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1 Introduction

The single transferable vote (STV) is a voting system designed to achieve

proportional representation through preferential voting. In this system, the

procedure consists of the repetition of two stages, called the surplus trans-

fer stage and the eliminating stage in this paper. In the surplus transfer

stage, any candidate whose number of votes exceeds the quota is elected

as a winner, and the surplus is distributed to other candidates according

to the preferences. If all seats are filled, then the procedure is completed.

Otherwise, the procedure enters the eliminating stage. Then, some candi-

dates are chosen as losers and all of their votes are transferred by some rule.

After this, the procedure goes back to the surplus transfer stage, where new

winners are elected.

Many kinds of methods of surplus transfer have been discussed and im-

plemented. In the most traditional method, the votes to be transferred are

randomly selected. To remove the randomness, in the Gregory method and

its variants, any single vote is partitioned into fractions and they are chosen

proportionally to be transferred. In such methods, since any vote is not

transferred to any elected candidate, the order of surplus transfer affects

the results. In implementing these methods, a detailed rule must be fixed,

sometimes without persuasive reason.

Meek (1969, 1970), Woodall (1983), and Warren (1994) proposed feed-

back methods in which any candidate has his/her keep value according to

which he/she retains his/her votes and the remainder is transferred even to

elected candidates. The winners are determined by the keep value vector

such that (i) the sum of votes credited to any candidate does not exceed

the quota only if his/her keep value is 1 and (ii) the surplus of any winner

is decreased as much as possible. The feedback methods are formalized by

simple principles without any reference to complicated details and carried

out quite easily by machine. Meek’s method is adopted in some local assem-

blies of New Zealand. In Schedule 1A of Local Electoral Regulations 2001,

“New Zealand method of counting single transferable votes” is prescribed
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(See Hill, 2006).

In this paper, we will describe the feedback mechanism of transferring

votes by a strategic form game in which any candidate, as a player, chooses

his/her keep value as a strategy and gets the fractions of votes credited

to him/her as a payoff. Then, it will be shown that the game satisfies the

punishment-dominance condition introduced by Masuzawa (2003), which im-

plies remarkable properties in game theory and has a wide range of applica-

tions. Further, we show that for any given finite domain of keep values, the

algorithm introduced in Masuzawa (2008) maximizes the set of candidates

with positive surplus and minimizes the corresponding keep values. As will

be shown, note that the prevailing method, such as New Zealand method,

does not maximize the set of winners.

The remainder of this paper is organized as follows. In Section 2, we

describe the situation by a game and briefly review the theory of games

with punishment-dominance condition. In Section 3, from the theory, we

derive an algorithm for determining the maximum set of winners and the

minimum keep value vector. Surprisingly, in our derived method, the keep

values are increasingly updated: any candidate increases his/her keep value;

in contrast, in the prevailing methods, any candidate decreases it. In Section

4, we show that the difference between our method and the prevailing ones

affects the determination of the winners.

2 Preliminaries

2.1 Description by Strategic Games

We consider a class of games to analyze the procedure of counting single

transferable votes. The set of players, N , are all candidates. Any candidate,

i, chooses his/her keep value, ai ∈ [0, 1], of votes, the remainder of which is

transferred to the others or wasted. The domain of ai is confined to a subset,

Xi, of [0, 1] such that 0, 1 ∈ Xi. By aS we denote the list of the keep values

over a set of candidates S ⊂ N , whose i-th coordinate is ai for all i ∈ S. The

payoff of a candidate is defined by the surplus: si(aN ) = vi(aN ) − q(aN ),
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where vi(aN ) is the summation of the fractions of votes credited to him, and

q(aN ) is the threshold of votes to be elected as a winner, called the quota.

In Meek’s rule, for any whole vote, α, which ranks i1, i2, . . . , ik, . . . in this

order, the fraction of α transferred to candidate ik is mα(ik) := (1−ai1)(1−
ai2) . . . (1 − aik−1)aik . On the other hand, in Warren’s rule, the fraction

transferred to candidate ik is wα(ik) := min{aik , max{0, 1−
∑

j<k aij}. Then

vik(aN ) is defined as the sum of the fractions candidate ik received: the

summation of mα(ik) over all votes α in Meek’s, and that of wα(ik) in

Warren’s.

We assume that the number of votes retained by any winner must exceed

the quota. We use, for example, (
∑

i∈N vi(aN ))/(seats +1) rather than (the

minimum unit of the fraction of vote +
∑

i∈N vi(aN ))/(seats +1) as Droop’s

quota1.

2.2 Games with Punishment-Dominance

In sum, a feedback counting mechanism of STV election is specified by a

strategic form game (N, (Xi)i∈N , (vi)i∈N , q) where the payoff is defined by

si(aN ) = vi(aN ) − q(aN ). We assume that the game has the following

properties:

Assumption 1

For all aN ∈
∏

i∈N X i, all i ∈ N , and all xi, yi ∈ Xi,

(i) any decrease of the keep value does not decrease any other’s votes:

if xi > yi then vj(aN\{i}, xi) ≤ vj(aN\{i}, yi) for all j ∈ N \ {i}, and

(ii) any decrease of the keep value does not increase the quota:

if xi > yi then q(aN\{i}, xi) ≥ q(aN\{i}, yi).

From Assumption 1, it can be easily shown that the game satisfies the

following.

1See Lundell and Hill (2007) and Janson (2011).
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Condition 1 (Punishment-Dominance Condition)

For all i ∈ N , all xi, yi ∈ Xi, all j ∈ N \ {i}, and all aN\{i} ∈
∏

j′∈N\{i} Xj′ ,

if xi > yi then, sj(aN\{i}, xi) ≤ sj(aN\{i}, yi).

This condition implies important properties of cooperative solutions and the

situations with monotone externality, such as n-person prisoners’ dilemma

game, public good provision game, and Cournot oligopoly game, all satisfy

this condition2.

Masuzawa (2008) has given an efficient algorithm to compute the coop-

erative solutions in cases where Xi is finite. Note that if we assume the

minimum unit of the scale, h > 0, the domain, Xi, is finite. In such a finite

case, for all i ∈ N and all ai ∈ X i \ {1}, we can define succ(ai) := min{c ∈
Xi : c > ai}. Similarly, pre(ai) := max{c ∈ Xi : c < ai} is well-defined for

all ai ∈ Xi \ {0}. We assume, hereafter, the following.

Assumption 2

For all i ∈ N , Xi is finite and 0, 1 ∈ X i.

Note that for computation by any given real machine, this assumption is

indispensable.

The basic sub-algorithm in Masuzawa (2008) finds the solutions of a class

of problems called MGSP (minimum guaranteeing problem) for all vectors

of real numbers, (ri)i∈N :

Problem 1

Find the minimum of vectors aN ∈
∏

i∈N X i such that

for all i ∈ N, si(aN ) > ri or ai = 1. (1)

If aN ∈
∏

i∈N Xi satisfies the constraint, aN is called feasible. Note that at

least one feasible vector, (1, 1, . . . , 1), exists, and that a feasible vector, a∗i,

is the minimum if ai ≥ a∗i for all i ∈ N and all feasible vectors, aN . It can

be easily shown that the minimum necessarily exists, and is attained by the

following algorithm.
2See Masuzawa (2003).
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Algorithm 1

1. ai := 0 for all i ∈ N

2. while aN is not feasible do begin

(a) S := {i ∈ N : si(aN ) > ri or ai = 1};

(b) ai := succ(ai) for all i ∈ N \ S end

Justification To justify the algorithm, let a∗N be feasible. It suffices to

show that aN ≤ a∗N at any time during the computation. To see this, note

that if ai = a∗i and aN ≤ a∗N , then, from Condition 1, si(aN ) ≥ si(a∗N ),

and thus i ∈ S.

Order-independence Note that we can replace step (2b) by

(2b’) ai := succ(ai) for some i ∈ N \ S

since this change preserves the property that aN ≤ a∗N at any time during

the computation. Further, since si(aN\{i}, ai) is decreasing unless ai is

updated, the update of ai into

min{ai ≥ ai : si(aN\{i}, ai) > ri or ai = 1}

does not violate the relation, aN ≤ a∗N , for all feasible vectors a∗N .

Weak inequality If we substitute for (1) of Problem 1,

for all i ∈ N, si(aN ) ≥ ri or ai = 1 (2)

then, to recover the exactness of the algorithm, we only have to replace (2a)

of Algorithm 1 by

(2a”) S := {i ∈ N : si(aN ) ≥ ri or ai = 1}.

3 Determination of the winners

Now, let us derive an algorithm to determine the winners from the theory of

games with punishment-dominance condition. In the surplus transfer stage,
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any candidate with a non-positive surplus is not allowed to transfer any of

his/her votes: if si(aN ) ≤ 0, then ai = 1. Given aN ∈
∏

i∈N Xi, the winners

are determined by W := {i ∈ N : si(aN ) > 0}. To obtain the maximum set

of winners, consider the following problem:

Problem 2 (Minimum keep value problem)

Find the minimum of vectors aN such that

for all i ∈ N, si(aN ) > 0 or ai = 1.

Let aN
1 , aN

2 , . . . , aN
k be feasible vectors, and define Sk = {i : si(aN

k ) > 0}.
Then from Condition 1, for all i ∈ ∪jSj , s(aN

∗ ) > 0, where aN
∗ is defined by

ai
∗ = min{ai

j : j = 1, 2, . . . , k}. Thus, there exists a set of players S ⊂ N

and a feasible vector aN
∗ such that S = {i ∈ N : si(a∗N ) > 0} = ∪{i ∈

N : si(aN ) > 0}, where the union is taken over all feasible vectors, aN . In

particular, by Assumption 2, we can take a∗N as the minimum. In other

words, Problem 2 determines the maximum set of winners where there is no

transfer from the non-winners.

Since Problem 2 is an example of Problem 1, the solution of Problem 2

is obtained by the following algorithm.

Algorithm 2

1. ai := 0 for all i ∈ N

2. while aN is not feasible do begin

(a) S := {i : si(aN ) > 0 or ai = 1};

(b) ai := succ(ai) for all i ∈ N \ S end

Acceleration

Both Meek’s and Warren’s rules satisfy the following assumption.

Assumption 3

For all aN ∈
∏

i∈N X i, all i ∈ N , and all xi, yi ∈ Xi,

if xi > yi, then si(aN\{i}, xi) ≥ si(aN\{i}, yi).
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By Assumption 3 and the order-independence previously discussed, instead

of succ(ai), we can update ai into min{ai : si(aN\{i}, ai) > 0 or ai = 1},
which can be obtained by the binary method. Sometimes, this modification

can speed up computation. Further, in specific situations, some criteria are

available for acceleration. For example, in Meek’s rule, one can update the

keep value by rule:

ai := min
{

ai ∈ X i : ai >
ai · q(aN )

vi(aN )
or ai = 1

}
.

After Eliminating Losers

If all seats are not filled in the surplus transfer stage, then, in the subsequent

eliminating stage, some of candidates become losers, denoted by L, and all

of their votes are transferred: for all i ∈ L, ai := 0. Typically, in every

eliminating stage, the candidate with the fewest votes is added to the set

of losers. After this, the surplus transfer stage is repeated again and other

candidates are newly elected by the following.

Problem 3

Find the minimum of vectors bN such that

for all i ∈ N \ L, si(bN ) > 0 or bi = 1;

for all i ∈ L, si(bN ) > 0 or bi = 1 or bi = 0.

Let b∗N be the minimum. First, note that for all i ∈ L, b∗i = 0 from

Condition 1. Second, if a∗N is the solution of Problem 2, then it also satisfies

the constraint of Problem 3. It follows that a∗i ≥ b∗i for all i ∈ N . In

other words, the minimum keep value vector is decreasing in the iteration

of the surplus transfer stages. Third, one can easily see that the following

algorithm finds additional winners.

Algorithm 3

1. bi := 0 for all i ∈ N

2. while bN is not feasible do begin
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(a) S := {i : si(bN ) > 0 or bi = 1} ∪ D;

(b) bi := succ(bi) for all i ∈ N \ S end

4 Decreasing Keep Value

4.1 Decreasing Method

While the keep value of any candidate is increasing in Algorithm 2, it is

decreasing in the prevailing methods: at first, any candidate retains all of

his/her votes, ai := 1, and any candidate with positive surplus iteratively

decreases it as much as it remains positive. In other words, the prevailing

method is formalized as follows.

Algorithm 4

1. ci := 1 for all i ∈ N ;

2. S := ∅;

3. while S 6= N do begin

(a) S := {i : si(cN\{i}, pre(ci)) ≤ 0 or ci = 0};

(b) ci := pre(ci) for all i ∈ N \ S end

Consider s∗i(dN ) defined by

s∗i(dN ) :=

{
q(cN\{i}, 0) if di 6= 1

−si(cN\{i}, pre(ci)) otherwise,

where ci := 1− di for all i ∈ N . Then, the same condition as Condition 1 is

satisfied for s∗i. It follows that Algorithm 4 is the solution of the following

problem:

Problem 4

Find the maximum of vectors cN such that

for all i ∈ N, si(cN\{i},pre(ci)) ≤ 0 or ci = 0.
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Note that the same discussion on the order-independence is also applicable

to this case. Thus, adopting the updating rule

ci := min
{

ci ∈ X i : ci >
ciq(cN )
vi(ci)

}
for acceleration, we obtain, as variations of Algorithm 4, the algorithm for

Meek’s method by Hill, Wichmann and Woodall (1987) and that of New

Zealand Local Electoral Regulations 2001.

4.2 Difference Between the Two Methods

Let a∗N be the solution of Problem 2 and c∗N that of Problem 4. It can be

easily shown that c∗N satisfies the constraint of Problem 2. Then, by the

definition of the minimum,

c∗i ≥ a∗i, for all i ∈ N.

The difference between a∗N and c∗N may affect the determination of the

winners as well as that of the losers. To see this, consider the case where

the set of candidates is {A,B,C,D,E}, the number of seats is four, and the

list of votes is:

51 :A,B,C; 51 :B,A,C 40 :C

47 :D,E; 43 :E.

In Meek’s rule with Xi = {0, 0.1, 0.2, . . . , 1}, by Algorithm 4, we obtain

c∗N = (1, 1, 1, 1, 1, 1) and the winners are A, B and D, while by Algorithm

2, we obtain a∗N = (0.7, 0.7, 1, 1, 1, 1) and C is also an winner. Following

Algorithm 4, if, in every eliminating stage, the candidate with the lowest

votes is eliminated, then C is ultimately determined to be a loser.

To analyze the difference, consider the matrix below, which denotes
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sA(aN ) for aN = (aA, aB, 1, 1, 1, 1):

aB 1 0.9 0.8 0.7 0.6
aA

1 4.6 9.7 14.8 19.9 25
0.9 −0.9 4.09 8.68 13.27 17.86
0.8 −5.6 −1.52 2.56 6.64 10.72
0.7 −10.7 −7.13 −3.56 0.01 3.58
0.6 −15.8 −12.74 −9.68 −6.62 −3.56

For example, if (aA, aB) = (0.7, 0.9) then sA(aN ) = −7.13. If candi-

date A decreases his/her keep value from (aA, aB) = (1, 1) individually,

the surplus becomes negative. Thus, the prevailing method never attains

(aA, aB) = (0.7, 0.7). On the other hand, the coalition of A and B can de-

crease their keep values and keep their surpluses positive. Roughly speaking,

the difference arises from the fact that in our method, coalitions of candi-

dates as well as individual candidates jointly transfer their positive surpluses

and keep them positive.

5 Concluding Remarks

In this paper, we formulate the feedback mechanism of STVs by games with

punishment-dominance. By the framework, we propose a new method of

finding the winners and the corresponding keep value vector and compare

this method with the prevailing one. We show that our method yields the

correct solution for any given minimum unit of the scale.

As a secondary result, we obtain the non-procedural definition of the out-

come of STV for the existing method as well as the new method (Problems

2 and 4). While procedural definitions of outcome (the algorithms them-

selves) are indispensable, they are too complicated to persuade many people

to adopt STV elections. Thus, the simplicity of non-procedural definitions

will, I think, contribute to spreading and legislating STV.
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