from the standard inequality 1 − exp(x) ≥ −x − x2/2, valid for all x ≤ 0, which may be

shown as follows. The function x 7→ exp(x) − 1 − x− x2

2
vanishes at 0, as do its first and second derivatives. Since

its third derivative is positive (equal to exp(x)), its first derivative is convex and, from the previous observations,

must have a minimum at zero. This implies that the function itself is increasing and, since it vanishes at 0, that it is

negative for x ≤ 0.
16For expositional simplicity, the “floor” operator is dropped. This change is negligible because n

¯
(1) is large, since

û1 − û0 = 1
t
(ê0 − û0) ≫ η∆H , for η small. That observation applies to each block k constructed: see Footnote 19.
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Recall that û1 was defined in terms of an undertermined threshold t. We now define t by17

t2 =
a+D/∆H

a
> 1.

With this value of t, we have

µ0 ≤
a

a+D/∆H

ê0 − û0
û1 − û0

= t−1.

Combining this inequality with (1) implies that, upon observing the constructed choice sequence

until round n1, the posterior β̂1 satisfies

β̂1 ≤
µ0β̂0

µ0β̂0 + (1− β̂0)
≤ β̂0

t−1

β̂0t−1 + (1− β̂0)
= gβ̂0.

where g = t−1

β0t−1+(1−β0)
. (We also use the inequality β̂0 ≤ β0.) Because t−1 < 1, g is strictly less

than 1. We have thus achieved our goal of guaranteeing that the posterior β̂1 drops by some fixed

factor along the first block, for some choice sequence.

To initiate the second block, we use the value û1 that was defined as part of Block 1.18 The actual

value of uH(n1) may be slightly above û1, but by no more than ∆Hη, by Lemma 4. The level

ê1 = maxm≤n1{uH(EH(Rm))} is the maximum value that H gets if P jumps at any round m ≤ n1

along the particular choice sequence constructed so far. Having defined û1 and ê1, we define û2,

similarly to the first block, by
ê1 − û1
û2 − û1

= t.

Let µ1 denote the probability, at round n1, following the observation of the pushdown choice

sequence used for Block 1, that H takes a contract in H at all rounds n ≥ n1 until û2 is reached.

Repeating the previous analysis, there exists a pushdown choice sequence for Block 2 such that,

upon observing that sequence up to û2, the probability β̂2 of facing H satisfies β̂2 ≤ β̂1µ1

β̂1µ1+(1−β̂1)
.

Let n2 denote the round at which û2 is first exceeded. By a similar analysis to the used for the

first block, we have

β̂2 ≤
µ1β̂1

µ1β̂1 + (1− β̂1)
≤ β̂1

t−1

β̂1t−1 + (1− β̂1)
≤ g2β̂0.

The value of ê2 is determined by the pushdown sequence of the second block, by ê2 = maxm≤n2{uH(EH(Rm))}
along the pushdown sequence.

17D is defined independently of t (and of this entire block construction), so there is no circularity in the definition.
18The next block is defined only following the pushdown choice sequence that we constructed in Block 1: what

matters to us is to understand what happens along a particular choice sequence constructed by piecing together

pushdown sequences constructed for each block.
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By induction, this defines a sequence of blocks indexed by k. To each block k corresponds a terminal

round, nk, as well as values ûk, êk and β̂k = βnk
, which is P’s belief at the end of the kth block

following the pushdown sequences. Upon observing the pushdown choice sequence across blocks 1

to k, we get

β̂k ≤ gkβ̂0 ≤ gkβ0.

To determine the terminal block, let K denote the smallest k such that êk − ûk < W̄η for some

constant W̄ such that W̄ > max{ t−1
t (1 + ∆H), Ŵ

t∆H
} where Ŵ is an arbitrarily large constant.19

Such a block must exist, because ŵk = êk − ûk converges to zero, by Lemma 14, part ii). Let

ρ be defined by g−ρ = t
t−1 . Since the ratio is greater than 1, ρ is strictly positive. Also let

d = 1
2 min{1

ρ , 1} ∈ (0, 1/2].

As mentioned at the outset, the key to proving Theorem 2 is the following proposition, whose proof

is the object of Parts II and III.

Proposition 3 There exists η̃ > 0 such that β̂K > ηd for all η < η̃.

Taking Proposition 3 as given for now, we compute an upper bound on the initial rent, by backward

induction. For each block k ≤ K, we have

êK − ûk = (êK − ûk+1) + (ûk+1 − ûk) ≤ (êK − ûk+1) +
1

t− 1
(êk − ûk+1) ≤

t

t− 1
(êK − ûk+1).

By construction, moreover, êK − ûK ≤ W̄η, which implies that

êK − û0 ≤
(

t

t− 1

)K

W̄η. (4)

Since β̂K ≥ ηd and β̂K ≤ gK β̂0 < 1, we must also have

1

gK
ηd ≤ 1.

Combining these inequalities yields

êK − û0 ≤
(

t

t− 1

)K

W̄η = W̄η

(

1

g

)ρK

≤ ηW̄η−ρd ≤ W̄η1/2.

Since êK ≥ ê0, this shows that ê0 − û0 = O(η1/2) which contradicts the existence of the sequence

of {ηm}, converging to zero, and corresponding PBEs for which ê0 − û0 ∈ (ε/2, ε).

19The number of rounds in each block k ≤ K is bounded below by
ûk−ûk−1

∆Hη
≥ 1

t∆Hη
(êk−1 − ûk−1) ≥

W̄η
tη∆H

= Ŵ ,

which can be made arbitrarily large by choosing Ŵ appropriately. The reason for choosing W̄ > t−1
t
(1 + ∆H) is

explained at the beginning of Part II.
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Part II: Micro Level

This part, and the next, prove Proposition 3 above. Suppose, by contradiction, that β̂K < ηd. By

definition of K, the previous block K − 1 must satisfy êK−1 − ûK−1 > W̄η. This implies that20

ŵK = êK − ûK ≥W
¯
η (5)

where W
¯

= t−1
t W̄ . Since we chose W̄ > t

t−1(1 +∆H), we have W
¯
> 1 +∆H . Combining this with

Lemma 4, we obtain, for the augmented index evaluated at round n(K),21

ŵK = êK − uH(n(K)) ≥ (W
¯

−∆H)η ≥ η. (6)

If ŵK ≤ Dη
2a , Proposition 5 (Part III) implies that ŵK ≤ ŵη1+d, which contradicts (6) for η small

enough, ruling out this case.

The objective of the present part is to solve the remaining case, for which ŵK ∈
(

Dη
2a ; W̄η

)

. We

will analyze the dynamics of βn and w̄n along some appropriate choice sequence between the levels

ŵK and ηD
2a , and establish the following result.

Proposition 4 Let N ≥ n(K) denote the first round for which w̄N ≤ ηD
2a . Then,

1. ηD
2a − w̄N = o(η)

2. βN = O(ηd).

The objective of this part is, therefore, to build a bridge between Parts I and III, showing that if

β̂K < ηd, there must exist a choice sequence and a round N , to which the contradiction argument

of Part III can be applied.

To construct a choice sequence that yields 1. and 2., we start by expressing P’s IC constraint, at

each round n. For each Rn+1 ∈ Mn ∪ {Rn}, let µθn(Rn+1) denote the probability that θ accepts

Rn+1. Also let Eθ(n) = Eθ(Rn). Because P can always jump to (EL(n), EH(n)) by Lemma 1, P’s

IC constraint implies, as explained below, that

wnaβn ≥
∑

Rn+1∈(Mn∪{Rn})∩H
βnµ

H
n (Rn+1)ηD + (1− βn)µ

L
n(Rn+1)η(Q(Rn+1)−Q(EL(n))) (7)

=
∑

Rn+1∈(Mn∪{Rn})∩H
µLn(Rn+1) [βnµn(Rn+1)ηD + (1− βn)η(Q(Rn+1)−Q(EL(n)))] , (8)

20This inequality comes the fact that êK−1 − ûK−1 = t(ûK − ûK−1), by construction of the blocks in Part I, and

the fact that êK ≥ êK−1.
21The reason for using uH(n(K)) instead of ûK is that H ’s continuation utility at round n(K) is need be exactly

equal to ûK : it is above it up to an increment that is bounded above by ∆Hη.
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where µn(Rn+1) = µHn (Rn+1)/µ
L
n(Rn+1) and D is the lower bound on the loss on H given in

Lemma 11.22

The left-hand side of (7) is an upper bound on the gain, relative to the immediate jump, made on

the high type: given his continuation utility uH(n), the lowest achievable cost that provides this

utility is the cost of the H-efficient contract that gives uH(n). From the technical Lemma 11, in the

Appendix, this gain is bounded above by a(uH(EH(n))− uH(n)) = awn (that bound is computed

using a ‘best-case scenario’ for P, in which H accepts with probability 1 the H-efficient contract

Cn providing uH(n)).23 The first term of the right-hand side is the net loss on H if he accepts a

contract in the H-Rent configuration and, hence, far from efficient, in case a breakdown occurs at

the end of round n. This loss is bounded by D as long as wn ≤ 2ε, which will be true along the

choice sequence that we consider. The last term is the net loss on L in case of such a breakdown.

Proposition 4 is based on the following lemma. Fix any positive integer N̄ , positive constants

β̄ and w̄, as well as a small positive ε̄. Let yn = uH(EH(n)) − uH(Rn+1). The quantity yn

represents H’s utility gap, for any choice Rn+1, between the immediate jump and his utility in case

of a negotiation breakdown at round n (the breakdown occurs after the agent has chosen the new

contract, Rn+1, which explains the index). This quantity yn is important for the analysis, because

it provides a control on the increments of wn and makes sure that we do not overshoot the threshold
ηD
2a by too much. Indeed, subtracting uH(EH(n)) from (2) and rearranging – and recalling that

wn = uH(EH(n))− uH(n) – leads, along any choice sequence, to24

wn+1 = wn − ηyn + ηwn+1 + (1− η)(uH (EH(n + 1)) − uH(EH(n))).

These concepts are represented on Figure 3

Lemma 5 Consider a round n̄ such that βn̄ ≤ β̄ηd and wn̄ ≤ w̄η, and fix some positive integer N̄

and a small number ε̄ > 0, and let S denote the event that the agent chooses contracts at rounds

n ∈ {n̄ + 1, . . . , n̄ + N̄} such that yn = O(ηd/4), βn ≤ βn̄ε̄
−(n−n̄), and wn ≤ W̄ (N̄ ) for all round

n ∈ {n̄, . . . , n̄+ N̄}, where W̄ (N̄) is independent of η. Then, for η small enough, the probability of

S is greater than 1− k(N̄ )ε̄, where k(N̄) is independent of ε̄ and η.

22We can assume without loss of generality that µL
n(Rn+1) is strictly positive for all Rn+1 ∈ (Mn ∪ {Rn}) ∩ H:

first, if any contract in that set is not chosen with any probability, we can construct an equilibrium in which those

contracts are removed. And if any contract R′
n+1 in that set is chosen only by H with positive probability, then

Proposition 1 implies that H gets the H-efficient contract C that gives him the same utility as R′
n+1, so that the

equilibrium can be modified by having P propose C instead of R′
n+1. That change reduces P’s cost and does not

affect incentives.
23This is an upper bound on the gain, since Cn is the cheapest way of providing H with his continuation utility.
24Equation (36) in the Appendix shows that wn+1(1− bβn+1) ≥ wn − ηyn, which is simpler to work with.
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Figure 3: Concepts

We will now modify the analysis of Part I to study blocks consisting of N̄ rounds, indexed by n̄+1

to n̄ + N̄ , where N̄ will be determined shortly. The first such block starts with n̄ = n(K), the

second of these blocks starts with n̄ = n(K) + N̄ , etc. These blocks are different from those of

Part I, because the number N̄ of rounds in each block is fixed and, unlike the blocks of Part I, H’s

utility at the end of each block is not precisely controlled.

The analysis of Part I is modified as follows. First, notice that P’s IC constraint at round n̄, looking

ahead over the next N̄ rounds, must satisfy

βn̄a
{

(1− µn̄)(en̄ − uH(n̄)) + µn̄(en̄ − E[uH(n̄+ N̄)])
}

≥ βn̄µn̄DηN̄ − βn̄δQk(N̄ )ε̄,

where µn̄ is the probability, seen from round n̄, that H rejects all H-efficient contracts between

rounds n̄ and n̄+N̄ . The argument for this equation is the same as before, the only difference being
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that we are now taking the expectation of uH(n̄ + N̄) because we do not know its value (before,

we had precisely defined the end of the block as the first time that uH crosses some level, but now

N̄ is exogenous). The loss D is valid with probability 1 − k(N̄)ε because wn is small throughout

the block with that probability, by Lemmas 5, and the lower bound on the loss then follows from

Lemma 16. For the remaining probability, whatever cost is incurred by P, conditional on facing

H, is bounded above by some constant. The difference between D and that constant is taken into

account by the last term, where δQ > 0 is independent of η,N̄ , ε̄

This implies that

µn̄ ≤ a(en̄ − uH(n̄)) + δQk(N̄)ε̄

a(E[uH (n̄+ N̄)]− uH(n̄)) +DηN̄
≤ aW̄ + δQk(N̄ )ε̄

DN̄
,

where the second inequality comes from the fact that uH is nondecreasing across all paths which

implies, taking expectations, that EuH(n̄ + N̄) ≥ uH(n̄), and from the fact that w̄n̄ ≤ W̄η (this

inequality holds for all blocks of Part II, without loss of generality, see Remark 1 below). Now let

µSn̄ (resp. µBn̄) denote the probability that H rejects all H-efficient contracts, conditional on the

event S (resp. conditional on its complement, B), and let pS (resp. pB) the probability of S (B).
We have µn̄ = pSµSn̄ + pBµBn̄ . Since pS ≥ 1− k(N̄ )ε̄, we conclude that

µSn̄ ≤ (aW̄ + δQk(N̄ )ε̄)(1 + k(N̄)ε̄)

DN̄
.

We now choose ε̄ and N̄ so that this ratio is less than 1
2 : first choose N̄ so that aW̄

DN̄
< 1

8 , then

choose ε̄ so as to get aW̄k(N̄)ε̄
DN̄

< 1
4 and δQk(N̄ )ε̄ < aW̄ .

Proceeding as in Part I, there must exist a pushdown choice sequence within S such that the ex

post probability that H has not chosen an H-efficient contract is weakly less than µSn̄ . Therefore,

along that sequence, we have i) yn small, and ii) βn̄+N̄ ≤ βn̄

2 : in other words, we have built a

sequence over N̄ rounds, starting from n̄, such that yn and βn stay small, and ends up smaller than

at the beginning.25

Now starting from round n(K), we build a sequence of blocks of this kind. Because w̄n converges

to zero (Lemma 14, part ii)), it will eventually cross Dη
2a . Let N denote the first round at which

w̄N drops below that threshold. From (36), in the Appendix, we have

wn+1(1− bβn+1) ≥ wn − ηyn.

25Notice that βn can increase up to βn̄ε̄
−N̄ along such a block. However, because N̄ is fixed, it still remains of

order O(ηd) along the sequence, and drops in any case below βn̄/2 when round n̄+ N̄ is reached, for the pushdown

sequence.
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The blocks were constructed in such a way that yn = O(ηd/4) and βn remains O(ηd) at each round

of each block. Applying these observations to round N − 1, we obtain

wN − wN−1 ≥ −o(η).

Finally, we have

w̄N − w̄N−1 = (wN − wN−1) + (max{ek : k ≤ N} − eN )− (max{ek : k ≤ N − 1} − eN−1)

≥ −o(η)− (eN − eN−1)

The difference in parentheses is bounded above by
αβN−1

1−βN−1
wN−1 = o(η), from (32). Since w̄N−1 >

ηD
2a , by construction of N , we conclude that

w̄N ≥ w̄N−1 − o(η) ≥ ηD

2a
− o(η) ≥ ηD

3a
.

This concludes the proof of Proposition 4, and implies that we have reached a round N such that

w̄N is above ŵη for some ŵ > 0 independent of η and βN = O(ηd). Part III will show that this is

impossible.

Remark 1 It is a priori possible that w̄n goes above W̄η at the end of some block constructed in

this section. If that happens, the bound D = D(2ε) need not be valid. At the end of such block,

should it occur, βn is of order ηd ≤ β0. We can restart the blocks of Part I as if n were the initial

round. Since β decreases along the blocks of Part I, we have to reach again a round at which w̄n

drops below W̄η. At that point we necessarily have βn ≤ ηd. Because w̄n converges to zero along

any sequence (by Lemma 14), and thus also along the sequences constructed through Parts I and II,

the back and forth between blocks of Part I and Part II has to stop in finite time at some round N

of the type above, i.e., with w̄N ∈ (ŵη, ηD2a ) and βN ≤ ηd. Proposition 5 of Part III then shows a

contradiction with such block.

Part III: Asymptotic Level

The goal of this section is to show the following proposition:

Proposition 5 If one reaches a round N such that βN ≤ ηd and w̄N ≤ ηD
2a , then w̄N ≤ ŵη1+d,

for some constant ŵ > 0 and η small enough.
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The proof will proceed in three steps: 1) show that, starting from such a round, one can build

a choice sequence along which βn is decreasing and a version of P’s ex ante IC constraint is also

satisfied ex post, at each round. 2) Show that along such sequence, one must necessarily have

wn ≤ ηβnc for all n ≥ N , for some c > 0 that depends on a,D but not on η. 3) Conclude with the

desired inequality for w̄N by showing that w̄N − wN = O(η1+2d) (Proposition 7). Combining the

last two observations, along with the fact that βN ≤ ηd will then prove Proposition 5.

The idea of the proof is again to derive, for a given PBE, an equation for the dynamics of the

posterior belief βn, based on an incentive compatibility condition for P. This time, however, there

are no blocks: the equation is used for each single round, and exploits the losses on both types, H

and L. For η small enough, this equation is then showed to contradict the convergence of wn to

zero, which has to hold for any PBE, by Proposition 2.

In the Appendix (Lemma 11), it is shown that

uH(EH(n+ 1)− uH(EH(n))) ≥ −b̂βn+1wn+1 (9)

for some constant b̂ > 0. That equation comes from two observations. First, L’s utility from the

current contract Rn cannot decrease by too much between consecutive rounds. Indeed, recall that

βn+1 is the probability of facing H in round n+ 1, while wn+1 is a measure of the maximum rent

that P can extract from H at round n+1. If the product βn+1wn+1 is small, it means that, comes

round n+1, P has very little incentive to extract rents from H, which implies, intuitively, that his

continuation strategy must be similar to what he would do if he only faced L, namely to jump to

the L efficient contract EL(Rn+1), which gives L utility uL(Rn+1). Anticipating this, however, L is

willing to forgo the current contract Rn only if Rn+1 gives him a utility that is not much lower than

Rn. The second observation is that the H-efficient contracts EH(n) and EH(n+1) are constructed

based on the utility that L gets from Rn and Rn+1. A simple Lipschitz property, established in the

Appendix, then yields (9).

We also use the following relation between wn and wn+1 (this is (37), in the Appendix):

wn+1 = wn − ηyn + ηwn+1 + (1− η)(uH (EH(n + 1)) − uH(EH(n))).

Combining this inequality (35), in the Appendix, yields

(1− η)wn+1 ≥ wn − ηyn − b̂βn+1wn+1. (10)

In Part I, we focused on pushdown sequences, in order to relate P’s ex ante incentive compatibility

constraint with his ex post belief’s about the agent. Here, similarly, we need to focus on particular

choices by the agent that play a similar role.
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To express P’s IC constraint, recall from Part II that

wnaβn ≥
∑

Rn+1∈(Mn∪{Rn})∩H
µLn(Rn+1) [βnµn(Rn+1)ηD + (1− βn)η(Q(Rn+1)−Q(EL(n)))] , (11)

where µn(Rn+1) = µHn (Rn+1)/µ
L
n(Rn+1) and D is the lower bound on the loss on H given in

Lemma 11.

In particular, the RHS of (11) is a convex combination of terms indexed by Rn+1, and there must

exist Rn+1 ∈ (Mn ∪ {Rn}) ∩H such that

wnaβn ≥ βnµn(Rn+1)ηD + (1− βn)η(Q(Rn+1)−Q(EL(n))). (12)

Therefore, there exists a continuation of that choice sequence that satisfies (12) for all n ≥ n(K).

In what follows we entirely focus on that sequence, which will be called a regular choice sequence.

To simplify notation let N = n(K).

We split the IC constraint (12) into two parts, in a way that allows us to modify P’s belief βn to

achieve tractability. The first step is to note that Q(Rn+1)−Q(EL(n)) ≥ Q(EL(n+1))−Q(EL(n)) ≥
−kβn+1wn+1, where the second inequality comes (34) of Lemma 11 in the Appendix. To simplify

notation, let µn = µn(Rn+1). Equation (12) implies that

βnwna ≥ βnµnηD − ηkβn+1wn+1,

which may be re-expressed as

µn ≤ wna

ηD
+ k

βn+1

βnD
wn+1. (13)

The first step, in order to exploit this equation, is to show that βn is small and decreasing along

that sequence for n ≥ N . More precisely, we will prove the following lemma.

Lemma 6 There exists η̂ > 0 and ŵ > 0 such that for η < η̂ and n ≥ N , i) βn is decreasing in n,

ii) µn is bounded above by 3/4, and iii) wn is bounded above by ŵη.

As seen in Lemma 6 βn+1

βn
≤ µn(1+ ǫ) ≤ 3

4(1 + ǫ). Hence, the second term in the right-hand side of

equation (13) is of order wn+1, while its first term is of order wn
η . Since wn+1 is bounded above by

wn

(

1 + αβn

1−βn

)

, from (33) in the Appendix, the last term is negligible compared to the first one.

Therefore, by slightly increasing a, whose specific value does not matter in any case for the proof,

we get

µn ≤ wna

ηD
, (ICLL

n ) (14)

Moreover, (12) also implies that

βnwna ≥ (1− βn)η(Q(Rn+1)−Q(EL(n))) (ICLH
n ) (15)
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Relaxed Problem

We now introduce a relaxed problem, for rounds n ≥ N , constructed in two steps. First, P’s

incentive constraint at each round n ≥ N is weakened to the coupled inequalities (14) and (15).

Clearly, if the initial sequence of contracts proposed by P and choices made by the agent formed a

PBE, then the problem in which P’s IC constraint is replaced by these two weaker equations must

also have a solution.

The second step is as follows. If, starting from round N , one decreases µLN (RN+1) so that µN =

µN (RN+1) =
µH
N (Rn+1)

µL
N (Rn+1)

is increased so as to satisfy (14) as an equality,26 then then the posteriors

βn’s at all rounds n ≥ N + 1 are increased as a result, by Bayesian updating. Therefore, P’s IC

constraint (15) at future rounds is preserved (in fact, looser).27 After this is done, one can increase

µN+1(RN+2) (by decreasing µLN (RN+2)) so as to make ICLL
N+1 tight, preserving IC constraints (15)

for n ≥ N + 2, (without perturbing P’s IC constraints at round N), etc. To simplify the notation,

let µn = µn(Rn+1). Increasing µn inductively for all n ≥ N , this shows that the regular choice

sequence, along with the new mixing probabilities for L and resulting belief sequence {βn}n≥N+1

is a solution to the relaxed problem with

µn =
wna

ηD
(16)

The resulting regular sequence, with the new mixing probabilities and beliefs, is called the relaxed

version of the initial sequence. Since only the agent’s mixing probabilities were changed, the

contracts proposed, the sequence wn, and the limits C̄L, C̄H are unchanged. In particular, H’s and

L’s incentives are unchanged. Since, also, wn goes to zero, (14) implies that µn goes to zero and,

hence, that βn goes to zero along the relaxation.

As just argued, the relaxed problem, which consists of the incentive compatibility and dynamic

equations arising along the relaxed regular sequence, must have a solution. The remainder of the

proof shows that this is impossible, which will yield the desired contradiction. We do this by

building a dynamic equation for βn, in the relaxed problem, and show from that equation that wn

cannot converge to zero along the relaxed regular sequence, contradicting Proposition 2.

Multiplying both sides of (10) by a
ηD , and using (16), we obtain for n ≥ N

µn+1 ≥ (1− η)µn+1 = µn − a

D
yn − b̃βn+1. (17)

26The interpretation would be that the principal erroneously becomes too optimistic, conditional on observing

Rn+1, about the posterior probability of facing H .
27At this point, we totally ignore the IC constraints outside of the regular sequence. Our point is only to show

that a contradiction along that specific choice sequence.
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for some constant b̃ > 0 (also using that wn ≤ ŵ for n ≥ N , from Part iii) of Lemma 6).

The Bayesian updating equation

βn+1 =
βnµ

H(Rn+1)

βnµH(Rn+1) + (1− βn)µL(Rn+1)
=

βnµn
βnµn + (1− βn)

implies that28

βn+1

βn
≥ µn ≥ βn+1

βn
− µnβn + µnO(β2n) ≥

βn+1

βn
− βn+1 + o(βn+1). (18)

In the Appendix (equation (47)), we will show that y2n ≤ Āβn+1

1−β0
. Intuitively, this equation means

that the loss on L in round n, which is of order ηy2n, must be smaller than the gain on H, which is

of order βnwn (i.e., the probability of facing H times the maximum gain).29

Combining the upper bound on y2n with (17) and (18), we obtain the following dynamic equation

for βn, for all n ≥ N :
βn+2

βn+1
≥ βn+1

βn
− c
√

βn+1 − (1 + b̃)βn+1 (19)

where c = a
D

√

Ā
1−β0

. For βn+1 small enough, the last term is negligible compared to the next to

last term, because
√

βn+1 ≪ c. Therefore, by slightly increasing the value of c, whose precise value

does not affect the proof, we obtain

βn+2

βn+1
≥ βn+1

βn
− c
√

βn+1. (20)

Let qn = βn+1

βn
. We have

∏n
0 qk = βn+1

β0
. (20) may be rewritten as

qn+1 ≥ qn − c′
√

Πn
0 qk (21)

where c′ =
√
β0c. Because qn is proportional to wn and hence must converge to zero as n goes

to ∞. The rest of this section shows, however, that {qn}n∈N cannot converge to zero. Let ĉ = 4c2D
a .

Proposition 6 Along the regular choice sequence, we have wn ≤ ĉηβn for all n ≥ N .

Proof. The proposition is based on the following two lemmas, which are proved in the Appendix.

Lemma 7 Suppose that there exist N̂ > N such that

βN̂+1 ≥ 4c2β2
N̂
, (22)

28We have
βn+1

βn
= µn

1
1−βn(1−µn)

= µn(1 + βn(1− µn)) + µnO(β2
n). Rearranging yields the second inequality.

29Dividing by η, we get y2n ≤ Cβnwn/η for some constant C. Since wn/η is proportional to µn and µnβn is roughly

equal to βn+1, this gives some idea for how the equation was derived.
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β
1/4

N̂
≤ 1

2
√
c
, (23)

Then,

lim inf
n→+∞

qn+1

qn
≥ 1.

Lemma 8 Suppose that {qn} is a strictly positive sequence such that

qn − qn+1 ≤ c′
√

Πn
0 qk

and lim infn qn+1/qn ≥ 1. Then, {qn} does not converge to zero.

To conclude the proof of Proposition 6, suppose that there exists N̂ ≥ N such that wN̂ > ĉηβN̂ .

From (16), this implies that µN̂ > a
D ĉβN̂ , and from the first inequality of (18), this implies (us-

ing the definition of ĉ), that equation (22) holds for N̂ . Moreover, from Lemma 6, βN̂ clearly

satisfies (23), for η small enough. Therefore the hypotheses of Lemma 7 are satisfied and, hence,

lim infn→+∞
qn+1

qn
≥ 1. Combining this with Lemma 8 then implies that wn cannot converge to

zero, which contradicts Proposition 2, since wn converges to zero along any choice sequence. �

Proposition 7 There exist ŵ > 0 and η̄ > 0 such that w̄N − wN ≤ ŵη1+2d for all for η ≤ η̄.

Proof. Recalling the definition of C̄H as the H-efficient contract that provides H with its asymp-

totic utility limn uH(n), we have

uH(C̄H)− uH(EH(N)) =
∑

n≥N

uH(EH(n+ 1))− uH(EH(n)) ≤ 2α
∑

n≥N

βnwn,

where the last inequality comes from (32). From Proposition 6, we have wn ≤ ĉηβn for all n ≥ N .

Therefore,

uH(C̄H)− uH(EH(N)) ≤ K̃η
∑

n≥N

β2n,

where K̃ = 2αĉ.

We have βn+1 ≤ 2µnβn = 2awn
Dη , by (16). Using again the inequality wn

η ≤ ĉβn, which holds for all

n ≥ N , we have, letting K̂ = 2aĉ
D ,

βn ≤ βN

n−1
∏

k=N+1

(K̂βk) ≤ βN (K̂βN )n−N .

For βN < 1√
2K̂

, this implies that

∑

n≥N

β2n ≤
∑

n≥N

β2N2−(n−N) = 2β2N .
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We then obtain

uH(C̄H)− uH(EH(N)) ≤ 2K̃ηβ2N ≤ 2K̃η1+2d, (24)

where the last inequality comes from the fact that βN ≤ ηd.

To conclude, note that w̄N − wN = max{ek : k ≤ N} − eN = max{uH(EH(k)) : k ≤ N} −
uH(EH(N)). Since max{uH(EH(k)) : k ≤ N} ≤ uH(C̄H), by an argument that is similar to the

proof of Lemma 14), (24) yields the result. �

5 Conclusion

Whether it concerns trade, production, employment, finance, or any other economic activity, con-

tract negotiation is central to economic analysis and has been widely studied from both pure and

applied perspectives. However, much remains to discover when i) contracts are more complex than

binary sales or divisions of a given “pie”, ii) some parties hold private information, and iii) nego-

tiation can extend beyond take-it-or-leave-it-offers. In this common situation, private information

gets endogenously revealed through negotiation, even in the absence of any exogenous information

arrival, and this affects remaining negotiation, providing a dynamic interaction between beliefs and

contracts.

I have taken the view that parties should be able to react to this endogenous flow of information,

particularly when it reveals some inefficiency of the current agreement, instead of being stuck with a

contract just signed. This view captures the idea of unconstrained negotiation, and seems indeed es-

sential to generate a foundation for renegotiation-proof contracts.30 While the analysis has focused

on a specific negotiation protocol (a feature common to several inceptive works on foundations,

from foundations of the Nash bargaining solution to foundations of the Coase conjecture), it would

be useful to explore, in future research, more general protocols of negotiation. A natural conjecture

is that contract negotiation should lead to efficient outcomes as long as it is unconstrained in the

above sense.

In the present setting, where the efficiency “gap” is endogenous, varies over time, and converges to

zero, it is perhaps surprising that ex post efficiency should obtain for all equilibria, including non-

stationary ones, of the negotiation game, as frictions vanish. It would obviously be interesting to

know what happens beyond the restriction to two types and contract dimensions and independent

values imposed on the model,31 and the techniques developed here should prove helpful to study

30For instance, Wang (1998) shows that when the first signed contract is implemented, outcomes can be ex post

efficient.
31Deneckere and Liang (2006) provide an in-depth analysis of the interdependent value case, for a binary sale.
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those extensions. Another natural extension of the model would allow shared bargaining power

between the principal and the agent.32 While important, this extension is not needed to provide a

foundation for the renegotiation-proof contracts, most common in the literature,33 that are proposed

by the principal: in fact, any negotiation protocol in which bargaining power is shared by the parties

should generally not yield to the ex post efficient contract that is optimal for the principal, as is

easily seen for the case of symmetric information.

To provide a foundation of multi-period renegotiation-proof contracts, one should also consider

settings in which negotiation takes place across several “physical” events, at which payments are

made or new exogenous information arrives. A renegotiation protocol of the type studied here would

arise between each physical event, involving continuation contracts for the remaining horizon. For

example, if physical transfers occur at integer times t = 1, 2, . . ., the renegotiation rounds between

the dates t−1 and t of consecutive physical events would occur at times τ tn = t− 1
2n , for n ≥ 1. This

double time scale is natural in many contexts where physical deliveries have a particular calendar

structure (e.g., monthly wage, weekly delivery, quarterly report, etc.), but no such restriction is a

priori imposed on parties’ abilities to negotiate (they can meet or call each other any time).34

32Ausubel and Deneckere (1992) analyze such a model. In that paper, the informed party (The buyer) is getting

all the surplus even when the seller is making all the offers. When given the opportunity to make offers, the buyer

does not lose anything by remaining silent. In the present setting however, the agent does not get all the surplus and

it is clear that, even in the absence of private information, sharing bargaining power would affect the equilibrium

allocation of surplus. The key question is whether shared bargaining power would create some efficiency loss.
33See, e.g., Dewatripont (1989), Maskin and Tirole (1992), and Battaglini (2007).
34The time structure described here allows unrestricted renegotiation between physical events, as there are infinitely

many renegotiation rounds, and could in principle also be captured by a continuous-time model, in which the principal

can propose new contracts at any instant between physical events occurring one a discrete time set.
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Appendices

A Proof of Theorem 1

It suffices to prove the result for R0 in the H-Rent configuration and β0 ∈ (0, 1): the degenerate

prior and No-Rent cases obtain as direct consequences of Proposition 1, and the L-Rent case obtains

by symmetry of the H-Rent case. The proof proceeds in two steps:

• Step 1 - Prove the existence of an equilibrium in an auxiliary game played by P and H.

• Step 2 - Construct a strategy profile of the original game based on the equilibrium established

in Step 1, and verify that it defines a PBE of the original game.

Step 1: Auxiliary game

The game starts with a contract R0 ∈ H, where H ⊂ C is the set of contracts in the H-Rent

configuration, and a belief β ∈ (0, 1). For this auxiliary game, β is just a parameter of the payoff

functions and devoid of its interpretation as a belief.

The auxiliary game is a dynamic game with infinitely many rounds. At each round n, starting with

the state Rn, P proposes new contracts Rn+1 ∈ H and Cn ∈ EH subject to the constraints

uL(Rn+1) ≥ uL(Rn) (25)

uH(Cn) ≥ uH(Rn) (26)

H then chooses a number µn ∈ [0, 1]. (The interpretation is that H accepts Rn+1 with probability

µn and Cn with probability (1 − µn). For this auxiliary game, however, µn is just an action

deterministically affecting payoffs.)

The principal’s cost, for a given strategy pair {Rn, Cn} and {µn} is

Q({Rn, Cn}, {µn}) =
∑

n≥0

Q(Cn)β(1− η)n(1− µn)Π
n−1
k=0µk

+
∑

n≥0

Q(Rn+1) (β(1− η)nηΠn
k=0µj + (1− β)(1 − η)nη) (27)

H’s payoff is

V({Rn, Cn}, {µn}) =
∑

n≥0

uH(Cn)(1− η)n(1− µn)Π
n−1
k=0µk +

∑

n≥0

uH(Rn+1)(1− η)nηΠn
k=0µn (28)
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These payoffs correspond to the expected cost and utility that P and H would obtain in an equi-

librium of the original game in which P proposes two contracts at each round, the breakdown

probability is η, {µn} is the mixing strategy of H, L always accepts Rn+1, and the initial proba-

bility of facing H is equal to β.

Lemma 9 For any initial R0 and β ∈ (0, 1), there exists a perfect equilibrium of the auxiliary game

Proof. To apply Theorem 1 of Harris (1985), we need to check Assumptions 1–5 of that theorem.

The payoff function of the principal is simply the negative of his cost, Q. P’s (unconstrained) action

set in round n is SPn = H × EH , while H’s action space is SLn = [0, 1] which are both compact

and Hausdorff spaces. Hence, Assumptions 1 and 2 are satisfied. P’s feasible set at each round

n, as defined by the constraints (25) and (26), is closed and depends continuously on the current

state. Therefore, the set L of feasible sequences is closed in S = ×n(SPn × SLn) endowed with

the product topology, and the set of feasible actions in round n depends continuously on past play.

Thus, Assumptions 3 and 4 are satisfied. Finally, the payoffs −Q and V are clearly continuous on

their domain L, so Assumption 5 is satisfied as well. The result follows. �

Step 2: Equilibrium of the original game

Starting from R0 ∈ H and a belief β0 ∈ (0, 1), consider the following strategies

At each round n:

• P proposes the contracts (Cn, Rn+1) corresponding to the auxiliary game

• In equilibrium, L accepts Rn+1 with probability 1, while H accepts Rn+1 with probability µn

and Cn with probability (1− µn)

• If P deviates by proposing a contract Rn+1 such that uL(Rn+1) < uL(Rn), L rejects that

contract with probability 1 and if the agent accepts βn jumps to 1. H randomizes between

Cn and Rn as if he had been offered Cn and R̃n+1 = Rn in the auxiliary game

• If the agent deviates by rejecting both Cn and Rn+1 (hence, holding on to Rn), βn jumps to 1

• If P deviates by proposing more than two contracts, L picks with probability 1 the contract

Rn+1 that gives him the highest utility, if that utility is weakly greater than uL(Rn) and,

among those, the on that is closest to L-efficiency, and rejects everything otherwise. H

randomizes between Rn+1 (if it exists) and the contract Cn 6= Rn+1 that gives him the highest

utility and is closest to H-efficiency among those, according to the same mixing distribution

as the one obtained under the auxiliary equilibrium if P had only proposed Rn+1 and the
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contract C̃n that is H efficient and gives H the same utility as Cn. Continuation play is

the same as if P had only proposed two contracts, Cn, Rn+1 as in the auxiliary equilibrium.

Finally, if the agent picks any contract other than the two contracts described here, P assigns

probability 1 to H.

We verify that this construction generates a PBE of the original game. Consider, first, the opti-

mality of L’s strategy. It is clearly suboptimal for L to accept Cn: that results in βn jumping to

1 and in L getting utility uL(Cn), which is strictly less than his equilibrium payoff (given that Rn

is in the H-Rent configuration). From (25), L’s continuation utility is weakly increasing along the

equilibrium path. If L rejects Rn+1 and holds on to Rn, his continuation payoff is bounded above

by uL(Rn), which cannot be a strict improvement.[Explain last point] If P proposes more than two

contracts L’s strategy is optimal: if he picks any other contract Cn, P will believe him to be type H

and jump to the H efficient contract that gives H the same utility as Cn, and thus a lower utility

to L than the one maximizing his utility among all the contracts being proposed.

From (26), uH(Cn) ≥ uH(Rn). Therefore, if H holds on to Rn his continuation utility is equal to

uH(Rn), which is weakly dominated by taking Cn. Moreover, given that H randomizes between Cn

and Rn+1, his expected payoff is given by (28), and by perfection of the auxiliary equilibrium, the

strategy {µn} is a best response to the sequence of contracts. If P proposes more than 2 contracts,

then H cannot benefit from choosing a third contract Cn, other than the two identified in the

strategy prescribed to him in such case. Indeed, any such choice would lead P to believe that he

faces H, and cause him to propose the H-efficient contract that gives H the same utility as Cn.

This is weakly dominated by accepting the contract that gives H his highest utility and reveals his

type.

Finally, consider the optimality of P’s strategy. By construction of the auxiliary equilibrium, P’s

strategy is optimal among all strategies that propose contracts (Rn+1, Cn) satisfying (25) and (26).

If P proposes more than two contracts with at least one contract that gives L weakly more than

uL(Rn), the result, given L and H’s response in that case is clearly equivalent to proposing only two

contracts (only, proposing a contract Cn that is H-efficient is actually better), and that deviation

cannot be profitable by definition of the auxiliary equilibrium.

If P deviates by proposing a contract Rn+1 such that uL(Rn+1) < uL(Rn), it is optimal for L

to reject, since if he accepts βn jumps to 1 and L gets a continuation payoff bounded above by

uL(Rn+1). No matter what other contract Cn H chooses with positive probability, there is another

deviation which consists in proposing R̃n=1 = Rn and the H-efficient contract C̃n that gives H

utility uH(Cn), which weakly reduces P’s immediate cost and is consistent with the auxiliary

equilibrium. The continuation play is assumed to be the one following that proposal in the auxiliary
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equilibrium.[Conclude]

B Proofs of Section 3

Proof of Proposition 1

Part i) Let ū denote the agent’s maximal expected payoff, given his type θ, over all possible

continuation PBEs starting from R0 at which P puts probability 1 on type θ, and let u = uθ(R0).

By time homogeneity, ū will be the same in the next round if the agent rejects new offers from P in

round 0 and the renegotiation block is not interrupted, by Assumption 1. Suppose by contradiction

that u < ū. If the agent rejects any given offer, his continuation payoff is bounded above by

ũ = ηu + (1 − η)ū < ū. Therefore, the agent is willing to accept anything above ũ, showing that

ū ≤ ũ, a contradiction (as is clear, a deviation where P proposes the θ-efficient contract that gives

utility in (ũ, ū) is strictly beneficial for P, given the concavity of the agent’s utility). Let Q
¯
denote

the cost of the θ-efficient contract, C
¯
, that gives θ utility u. Clearly, any PBE must cost exactly

Q
¯
, otherwise P has a profitable deviation which is to propose the θ-efficient contract that gives θ

slightly more than u and costs less than the PBE. Moreover, the only way of achieving Q
¯

is to

propose C
¯
in the first round and have it accepted with probability one.

Part ii) Suppose without loss that θ = L (the opposite case is treated identically). Let uL =

uL(R0) and uH = uH(R0). Also let ūH(β) denote the supremum utility that H can achieve

over any continuation PBE starting from R0 when P assigns probability β to H, and let ūH =

supβ∈[0,1] ūH(β). Suppose by contradiction that ūH > uH . Then, for any small ε > 0, there

exists β̄ and an associated PBE for which H’s continuation utility is above ūH − ε > uH . For

that PBE, because L gets at least uL and C is L-efficient, Q̄L ≥ Q, where Q = Q(R0), and

Q̄L is the expected cost under that PBE conditional on facing θL. Since not proposing any new

contract is always feasible for P, and costs Q, the continuation cost Q̄H conditional on facing

H must satisfy Q̄H ≤ Q. Suppose that P deviates from that PBE by proposing the H-efficient

contract that gives θH utility ūH − ε− ǫ, for arbitrarily small ǫ. Because, for small enough ε and ǫ,

ūH − ε− ǫ > ηuH + (1 − η)ūH , H accepts this proposal with probability 1. For any strategy that

θL chooses and continuation equilibrium, this proposal strictly reduces P’s expected cost (since

Q̄H ≤ Q), yielding a contradiction. This shows that ūH(β) = uH for all β.35 To conclude, suppose

that P proposes the H-efficient contract that gives H utility uH + ǫ̃, for ǫ̃ arbitrarily small. From

the previous observation, H must accept that contract regardless of L’s strategy. This shows that

35If β = 0, P does not propose anything new, from i) and L-efficiency of R0, and the result trivially holds in that

case too.
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P can and, hence, does achieve the full-commitment optimal cost under any PBE, and thus Part

ii) of the proposition.

Part iii) Suppose without loss that QL ≥ QH , where Qθ = Q(Eθ(R0))(the other case is proved

symmetrically). Let Q̄ denote the maximal expected cost incurred by P over all PBEs and beliefs

β ∈ [0, 1], starting from R0. We start by showing that Q̄ ≤ QL. Suppose by contradiction that

Q̄ > QL and consider any PBE that achieves Q̄.36 Now suppose that P deviates by proposing the

pair C̃L, C̃H of contracts such that C̃θ is efficient for θ and costs Q̄− ε for some ε arbitrarily small

compared to η. Those contracts maximize each type’s utility subject to costing P at most Q̄− ε.

Because these contracts are efficient and incentive compatible, Part ii) guarantees that no type ever

chooses the contract meant for the other type. Moreover, no matter what belief and continuation

PBE follows rejection of these contracts, the continuation cost is by construction less than Q̄. This

means that there is one type of the agent who must be getting a lower payoff if he rejects the

contract C̃θ meant for him, because P has to be spending weakly no more on his contract than

under C̃θ (up to ε, which is negligible compared to η). The contract C̃θ maximizes that type’s

utility subject to that cost constraint. Since rejection also leads to a renegotiation breakdown with

a probability η, which gives that type a strictly lower utility than C̃θ, accepting C̃θ is strictly more

profitable than rejection for that type, and thus he accepts C̃θ with probability 1. As a result, a

rejection fully reveals that the agent is of the other type. From Part i), that agent gets uθ(C) after

rejection, which is strictly less than the utility he gets from C̃θ (since that contract maximizes the

agent’s utility subject to a higher cost than what P incurs with C). Therefore, both types accept

their contract, and this reduces the cost of the principal strictly below Q̄, showing that this is a

profitable deviation. This shows that, necessarily, Q̄ ≤ QL.

Since L cannot get utility less than uL(C), under any PBE, and QL is the cheapest way of providing

that utility, this means that in all PBEs starting with β ∈ (0, 1), P must spend weakly less than Q̄

on the high type, in order to guarantee that Q̄ ≤ QL. Let ūH denote the highest expected utility

that H gets over all PBEs and beliefs β > 0. Since the principal spends less than QL on H, ūH

is bounded by the utility ûH obtained from the H-efficient contract ĈH that costs QL. We will

show that ūH = uH(CH). Suppose by contradiction that ūH > uH(CH), and consider a PBE that

achieves ūH (again, the proof is easily adapted if the maximum is not achieved, by considering a

PBE that gets very close to providing ūH). The expected cost Q from that PBE must be above

βQ(C̄H) + (1 − β)QL, where C̄H is the H-efficient contract that gives utility ūH to H. Suppose

that P deviates by proposing the contracts C̃L, C̃H such that C̃L is L-efficient and gives utility

36If the supremum Q̄ is not achieved, the argument below can easily be adapted by considering a PBE whose

expected cost is arbitrarily close to Q̄.
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uL(C) + ε2 to L, and C̃H is H efficient and gives utility ūH − ε to H, for ε small compared to η.

H accepts C̃H , since rejection leads to a continuation utility bounded above by ūH , and a strictly

lower payoff in case of a breakdown. Given that, L also accepts, since rejection will reveal his type,

and, by Part i), result in a utility of uL(C). The cost gain on the high type is of order ε compared

to Q(C̄H) and the cost loss on the low type is of order ε2 compared to QL. Therefore, this deviation

is strictly profitable for ε small enough. This shows that ūH = uH(CH). This immediately implies

that L’s maximal utility across all PBEs for β ∈ (0, 1) is uL(CL). The proof is a straightforward

modification of the end of the proof of Part i).

Part iv) The argument is similar to the proof of Part iii). Let Q̄ denote P’s maximal expected

cost over all PBEs and beliefs, starting from C. We will start by showing that Q̄ ≤ Q(EL), where

EL = EL(R0). Suppose by contradiction that Q̄ is strictly greater than Q(EL) and achieved for

some PBE and belief,37 and consider the following deviation: P proposes the contracts C̃θ that

are efficient for each type and cost Q̄ − ε for ε arbitrarily small. It is easily shown that these

contracts are IC, and by a similar argument as in Part ii), rejecting those contracts is always a

strictly dominated strategy for one of the two types, and hence for both types. This is a strictly

profitable deviation for P, yielding a contradiction. Hence, Q̄ ≤ Q(EL). Since L gets an expected

utility of at least uL(R0) in all PBEs, and providing that utility costs at least QL = Q(EL) to P,

this means that P spends at most QL on H, in all PBEs, and for all initial beliefs β > 0. This

implies that uH(0) is bounded above by the utility that H achieves with the H-efficient contract

that costs QL. We now show that uH(0) is bounded above by uH(EL). Suppose not, and consider

a PBE that gives H its highest utility, across PBEs and beliefs, ūH > uH(EL). The expected cost

Q from that PBE must be above βQ(C̄H) + (1 − β)QL, where C̄H is the H-efficient contract that

gives utility ūH to H. Suppose that P deviates by proposing the contracts C̃L, C̃H such that C̃L

is L-efficient and gives utility uL(C) + ε2 to L, and C̃H is H-efficient and gives utility ūH − ε to

H, for ε arbitrarily small. Because C̃H gives strictly more to H than ūH , H will accept C̃H and,

hence L will accept C̃L. Repeating the proof of Part ii), one can show that this deviation is strictly

profitable, establishing the desired contradiction. The only difference with that earlier proof lies

in showing that the proposed contracts are incentive compatible. This is indeed true, for ε small

enough, because ūH > uH(EL) so H does not want to mimic L.38

Proof of Lemma 2

Consider any PBE starting with R0 in the H-Rent configuration. Consider, by contradiction,

37As before, one can use a PBE that yields a cost arbitrarily close to Q̄, in case it is not exactly achieved.
38It is straightforward to show that L does not want to mimic H , since P spends less on H than on L, and L is

already getting his maximal utility given the cost that P incurs conditional on facing L.
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the first round n such that i) Rn is the H-Rent configuration and ii) L accepts with positive

probability a contract Rn+1 that is in a different configuration. Suppose that Rn+1 is in the No-Rent

configuration. Then uL(n) = uL(Rn+1), by Part iii) of Proposition 1. This immediately implies

that uL(Rn) ≤ uL(Rn+1): Rn+1 is on a weakly higher iso-utility curve of uL than Rn. Moreover,

because H can always accept Rn+1, uH(n) ≥ uH(Rn+1) ≥ uH(EH(Rn)), where the last inequality

comes from the fact that uH is increasing along the iso-utility curve of uL in the direction of EH .

This implies that the continuation cost for P is strictly above βnQ(EH(Rn))+ (1−βn)Q(EL(Rn)),

which contradicts Lemma 1. Now suppose that Rn+1 is in the L-Rent configuration. Part iv)

of Proposition 1 applied to the L-Rent configuration implies that, by choosing Rn+1, L gets a

continuation utility of at most uL(EL(Rn+1). Therefore, uL(EL(Rn+1) must be weakly greater

than uL(Rn). This, along with the single-crossing property, implies that uH(Rn+1) is strictly

greater than uH(EH(Rn)) and contradicts Part iv) of Proposition 1 applied to H. �

Proof of Proposition 2

i) Observe, first, that negotiation cannot end endogenously at a finite round N such that βn =

βN > 0 and Rn = RN for all n ≥ N . Indeed, P could strictly reduce his cost at round N by

proposing the H-efficient contract EH(RN ) and have it accepted by H with probability 1, by

Part iv) of Proposition 1. Hence, consider the case in which P keeps proposing new contracts

until renegotiation is exogenously interrupted, and suppose by contradiction that there is a choice

sequence and corresponding belief subsequence {βn(k)}k∈N that converges to β∗ > 0. Let u∗H =

sup{uH(Rn)}. For H to accept Rn with positive probability infinitely often, uH(Rn) must converge

to u∗H , including along the subsequence {n(k)}.39 However, that implies that proposing the H-

efficient contract CH that gives u∗H to H is again a strictly profitable deviation: it does not change

P’s cost conditional on facing L, but it strictly reduces the cost conditional on facing H (by an

amount arbitrarily close to Q(CL) − Q(CH), where Cθ is the θ-efficient contract that provides H

with utility u∗H), which happens with a probability arbitrarily close to β∗ > 0.

ii) Suppose that there exists ε > 0 and a subsequence of rounds, indexed by m, for which Q(Rm)−
Q(EL(m)) ≥ ε. For m large enough, βm is bounded above by ηε

2∆Q
, where ∆Q = maxC∈C Q(C) −

minC∈C Q(C). Therefore, P can deviate by proposing EL(m), EH(Rm), which are respectively

accepted by L and H. This deviation yields an immediate gain of ηε on L and a loss of at most
ηε
2 on H, and is thus strictly profitable. This shows that the limit points of {Rn} are all L-

efficient. Let u∗L = sup{uL(Rn)}. There is a subsequence m̃ for which uL(Rm̃) converges to u∗L.

39Otherwise, there must exist a subsequence of rounds for which uH(Rm+1) is bounded above away from u∗
H by

some constant δu > 0. At the same time, H ’s continuation utility, uH(m), is nondecreasing and becomes arbitrarily

close to u∗
H . When it gets within εη for some ε arbitrarily small, this implies that accepting Rm+1 causes a loss of

order ηδu (due to the probability of a breakdown) and contradicts the fact that uH(m) is within εη of u∗
H .
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Moreover, since L can always hold on to any contract Rn along the choice sequence, and thus in

particular for contracts occurring along the subsequence {m̃}, uL(Rn) must converge to u∗L for all

subsequences. Combining these observations, {Rn} must converge to the L-efficient contract C̄L

such that uL(C̄L) = u∗L. �

C Inequalities

Lemma 10 (Regularity Bounds) There exist positive constants a
¯
, a, b such that for any C, Ĉ ∈

EH such that uH(C) < uH(Ĉ), we have

a
¯
(uH(Ĉ)− uH(C)) ≤ Q(Ĉ)−Q(C) ≤ a(uH(Ĉ)− uH(C)) (29)

Q(EH(Rn))−Q(EH(Rn+1)) ≤ b(Q(EL(Rn))−Q(EL(Rn+1))) (30)

Proof. The efficiency curve EH can be parameterized by a univariate parameter λ. Consider two

contracts C and Ĉ on EH as in the statement, and set λ = 0 for C and λ = 1 for Ĉ. We have

Q(Ĉ)−Q(C) =
∫ 1
0

∂Q
∂λ dλ, where Q(λ) denotes P ’s cost along EH , and is continuously differentiable,

by our assumptions. Because uH is strictly increasing and continuously differentiable and EH is

compact as a closed subset of C, there exists a > 0 such that ∂Q
∂λ ≤ a∂uH

∂λ for all λ, where uH(λ)

similarly denotes the utility of H along EH . This implies that

Q(Ĉ)−Q(C) ≤ a

∫ 1

0

∂uH
∂λ

dλ = a(uH(Ĉ)− uH(C)).

The first inequality in (29) is shown similarly.

Let τ : EH → EL denote the one-to-one, increasing map which to any H-efficient contract C as-

sociates the L-efficient contract which gives H the same utility as C. The map τ is continuously

differentiable, and hence Lipschitz on its (compact) domain. Since Q is also continuously differen-

tiable and strictly increasing, there exists b > 0 such that

Q(E)−Q(E′) ≤ b(Q(τ(E)) −Q(τ(E′))

for all E,E′ on EH . Applying the result to E = EH(Rn) and E
′ = EH(Rn+1) yields the desired in

equality. �

For the next proposition, let Qθ denote P’s expected continuation cost at the beginning of round

n, conditional on facing type θ. (We omit dependence on n for simplicity).

Lemma 11 (Incentive Bounds) Given any PBE and choice sequence {Rn}, there exist positive
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constants α, γ, b̂, and b, such that

QL ≤ Q(EL(n)) +
βn

(1− βn)
awn, (31)

uH(EH(n+ 1))− uH(EH(n)) ≤ αβn
1− βn

wn, (32)

wn+1 ≤ wn

(

1 +
αβn

1− βn

)

, (33)

uL(Rn)− uL(Rn+1) ≤ γβn+1wn+1, (34)

uH(EH(n + 1)− uH(EH(n))) ≥ −b̂βn+1wn+1, (35)

wn+1(1− bβn+1) ≥ wn − ηyn. (36)

Proof. Lemma 1 implies that

(1− βn)QL + βnQH ≤ βnQ(EH(n)) + (1− βn)Q(EL(n)).

Moreover, QH is bounded below (by convexity of the cost function) by the cost of the H-efficient

contract CH(n) that provides utility uH(n) to H, since that is the cheapest way of providing H

with his continuation utility. This implies that QL ≤ Q(EL(n))+
βn

1−βn
(Q(EH(n))−Q(CH(n)). The

contracts EH(n) and CH(n) both lie on EH . Equation (29) implies that Q(EH(n)) −Q(CH(n)) ≤
a(uH(EH(n))− uH(n)) = awn. This shows (31).

From (31), Rn+1 cannot give L a utility greater than the L-efficient contract that costs Q(EL(n))+
aβn

1−βn
wn. This implies that Q(EL(n + 1)) − Q(EL(n)) is bounded above by aβn

1−βn
wn. Combining

this with (30) yields

Q(EH(n + 1)) −Q(EH(n)) ≤ abβn
1− βn

wn

Applying the argument used to prove (30), this time to the inverse of τ , we have

uH(EH(n+ 1))− uH(EH(n)) ≤ α′′(Q(EH(n+ 1))−Q(EH(n)))

for some α′′ > 0. Combining these inequalities yields (32). We have

wn+1 = uH(EH(n+ 1))− uH(n+ 1) = [uH(EH(n+ 1))− uH(EH(n))] + uH(EH(n))− uH(n+ 1)

≤ [uH(EH(n+ 1)) − uH(EH(n))] + uH(EH(n))− uH(n)

≤ wn

(

αβn
1− βn

+ 1

)

where the first inequality comes from the monotonicity of uH(n) in n, and the second inequality

comes from (32). This shows (33).
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Because L can hold on forever to Rn, his continuation utility uL(n) is bounded below by uL(Rn).

At round n + 1, P’s expected cost conditional on facing L is bounded above by Q(EL(n + 1)) +
βn+1

1−βn+1
awn+1, from (31). Repeating an earlier differential argument, we have uL(E) − uL(E

′) ≤
αL(Q(E) − Q(E′)) for all E,E′ ∈ EL, for some αL > 0. Therefore, the highest utility which

may be achieved at that cost is bounded above by uL(Rn+1) + âβn+1/(1 − βn+1)wn+1, for some

proportionality constant â, and

uL(Rn) ≤ uL(n) ≤ uL(n+ 1) ≤ uL(Rn+1) + âβn+1/(1− βn+1)wn+1,

which yields (34).

In general, uH(EH(n+ 1)− uH(EH(n))) may be negative. From (34), we have

uL(Rn)− uL(Rn+1) ≤ âβn+1/(1 − βn+1)wn+1.

Using that the map τ introduced earlier has a continuously differentiable inverse, this implies that

uH(EH(n + 1)− uH(EH(n))) ≥ −b̂βn+1/(1− βn+1)wn+1,

for some b̂ > 0, proving (35).

For the last equation, subtracting uH(EH(n)) from (2) and rearranging (recalling that wn =

uH(EH(n))− uH(n)) leads, along any choice sequence, to

wn+1 = wn − ηyn + ηwn+1 + (1− η)(uH (EH(n + 1)) − uH(EH(n))). (37)

Combining this with 35 yields

wn+1 − wn ≥ ηwn+1 − ηyn − bβn+1wn+1,

and the hence (36). �

Lemma 12 There exists q
¯
> 0 such that for any C on EL and R ∈ H such that uL(R) = uL(C),

Q(R)−Q(C) ≥ q
¯
(uH(C)− uH(R))2.

Proof. For each C ∈ EL, we parameterize the contract set UL(C) = {R ∈ H : uL(C̃) = uL(C)}
as {Cλ} where λ ∈ [0, 1] and C0 = C. Let Q(λ) = Q(Cλ) and uH(λ) = uH(Cλ). By efficiency

of C, we have Q′(0) = 0. Because uL is concave, Q is convex, and uL’s iso-level curves are

nonlinear, there exists q̂ > 0 such that Q(λ) − Q(0) ≥ q̂λ2 for λ in a right neighborhood of 0.

By compactness and convexity of UL(C), moreover, q̂ may be chosen small enough so that the

inequality holds for all λ ∈ [0, 1]. Since uH has bounded derivatives, there must exists ū > 0
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such that |uH(λ) − uH(0)| ≤ ūλ (the single crossing property between uH and uL imply that

uH(λ) ≤ uH(0) for all λ ∈ [0, 1]). Combining these inequalities, there exists q
¯
(C) > 0 such that

Q(Cλ)−Q(C) ≥ q
¯
(C) (uH(C)− uH(Cλ))

2 .

Moreover, q
¯
(C) can clearly be chosen to vary continuously in C ∈ EL. By compactness of EL,

q
¯
= minC∈EL q

¯
(C) is strictly positive and yields the desired inequality. �

Lemma 13 There exist positive constants k2, k3 such that

y2n ≤ k2[Q(Rn+1)−Q(EL(n))] + k3γβn+1wn+1 (38)

Proof. We have

y2n = [(uH(EH(n)− uH(EH(n+ 1)))) + (uH(EH(n+ 1)) − uH(Rn+1))]
2

≤ 2[uH(EH(n)− uH(EH(n+ 1)))]2 + 2[uH(EH(n+ 1)) − uH(Rn+1)]
2

≤ k1[Q(EH(n))−Q(EH(n+ 1))]2 + k2[Q(Rn+1)−Q(EL(n+ 1))]

≤ k2[Q(Rn+1)−Q(EL(n))] + k3[Q(EL(n))−Q(EL(n+ 1))].

The first inequality is standard ((a + b)2 ≤ 2a2 + 2b2). The second inequality comes from the

linear relation between Q(EH(n)) and uH(EH(n)) (see Lemma 11) and Lemma 12 applied to the

contracts C = EL(Rn+1) and R = Rn+1. The last inequality comes from (30) and the fact that

[Q(EL(n))−Q(EL(n+ 1))]2 is bounded above by Q̄(Q(EL(n))−Q(EL(n+1))) for some constant

Q̄, by compactness.

The difference Q(EL(n))−Q(EL(n+1)) is proportional to uL(Rn)−uL(Rn+1) (by a simple transpo-

sition of the proof of (30)), which is bounded above by γβn+1wn+1, from (34) [Also put in Regular

bounds]. Therefore, we get

y2n ≤ k2[Q(Rn+1)−Q(EL(n))] + k3γβn+1wn+1

which yields the result. �

D Proofs for Parts I and II

Proof of Lemma 3 Fix any choice sequence and let n0 denote the first round along that sequence

such that w̄n0 ≤ ε. By construction, w̄n0−1 > ε. From Lemma 4 (whose proof, in the main text, is

independent of this lemma), we have uH(n0) ≤ uH(n0 − 1) + η∆H . Therefore,

w̄n0 ≥ w̄n0−1 + uH(n0 − 1)− uH(n0) ≥ ε− η∆H .
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Since we can always select a choice sequence along which βn is weakly decreasing, we also get

βn0 ≤ β0. �

Lemma 14 i) For any round n0, ε̌ > 0, and choice sequence, there exists a round n > n0

such that uH(Rn) ≥ max{uH(EH(Rm)) : m ≤ n0} − ε̌. ii) The augmented rent index w̄n =

max{uH(EH(Rm)) : m ≤ n} − uH(n) converges to zero as n goes to infinity, along any choice

sequence.

Proof. i) Fix ε̌ > 0. Proposition 2 guarantees that, along any choice sequence, Rn converges

to an L-efficient C̄L. Continuity of uH(·) implies that there exists a round ň such that uH(Rn) ≥
uH(C̄L)−ε̌ for all n ≥ ň. Therefore, it suffices to show that uH(C̄L) ≥ max{uH(EH(Rm)) : m ≤ n0}
for all n0. Equivalently, we must show that uH(C̄L) ≥ max{uH(EL(Rm)) : m ≤ n0} for all n0 since,

by construction, EH(R) and EL(R) give the same utility to H for any R ∈ H. For contracts C,C ′

on the L-efficiency line EL, uH(C) ≤ uH(C ′) if and only if uL(C) ≤ uL(C
′). Therefore, it suffices to

show that uL(C̄L) ≥ maxm∈N{uL(EL(Rm))}. By construction, uL(EL(R)) = uL(R) for all R ∈ H,

since EL(R) is the L-efficient contract that gives L the same utility as R. Therefore, we have

reduced the problem to showing that

uL(C̄L) ≥ max
m∈N

{uL(Rm)}.

We recall that for all n, uL(n) ≥ uL(Rn) (since holding on to Rn is always a feasible strategy

for L, and that uL(n) is nondecreasing in n for all choice sequences (see Lemma 4, the argument

also applies to L). Since Rn converges to C̄L and uL(n) must converge to uL(C̄L). Since uL(n) is

nondecreasing, we get

uL(Rn) ≤ uL(n) ≤ uL(C̄L),

which concludes the proof of i). To prove ii), it suffices to notice that max{uH(EH(Rm)) : m ≤ n}
and uH(Rn) both converge to uH(C̄L), from the previous reasoning. �

Lemma 15 There exists a pushdown sequence at Block 1.

Proof. Let µθ({R̃n}) denote the probability, conditional on facing type θ, of observing choice

sequence {R̃n} until û1 is reached. By definition, summing over all choice sequence with elements

inH and truncated at the first round when û1 is reached, we have
∑

{R̃n} µ
H({R̃n}) = µ0. Because L

always chooses contracts inH, we also have
∑

{R̃n} µ
L({R̃n}) = 1. These two equations immediately

imply that there exists a choice sequence {R0
n} such that µH({R0

n})/µL({R0
n}) ≤ µ0. Conditional

on observing that choice sequence, the posterior is given by Bayesian updating

β̂1 =
µH({R0

n})β̂0
µH({R0

n})β̂0 + µL({R0
n})(1− β̂0)

.
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Dividing by µL({R0
n}) and using that µH({R0

n})/µL({R0
n}) ≤ µ0 yields the result. �

For any ǫ̃, let

D(ǫ̃) = min{Q(C)−Q(E) : C ∈ H, E ∈ EH : uH(E) ≤ uH(EH(C)) + ǫ̃}. (39)

D(ǫ̃) is nonincreasing in ǫ̃. Moreover, because EH and EL are smooth and disjoint curves of the

compact domain C, D(ǫ̃) is strictly positive for ǫ̃ small enough. For such values of ǫ̃, D(ǫ̃) defines

a lower bound on the inefficiency of contracts in H conditional on facing H.

Lemma 16 If at the beginning of any block k, wn(k−1) ≤ ε, then for all rounds n of block k,

Q(Rn) ≥ Q(EH(Rn(k−1))) +D(ε)

Proof. Let C denote the L-efficient contract that gives H utility uH(n(k − 1)). Since uH(n)

is nondecreasing, we have for any round n of block k, uH(n(k − 1)) ≤ uH(n). From part iv) of

Proposition 1, this implies that Rn must cost weakly more than C: otherwise, we would have

uL(EL(Rn)) < uL(C), which would imply that uH(n) ≤ uH(EH(Rn)) < uH(EH(C)) = uH(n(k −
1)), a contradiction. By assumption, we have uH(EH(Rn(k−1))) − uH(C) = wn(k−1) ≤ ε. By

definition of D(ε), this implies that Q(C) ≥ Q(EH(Rn(k−1))) + D(ε). Since Q(Rn) ≥ Q(C), this

proves the lemma. �

We will consider ε such that D(2ε) > 0, we let D = D(2ε) denote the lower bound on the loss that

is used throughout the proof.

Remark 2 In principle, one could reach a block k for which wk−1, and hence ŵk−1, is greater

than 2ε, which would imply that the lower bound D on the loss is not guaranteed to hold for that

block. If that is the case, however, Lemma 3 guarantees that one can find a later round for which

w̄n is in (ε/2, ε), and one can restart the analysis from that round (i.e., this is our new “n0”).

Moreover, β̂k−1 ≤ β0, so the two conclusions of Lemma 3 hold. Re-starting Part I from the new

round n0, one may encounter a block for which this problem arises again, in which case one re-

initialize the analysis again, starting from a yet later round. However, because w̄n converges to

zero along any choice sequence as n goes to infinity, by Lemma 14, there can only be finitely many

initializations: there must be a round n0 such that i) w̄n0 ∈ (ε/2, ε), ii) βn0 ≤ β0, and iii) ŵk

remains below 2ε for all blocks constructed from n0.

Proof of Lemma 5

We fix throughout some small ε̄ > 0. Consider some round n contract Rn+1 in the menuMn∪{Rn}.
If µLn(Rn+1) ≥ ε̄, then µn(Rn+1) ≤ 1

ε̄ , and hence βn+1 ≤ βn

ε̄ . The set of contracts Rn+1 for which
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µLn(Rn+1) < ε̄ has probability at most Gε̄, where G is the upper bound on the size of the menu.

Therefore, with probability 1−Gε̄.

βn+1 ≤
βn
ε̄

From (33) in the Appendix, wn+1 ≤ wn

(

1 + αβn

1−βn

)

.

At round n̄, we have βn̄ ≤ ηd and wn̄ ≤ w̄η. Therefore, βn̄+1 ≤ ηd/ε̄ and wn̄+1 ≤ k1η for some

constant k1. This implies in particular that with probability 1 −Gε̄, the lower bound D = D(2ε)

on the loss is valid for round n̄+ 1, because wn+1 ≤ 2ε. The previous reasoning can be applied by

induction to rounds n = n̄, . . . , n̄+ N̄ − 1. It implies that with probability 1− k(N̄)ε̄, we have

βn ≤ (ε̄)−N̄ β̄ηd (40)

wn ≤ W̄ (N̄)η (41)

for all n ∈ {n̄, . . . , n̄+ N̄}, for some constants k(N̄ ) and W̄ (N̄) independent of ε̄ and η.

Consider choice sequences such that βn and wn satisfy the inequalities above throughout the block,

which occur with probability 1− k(N̄ )ε̄. We now show that, at round n = n̄, Q(Rn+1)−Q(EL(n))

must be of order O
(

βn

µL
n (Rn+1)

)

. If each term in the sum entering P’s IC constraint (11) is nonneg-

ative, this result comes from the inequality40

wnaβn ≥ µLn(Rn+1)[βnµn(Rn+1)ηD + (1− βn)η(Q(Rn+1)−Q(EL(n)))]

which implies that

Q(Rn+1)−Q(EL(n)) ≤
awn

η(1− βn)

βn
µLn(Rn+1)

. (42)

In general, while some terms µLn(Rn+1)(1−βn)η(Q(Rn+1)−Q(EL(n))) of that sum may be negative,

they can only be very slightly so: we have

Q(Rn+1)−Q(EL(n)) ≥ Q(EL(n+ 1))−Q(EL(n)) ≥ −kβn+1wn+1,

where the second inequality comes (34) of Lemma 11 in the Appendix. Moreover, wn+1 ≤
wn

(

1 + αβn

1−βn

)

, from equation (33) in the Appendix, and µLn(Rn+1)βn+1 is of order βn. There-

fore, the lower bound is of order η × wnβn, for each term of the sum that is negative. Since there

are at most G of them, we conclude that (42) holds up to a term of order ηβn, which is negligible.

This shows that for all Rn+1 such that µLn(Rn+1) ≥
√
βn, the difference Q(Rn+1)−Q(EL(n)) is at

most of order
√
βn. By Lemma 13 of the Appendix, this implies that yn is O(ηd/4), because y2n is

bounded above Q(Rn+1)−Q(EL(n))+bβn+1wn+1, and the first term is of order β2n, while the latter

40The inequality holds, because each term in the sum is nonnegative, and wnaβn is bigger than the sum.
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is of order βnη. Moreover, the set of contracts Rn+1 for which µLn(Rn+1) <
√
βn, is negligible: it

arises with probability at most G
√
βn. Since

√
βn = O(ηd/2) is small compared to ε̄ for η small

enough, we conclude that with probability 1−O(ε̄), βn = O(ηd), wn = O(η) and yn = O(ηd/4) for

round n̄ and, by induction, for all rounds of the block. �

E Proofs for Part III

Proof of Lemma 6

By assumption, βN ≤ ηd so βN becomes arbitrarily small as η gets small. Recall equation (33)

from Lemma 11

wn+1 ≤ wn

(

1 +
αβn

1− βn

)

where α > 0. By Bayesian updating, we have βn+1 = µnβn

µnβn+(1−βn)
. Since βN is arbitrarily small,

the denominator is arbitrarily close to 1 for n = N . More generally we have, for η small enough,

βn+1 ≤ µnβn(1 + ǫ) (43)

where ǫ is a small positive constant, as long as βn remains small. At N , we have βN ≤ ηd and

wN = eN − uN ≤ ēN − uN ≤ ηD
2a , which implies that wN+1 ≤ ηD

2a (1 + (1 + ε)αβn). From (13), this

implies that µN ≤ 1
2 +O(η) ≤ 3

5 .

Consider the first round M > N for which µM ≥ 3/4. The probability βn is decreasing41 until

at least round M . Proceeding by induction, from round N to round M , the previous inequalities

imply that

wN+m ≤ wN

m
∏

i=1

(1 + α(1 + ε)βN+i) (44)

and

βN+i ≤ βN

i−1
∏

j=0

(µN+j(1 + ǫ)) , (45)

and (43) is valid for all rounds n ∈ {N, . . . ,M}. From (45), we have

βN+i ≤
(

3(1 + ǫ)

4

)i

βN

Therefore, (44) implies that

wM ≤ wN

M−N
∏

i=1

(

1 + α(1 + ε)ηd
(

3(1 + ǫ)

4

)i
)

41This comes from the Bayesian updating equation βn+1 = µnβn

µnβn+(1−βn)
, which is nondecreasing in µn. Taking

µn = 1 shows that βn+1 ≤ βn as long as µn ≤ 1.
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The product
∞
∏

i=1

(

1 + α(1 + ε)ηd
(

3(1 + ǫ)

4

)i
)

(46)

is finite for η small enough, and converges to 1 as η goes to zero.42 Therefore, for η small, wM is

bounded above by 5
4wN ≤ 5ηD

8a . From (13), this implies that µM is bounded above by 5/8+O(η) <

3/4, so M cannot be finite. This shows that for η below some threshold η̂, µn is bounded above by

3/4 for all n ≥ N and, from (43), that βn is decreasing. Since wn is bounded above by 3
2wN and

wN ≤ ηD
2a , the last claim follows easily. �

Lemma 17 There exists a positive constant Ā such that

y2n ≤ Āβn+1

1− β0
(47)

Proof. Equation (15) implies that Q(Rn+1) − Q(EL(n)) ≤ βnwna
η(1−β0)

, since βn ≤ β0. This, along

with (16), yield43

Q(Rn+1)−Q(EL(n)) ≤
Dβn+1

1− β0
.

Combining this inequality with Lemma 13, we get

y2n ≤ k2
Dβn+1

1− β0
+ k4γβn+1wn+1.

Since wn+1 ≤ ηD
2a ≪ 1, taking Ā slightly greater than k2D proves the lemma. �

Proof of Lemma 7

Taking the square root of (22) and multiplying the result by

√
β
N̂+1

β
N̂

, we get

βN̂+1

βN̂
≥ 2c

√

βN̂+1.

Combining this with (20) yields
βN̂+2

βN̂+1

≥ c
√

βN̂+1

and, taking the square root of this expression,
√

βN̂+2

βN̂+1

≥
√
c

β
1/4

N̂+1

(48)

42Indeed, taking the logarithm of that product, we obtain a sequence that is approximately geometric with geometric

factor 3/4 and, hence converges, uniformly in η. Moreover, each term of the sequence is of order ηd, which converges

to 0 as η goes to zero. This implies that all partial sums converge to zero and, by uniform convergence, that the

sequence converges to zero as well. By continuity of the exponential function, the product itself thus converges to 1

as η goes to zero.
43We are using βn+1 ≥ µnβn, which comes from the first inequality of (18).
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Combining this with (23) shows that (22) holds at round N̂ + 1. Since βn is non-increasing in n

for n ≥ N̂ and hence satisfies (23) for all n ≥ N̂ , we can apply the previous argument by induction

to conclude that (22) and (48) hold for all n ≥ N̂ .

Multiplying (20) by βn

βn+1
, we obtain

qn+1

qn
≥ 1− cβn

√

βn+1

.

From (48) applied to round n (instead of N̂ + 1), the last term is bounded above by cβ
1/4
n√
c
, which

converges to zero as n goes to infinity. �

Proof of Lemma 8

Suppose by contradiction that {qn} converges to zero. This, along with the second assumption of

the lemma, implies the existence, for any ε > 0, of an integer N̄ such that i) qn+1

qn
≥ 1 − ε and

ii) qn ≤ qN̄ ≤ ε for all n ≥ N̄ .44 Convergence of {qn} to zero also implies that maxN ΠN
0 qk is

bounded above by some constant Π̄. Letting ε̃ =
√
qN̄ , we have ΠN̄+k

N̄+1
qk ≤ ε̃2k for all integers

k ≥ 1. Therefore, for any integer K ≥ 1, we have

qN̄+K = qN̄+K − q∞ =
∑

n≥N̄+K

(qn − qn+1) ≤ c̃ε̃K
∑

k≥0

ε̃k,

where c̃ = c′
√
Π̄. Taking K = 3, this yields

qN̄+3 ≤
c′

1− ε̃
q
3/2

N̄
≤ 2c′q3/2

N̄
.

Applying inequality i) above to n = N̄ , N̄ + 1, and N̄ + 2, yields

qN̄+3 ≥ qN̄(1− ε)3.

Combining these two inequalities yields (1−ε)3 ≤ 2c′q1/2
N̄

≤ 2c′ε1/2, which is impossible if we choose

ε small enough. This yields the desired contradiction. �

F Proof of Theorem 2, Part B

Let Q(u, θ, ε) denote the cost of the cheapest contract that provides θ with utility at least u and

that is not within a distance ε of the θ-efficient contract Eθ(u) that provides θ utility with that

44Indeed, there exist N1 such that i) holds for all n ≥ N1 and N2 such that qn ≤ ε for all n ≥ N2. Letting

N = max{N1, N2}, any N̄ ∈ argmaxn≥N{qn} satisfies conditions i) and ii).
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utility. By a standard Taylor approximation argument (using convexity of Q and strict concavity

of uθ, see proof of Lemma 12), it is easy to show that Q(u, θ, ε) ≥ Q(Eθ(u)) + ε2.

From Part A, there exists a threshold η̃(ε4) such that P must leave an expected utility to each type

θ that is bounded below by uθ(Eθ(R0))− ε4 for all η’s below that threshold. The cheapest contract

Eθ = Eθ(uθ(Eθ(R0))− ε4) that provides this utility costs Q(Eθ(R0))−O(ε4). From Lemma 1, P’s

expected cost is bounded above by β0Q(EH(R0)) + (1− β0)Q(EL(R0)) for any η and PBE. These

observations imply Part B): if θ accepted contracts that are ε away from Eθ(R0), those would be

ε + O(ε4) away from Eθ, and incur an excess cost of order ε2 above Q(Eθ(R0)). Therefore, if θ

accepted such contracts with probability at least ε, the efficiency loss, compared to accepting Eθ(u)

would be of order ε3, compared to a maximal potential gain of order ε4. Setting η̄(ε) = η̃(ε4) then

yields the statement of Part B. �

G Notation

• uθ(n): type θ’s continuation utility at the beginning of round n.

• Eθ(R): If R is the H-Rent configuration, EL(R) is the L-efficient contract that gives L the

same utility as R and EH(R) is the H-efficient contract that gives H the same utility as

EL(R) (see the definition preceding Theorem 2).

• Eθ(n) = Eθ(Rn).

• wn = EH(n)− uH(n).

• w̄n = max{EH(m) : m ≤ n} − uH(n).

• yn = EH(n)− uH(Rn+1).

• C̄θ = limn→+∞ uθ(n).

48



References

Abreu, D., Gul, F. “Bargaining and Reputation,” Econometrica, Vol. 68, pp. 85–117.

Atakan, A., Ekmekci, M. (2012) “Reputation in Long-Run Relationships,” Review of Economic

Studies, Vol. 79, pp. 451–480.

Ausubel, L., Deneckere, R (1989) “Reputation in bargaining and durable goods monopoly,”

Econometrica, Vol. 57, pp. 511–531.

Battaglini, M. (2007) “Optimality and Renegotiation in Dymamic Contracting,” Games and

Economic Behavior, Vol. 60, pp. 213–246.

Bernheim, B.D., Ray, D. (1989) “Collective Dynamic Consistency in Repeated Games,” Games

and Economic Behavior, Vol. 1, pp. 295–326.

Bester, L., Strausz, R. (2001) “Contracting with Imperfect Commitment and the Revelation

Principle: The Single Agent Case,” Econometrica, Vol. 69, pp. 1077–1098.

Board, S., Pycia, M. (2013) “Outside Options and the Failure of the Coase Conjecture,” Forth-

coming, American Economic Review.

Cripps, M., Dekel, E., and W. Pesendorfer (2005) “Reputation with Equal Discounting

in Repeated Games with Strictly Conflicting Interests,” Journal of Economic Theory, Vol. 121,

pp. 259–272.

Deneckere, R., Liang, M-Y (2006) “Bargaining with Interdependent Values,” Econometrica,

Vol. 74, pp. 1309–1364.

Dewatripont, M. (1989) “Renegotiation and Information Revelation over Time: The Case of

Optimal Labor Contracts,” Quarterly Journal of Economics, Vol. 104, pp. 589–619.

Farrell, J., Maskin, E. (1989) “Renegotiation in Repeated Games,” Games and Economic

Behavior, Vol. 1, pp. 327–360.

Fuchs, W., Skrzypacz, A. (2010) “Bargaining with Arrival of New Traders,” American Economic

Review, Vol. 100, pp. 802-836.

Fudenberg, D., Levine, D., and J. Tirole (1985) “Infinite Horizon Models of Bargaining with

One-Sided Incomplete Information,” in Game Theoretic Models of Bargaining, ed. by A. Roth.

Cambridge University Press, Cambridge, UK.

49



Fudenberg, D., Levine, D. (1989) “Reputation and Equilibrium Selection in Games with a

Patient Player,” Econometrica, Vol. 57, pp. 759–778.

Fudenberg, D., Tirole, J. (1990) “Moral Hazard and Renegotiation in Agency Contracts,”

Econometrica, Vol. 58, No. 6, pp. 1279–1319.

Gromb D. (1994) “Renegotiation in Debt Contracts,” Working Paper, London Business School.

Gul, F., Sonnenschein, L., and R. Wilson (1986), “Foundations of Dynamic Monopoly and

the Coase Conjecture,” Journal of Economic Theory, Vol. 39, pp. 155–190.

Harris, C. (1985) “Existence and Characterization of Perfect Equilibrium in Games of Perfect

Information,” Econometrica, Vol. 53, No. 3, pp. 613–628.

Hart, O., Tirole, J. (1988) “Contract Renegotiation and Coasian Dynamics,” Review of Eco-

nomic Studies, Vol. 55, No. 4, pp. 509–540.

Maestri, L. (2012) “Dynamic Contracting under Adverse Selection and Renegotiation,” Working

Paper, Toulouse School of Economics.

Maskin, E., Tirole, J. (1992) “The Principal-Agent Relationship with an Informed Principal,

II: Common Values,” Econometrica, Vol. 60, pp. 1–42.

Matthews, S. (1995) “Renegotiation of Sales Contracts,” Econometrica, Vol. 63, pp. 567–590.

Rubinstein, A., Wolinsky, A. (1992) “Renegotiation-Proof Implementation and Time Prefer-

ences,” American Economic Review, Vol. 82, pp. 600-614.

Schmidt, K. (1993) “Reputation and Equilibrium Characterization in Repeated Games with Con-

flicting Interests,” Econometrica, Vol. 61, pp. 325–351.

Sobel, J., Takahashi, I. (1983) “A Multistage Model of Bargaining,” Review of Economic Stud-

ies, Vol. 50, pp. 411–426.

Strulovici, B. (2011) “Renegotatiation-Proof Contracts with Moral Hazard and Persistent Pri-

vate Information,” Working Paper, Northwestern University.

Strulovici, B. (2013) “Renegotiation and Persistent Information,” Working Paper, Northwestern

University.

Wang, G.H. (1998) “Bargaining over a Menu of Wage Contracts,” Review of Economic Studies,

Vol. 65, pp. 295–305.

50


	Introduction
	Setting and Overview of the Results
	Results holding for all friction levels
	Proof of Theorem 2
	Conclusion
	Proof of Theorem 1
	Proofs of Section 3
	Inequalities
	Proofs for Parts I and II
	Proofs for Part III
	Proof of Theorem 2, Part B
	Notation

