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Abstract

We investigate the extension of the core convergence principle in economies with
differential information. The paper focuses on the coarse core of Wilson (1978,
Econometrica, vol.48, 807-816). We introduce a generalized constrained market
(GM) equilibrium as a new price equilibrium concept. We establish several limit
theorems on the coarse core for the GM equilibrium. We discuss the relationship
between our positive results and the negative result reported by Serrano, Vohra,
and Volij (2001, Econometrica, vol.69, 1685-1696).
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1 Introduction

Since the classic work of Edgeworth [13], there have been many researches on core conver-
gence in perfectly competitive economies without information asymmetries.1 According
to notable contributions in the literature, we may conclude that under some regularity
conditions, the core “converges” to the set of competitive allocations when the number
of agents becomes larger, which we call the core convergence principle:

The Core Convergence Principle: Any core allocation is approxi-
mately competitive for economies with a sufficiently large number of agents.

In recent years, it has been a major focus on the literature in general equilibrium theory
whether or not it is possible to extend the core convergence principle to the case that
the agents may have private informations.2

The present paper investigates the extension of the core convergence principle in
economies with differential information. The literarure contains several concepts of core

1Anderson [7] provides the comprehensive survey for this topic.
2Notable contributions are de Clippel [11], Forges et al. [14], McLean and Postlewaite [23], and

Serrano et al. [27]. Forges et al. [16] provide the excellent survey for this topic.
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with incomplete information.3 Among them, this paper focuses on the coarse core de-
fined by Wilson [30], which is the notion of the core at the interim stage when no private
information is pooled among members of a coalition and incentive constraints are not rel-
evant.4 No convergence result for the coarse core has been established yet.5 We provide
the two types of limit theorems on the coarse core. The first is the Debreu-Scarf type
limit theorem: Any allocation in the coarse core which survives replication is supported
as a price equilibrium (Theorem 1). Furthermore, we establish the equivalence result
under certain conditons (Theorem 2). The second is the extension of the “Strong Core
Theorem” in Anderson [5]: In a large economy with finite types of agents, any coarse
core allocation is approximately decentralized by the price, i.e., the core consumptions
are near the competitive demands at some price (Theorem 3).

To clarify the position of this paper in the literature, we shall briefly review the back-
ground for our research. In his seminal paper [30], Wilson proposed the coarse core as a
concept of the core at the interim stage, and the constrained market (CM) equilibrium
as a corresponding price equilibrium notion. While Wilson himself pointed out that
the coarse core contains the CM equilibrium allocations, it has been unsolved for many
years whether or not the Debreu-Scarf argument still holds in this framework. Serrano
et al.[27] provided the first resolution of this problem. Their answer was negative: They
showed, by a simple example, that in the replica sequence of economies, there exists the
allocation in the coarse core that cannot be supported as a CM equilibrium.

In spite of their negative result, we claim that the core convergence principle is still
valid for the coarse core. A key idea of our results is a price equilibrium notion. We
propose another equilibrium notion, a generalized constrained market (GM) equilibrium,
which is a generalization of the CM equilibrium. In the present paper, we demonstrate
that it is possible to recover the core convergence principle if we adopt the GM equi-
librium as a price equilibrium concept.6 A careful examination of the counter-example
in [27] suggests the reason for the failure of core convergence: The budget constraints
in the CM equilibrium is too stringent for the agent to afford the core allocation at the
support price. On the other hand, since budget constraints in the GM equilibrium are
more flexible than in the CM equilibrium, the budget-feasibility of the core allocation
does not matter for the GM equilibrium. This is an essence of our convergence result.

The difficulty in establishing the convergence in this framework lies in the fact that a
standard core theory cannot be applied directly to the coarse core, because a “blocking”
concept in the definition of the coarse core is based on a common knowledge argument.

3For example, de Clippel [11], Lee and Volij [24], Vohra [28]. Volij [29],Wilson [30], and Yannelis [31]

provided the notions of the core at the interim stage, respectively. See also Forges et al. [16].
4When incentive constraints are relevant, the corresponding core may be empty. See Forges et al.

[15] and Vohra [28].
5de Clippel [11] showed that the subset of the coarse core, the type-agent core, converges to the

constrained market equilibrium allocations under some conditions.
6Serrano et.al [27] pointed out that their non-convergence result is also valid for a broader class of

price equilibrium concepts including the CM equilibrium. Of course, our GM equilibrium does not come

under their category.
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We use some tricks to overcome it. We transform an economy with differential informa-
tion to another economy without information asymmetries, which we call an auxiliary
economy. Since the auxiliary economy is regarded as the Arrow-Debreu economy with
symmetric information, we can naturally define a core and price equilibrium of this
economy. It is crucial that the standard core theory works in the auxiliary economy.
We establish the limit theorems on the coarse core through the core convergence in the
auxiliary economy. The core convergence in the auxiliary economy, however, is not im-
mediate consequences of Anderson [5] or Debreu and Scarf [12], because the preference
of the agent may not be continuous. We need a careful treatment about this problem
to establish the results.

As the final remak, it is important to point out that our limit theorems have an
implication about the case that the incentive compatibility constraints are relevant.
Our formulation of a sequence of economies makes the private informations of all agents
non-exnclusive7 in the sense of Postlewaite and Schmeidler [26] when the number of
agents are large, which means that the incentive constraints become irrelevant. Hence,
our theorems also imply the convergence of the incentive-compatible coarse core defined
by Vohra [28].

The rest of the paper is organized as follows: The next section is devoted to the
description of the economy and the definitions of the fundamental concepts. In Section
3, we introduce our price equilibrium notion. Our convergence results are stated in
Section 4 and proved in Section 5. In Section 6, we illustrate our results and discuss the
relationship to Serrano et al.[27]. We provide concluding remarks in the last section.

2 Preliminaries

We begin with some notations and definitions. A cardinality of a set S is denoted by
|S|. Let x, y ∈ Rn and B ⊂ Rn. x ≥ y means xi ≥ yi for all i; x > y means x ≥ y and
x 6= y; x À y means xi > yi for all i; Rn

+ := {x ∈ Rn | x ≥ 0}; Rn
⊕ := {x ∈ Rn | x > 0};

Rn
++ := {x ∈ Rn | x À 0}; ‖x‖∞ := max1≤i≤n{xi}; ‖x‖ :=

∑n
i=1 |xi|; ∆n := {x ∈

Rn | ‖x‖ = 1}; ∆n
+ := ∆n ∩ Rn

+; ∆n
++ := ∆n ∩ Rn

++; ρ(x,B) := inf{‖x − y‖ | y ∈ B};
ρ(x, B) = ∞ if B = ∅.

Let Ω be a finite set of states where |Ω| = m. An event is a subset of Ω. We represent
a private information of an agent as a partition P of Ω. Let P(ω) be the element of
P that contains ω. I is a collection of partitions of Ω. The meet of the collection of
partitions {Pk}k∈K is the finest partition of Ω that is coarser than Pk for all k ∈ K,
and it is denoted by

∧
k∈K Pk.

There are ` goods available at each state. A consumption at state ω is denoted by
xω = (x1,ω, . . . , x`,ω). A (state-contingent) consumption plan is a vector of consumptions
at every state, which is denoted by x: x = (xω)ω∈Ω. A set of consumption plans is
X = RL

+ where L = ` × m. Let us define X⊕ := R`
⊕ × · · · × R`

⊕, i.e., m times direct

7Equivalently, the informational size of every agent becomes zero in the sense of Mclean and Postle-

waite [22].
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product of R`
⊕. X⊕ is the set of consumption plans such that the consumption at every

state is nonzero. We assume that there is a complete set of state-contingent contracts and
incentive constraints on contracts are not relevant.The set of prices for state-contingent
contracts is ∆L

+. Given x ∈ X and E ⊂ Ω, xE is a projection of x on E: xE = (xω)ω∈E .
The set of xE is denoted by XE .

A (state-dependent) utility function is a mapping u : R`
+ × Ω → R. We assume

that u(·, ω) is continuous and strictly increasing8 for every ω ∈ Ω. A (subjective) prior
probability distribution on Ω is π = (π(ω))ω∈Ω. We assume π ∈ ∆m

++: π(ω) > 0 for all
ω ∈ Ω. Let U be a set of the pair (u, π) satisfying the assumptions. Given the pair
(u, π) ∈ U and the event E ⊂ Ω, an expected utility of x ∈ X conditional on E is defined
as

U(x|E) =
∑
ω∈E

π(ω|E) · u(xω, ω),

where π(ω|E) is the probability of ω conditional on E: π(ω|E) = π(ω)/
∑

ω∈E π(ω). We
identify a pair (u, π) ∈ U with a conditional expected utility U(·|·) induced by (u, π).

Definition 1. An exchange economy is a map χ : A → I × U × RL
+ where A is a

finite set of agents. We define the informational partition Pa, (expected) utility Ua,
and endowment e(a) of agent a by (Pa, Ua, e(a)) = χ(a).

Throughout this paper, we assume that any exchange economy χ satisfies:

(A1):
∧
a∈A

Pa = {Ω};

(A2):
∑
a∈A

e(a) À 0.

We assume (A1) only for simplicity: In the case that
∧

a∈A Pa = {Ω1, . . . , Ωn}, we can
establish the similar results by applying our arguments to every subeconomy where the
state space is Ωi ⊂ Ω (i = 1, . . . , n). (A2) guarantees a positive income for some agent
for any price: For any p ∈ ∆L

+, there exists a ∈ A such that p · e(a) > 0.
An allocation is a map f : A → X⊕ such that

∑
a∈A f(a) =

∑
a∈A e(a). A coalition

is a nonempty subset of A. An allocation for a coalition S is a map f : S → X⊕

such that
∑

a∈S f(a) =
∑

a∈S e(a) and fω(a) 6= 0 for all ω ∈ Ω and a ∈ S. An
allocation f is interim efficient if there exists no allocation g such that for every a ∈ A,
Ua(g(a)|P ) ≥ Ua(f(a)|P ) for all P ∈ Pa with at least one strict inequality. An allocation
f is interim individually rational if Ua(f(a)|P ) ≥ Ua(e(a)|P ) for any a ∈ A and P ∈ Pa.

Definition 2. Let χ : A → I × U × RL
+ be an exchange economy. A coalition S has

a coarse objection to an allocation f if there exist an allocation g for S and an event
E ∈

∧
a∈S Pa such that

Ua(g(a)|P ) > Ua(f(a)|P ) for any a ∈ S and P ∈ Pa satisfying P ⊂ E. (1)

8A real valued function f : Rn
+ → R is strictly increasing (or incereasing) if x < y (resp. x ¿ y)

implies f(x) < f(y).
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The coarse core of χ is the set of allocations to which no coalition has a coarse objection,
and it is denoted by C C (χ).

Remark 1. An event E is common knowledge for a coalition S at state ω if Pa(ω) ⊂ E

for all a ∈ S. A coalition S has a coarse objection to some allocation f if and only if it
is common knowledge among the members of S at some state that f is improved upon
by S. This means that the agreement of the coalition members to the coarse objection
involves no leakage of private information among them.9

To establish the non-emptiness of the coarse core, Wilson [30] considered another
economy for which each agent a is split into a number of subagents, reindexed as (a, P )
for P ∈ Pa. The subagent (a, P ) is assumed to have the utility Ua(x|P ) and the initial
endowments eP (a). Wilson proved the non-emptiness of the coarse core by showing that
the corresponding NTU game is balanced. A constrained market equilibrium is regarded
as a price equilibrium concept associated with this economy.

Definition 3. Let χ : A → I × U × RL
+ be an exchange economy. A constrained

market (CM) equilibrium of χ is a pair (p, f) of the price and allocation such that∑
ω∈P pω · fω(a) ≤

∑
ω∈P pω · eω(a) and Ua(x|P ) > Ua(f(a)|P ) ⇒

∑
ω∈P pω · xω >∑

ω∈P pω · eω(a) for any a ∈ A and any P ∈ Pa.

It is easy to show that the coarse core contains the CM equilibrium allocations.
However, Serrano et al.[27] showed that the coarse core fails to converge to a set of CM
equilibrium allocations. In order to recover the core convergence principle, therefore, we
have to find another price equilibrium notion.

3 Generalization of CM Equilibrium

In this section, we introduce a generalized version of CM equilibrium. Recall that in the
CM equilibrium, each subagent (a, P ) is assigned to the income βa(P ) :=

∑
ω∈P pω ·eω(a)

from the total income p · e(a) and maximizes her utility Ua(·|P ) subject to the budget
constraint

∑
ω∈P pω · xω ≤ βa(P ). Thus, the CM equilibrium can be regarded as a

price equilibrium concept under some budget-sharing rule. Here, we define a budget-
sharing rule as a collection of mappings β := {βa}a∈A where βa : ∆L

+ × Pa → R+ and∑
E∈Pa

βa(p, E) = p · e(a) for any p ∈ ∆L
+.

Given an exchange economy χ and a budget-sharing rule β, for p ∈ ∆L
+ and a ∈ A,

we define the demand set as follows:

D(p, a; βa) :=

{
x ∈ X

∣∣∣∣∣ ∀P ∈ Pa :
∑

ω∈P pω · xω ≤ βa(p, P )
Ua(y|P ) > Ua(x|P ) ⇒

∑
ω∈P pω · yω > βa(p, P )

}
.

Definition 4. Let χ : A → I ×U × RL
+ be an exchange economy. A pair (p, f) of the

price and allocation is a generalized constrained market (GM) equilibrium of χ if there
exists a budget-sharing rule β such that for any a ∈ A,

9The common knowledge interpretation of the coarse core is due to Kobayashi [21].
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(i) f(a) ∈ D(p, a;βa); and

(ii) βa(p, P ) ≥ inf
{∑

ω∈P pω · xω

∣∣ Ua(x|P ) ≥ Ua(e(a)|P )
}

for any P ∈ Pa.

A set of GM equilibrium allocations is denoted by M (χ).

Remark 2. Condition (ii) guarantees the interim individual rationality of f ∈ M (χ).

It is important to point out that the first welfare theorem holds under our equilibrium
concept: Any GM equilibrium allocation is interim efficient. The proof is routine, so we
omit it.

4 Core Convergence Theorems

We will state our limit theorems on the coarse core. All the proofs will be provided in
the next section.

We begin with the case of the replica sequences. For any exchange economy χ : A →
I × U × RL

+, the n-th replica of χ is the exchange economy χn : An → I × U × RL
+

such that An = A × {1, . . . , n}, P(a,i) = Pa, U(a,i) = Ua, and e(a, i) = e(a) for any
(a, i) ∈ A × {1, . . . , n}. For any allocation f in χ, fn is the n-th replication of f :
fn(a, i) = f(a) for (a, i) ∈ An. Obviously, fn is an allocation in χn.

Our first convergence result is the Debreu-Scarf type limit theorem. The next theo-
rem asserts that any coarse core allocation which survives replication is a GM equilibrium
allocation.

Theorem 1. Let χ : A → I ×U ×RL
+ be an exchange economy, χn : An → I ×U ×RL

+

be the n-th replica of χ, and f be an allocation in χ. If fn ∈ C C (χn) for all n ≥ 1, then
f ∈ M (χ).

The converse of Theorem 1 is unfortunately not true, because the GM equilibrium
allocation does not belong to the coarse core in general. We illustrate this fact in the
following example.

Example 1. Let Ω = {ω1, ω2}, A = {a, b, c}, and ` = 2. The exchange economy χ

is defined as follows: The every agent has an identical state-indepent utility function
u(x1, x2) = 4

√
x1 · x2. The common prior distribution is π(ω1) = π(ω2) = 1/2. The

information structure and initial endowments are given in the table below.

• Pa = Pb = {{ω1}, {ω2}} and Pc = {Ω};

• e(a) = ((3, 0), (1, 0)), e(b) = ((0, 3), (0, 1)), and e(c) = ((0, 0), (2, 2)).

Notice that Pa ∧ Pb = {{ω1}, {ω2}} 6= {Ω} and e(a) 6= e(b). Consider the allocation f

with no risk:
f(a) = f(b) = f(c) = ((1, 1), (1, 1)).

If we settle the price p = (1/4, 1/4, 1/4, 1/4), then (p, f) is a GM equilibrium under the
budget-sharing rule βa(p, ωi) = p · e(a)/2 and βb(p, ωi) = p · e(b)/2 for i = 1, 2. However,
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f does not belong to C C (χ), because the coalition {a, b} has the coarse objection g

at the common knowledge event {ω1}. where g(a) = ((1.5, 1.5), (1, 0)) and g(b) =
((1.5, 1.5), (0, 1)).

Example 1 demonstrates that the GM equilibrium allocation is possibly “blocked”
by some coalition if the members have “similar” fine informations in the sense that some
proper subset of Ω can be common knowledge among them. In Example 1, agents a

and b have an identical fine information, so that they take advantage of their informa-
tion, even without communications, to block the GM allocation through reallocation by
themselves. The GM equilibrium is not immune to this kind of objection unless it is a
CM equilibrium.

Based on this observation, we provide a sufficient condition for the coarse core to
contain all GM equilibrium allocations. In the next theorem, we recover the equivalence
result of Debreu and Scarf [12] under some additional conditions.

Theorem 2. Let χ : A → I ×U ×RL
+ be an exchange economy and T be an image of

χ where T = χ(A) = {(Pt, Ut, e(t))}t∈T . Suppose that

(i) Ut(·|P ) is concave for all P ∈ Pt and t ∈ T ,

(ii) Pt ∧ Pt′ = {Ω} for any distinct t, t′ ∈ T .

Then, f ∈ M (χ) if and only if fn ∈ C C (χn) for all n ≥ 1 where χn be the n-th replica
of χ.

Notice that both (i) and (ii) concern with the image set T , which are independent of
the number of agents. That is, if χ satisfies (i) and (ii), then any replica χn (n ≥ 2) also
does so. Differently from Brown and Robinson [10] and Hildenbrand [19],10 our eqiva-
lence result requires the convexity condition (i). Loosely speaking, (ii) means that the
private informations of agents with different characteristics are so “different” among each
other that only the whole state space Ω can be common knowledge for any coalition. For
example, (ii) is satisfied if Ω = {ω1, . . . , ωm}, T = {(P1, U1, e(1)), . . . , (Pm, Um, e(m))},
and P1 = {{ω1}, {ω2, . . . , ωm}}, . . . , Pm = {{ωm}, {ω1, . . . , ωm−1}}.11 Although (ii) is
indeed stringent, Theorem 2 still covers many examples in the literatures. In particular,
we would like to stress that Theorem 2 holds for the counter-example of Serrano et
al.[27].12

As Serrano et.al.[27] remarked, it is important to notice that the equal treatment
property, the basic ingredient in the Debreu-Scarf argument, does not hold for the
coarse core.13 In this sense, Theorems 1 and 2 may be insufficient for a characterization
of the asymptotic behavior of C C (χn). This fact motivates a more general convergence
result.

10See Theorem 4 (p.253) of Brown and Robinson [10] and Corollary 2 (Chapter 3, p.201) of Hildenbrand

[19].
11In the case that n = 3, this corresponds to Example 2 of Wilson [30].
12See also Section 6.
13We will discuss this issue in Section 6.
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We shall establish the strong convergence result for the type sequences of economies,
including the replica sequences. A type sequence of economies is a sequence of exchange
economies χn : An → T where T is a finite subset of I × U × RL

+ satisfying (A1)
and (A2):

∧
t∈T Pt = {Ω} and

∑
t∈T e(t) À 0. The next theorem is the extension of

Theorem 3.3 of Anderson [5] to the coarse core:14 Any coarse core consumptions are
approximately GM-demands in the large economy.

Theorem 3. Let χn : An → T be a type sequence of economies satisfying

(i) |An| → ∞;

(ii) inf
n

|χ−1
n (t)|
|An|

> 0 for any t ∈ T .

Then,

lim
n→∞

sup
f∈C C (χn)

inf
p∈∆L

+
β

1
|An|

∑
a∈An

ρ(f(a), D(p, a; βa)) = 0.

The analogue of Theorem 2 holds for the type sequence of economies: If T satisfies
(i) and (ii) in Theorem 2, then M (χn) ⊂ C C (χn) for all n ≥ 1. The proof is essentially
same as the case of Theorem 2.

5 Proof of Theorems

In this section, we prove our main results, Theorems 1, 2, and 3. We shall provide
the overview of our proof. At first, we introduce the concept of auxiliary economy
associated with an original economy, and define the core and price equilibrium of the
auxiliary economy. Secondly, we establish the relationship between the coarse core
and GM equilibria of the original economy and the core and equilibria of the auxiliary
economy. Finally, we prove the theorems via the results in the auxiliary economy. As we
pointed out in the Introduction, it is crucial in our proof that a standard core convergence
arguments can be applied to the core and equilibria of the auxiliary economy. We use
nonstandard analysis to prove Theorems 1 and 3.

5.1 Auxiliary Economy

Given (P, U) ∈ I × U , a vector of conditional expected utilities of x ∈ X is

U(x|P) = (U(x|P ))P∈P .

We define a binary relation % on X as follows:

∀x, y ∈ X : x % y ⇐⇒ U(x|P) ≥ U(y|P).

Let Â be an asymmetric part of %. A preference is a binary relation % on X induced
by some (P, U) ∈ I × U in this manner. The set of preferences is denoted by P.

14See also Proposition 4 (Chapter 3, p.200) of Hildenbrand [19].
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It is obvious that % is transitive and strongly monotonic. Note that % is not con-
tinuous in general: {(x, y) ∈ X × X | x Â y} may not be open in X × X even if u(·, ω)
is continuous for all ω ∈ Ω. Note also that strict concavity of U(·|P ) does not imply
strong convexity of Â,15 because of incompleteness of %.

Definition 5. Let χ : A → I × U × RL
+ be an exchange economy where χ(a) =

(Pa, Ua, e(a)) for all a ∈ A. The auxiliary economy associated with χ is the mapping
χ̃ : A → P × RL

+ such that for any a ∈ A, (i) %a is induced by (Pa, Ua) and (ii)
ẽ(a) = e(a), where χ̃(a) = (%a, ẽ(a)) for all a ∈ A.

Since an auxiliary economy is regarded as the Arrow-Debreu economy with symmet-
ric information, we can naturally define the core and price equilibrium of this economy.

Definition 6. Let χ be an exchange economy and χ̃ be the associated auxiliary economy.
An allocation f is blocked by a coalition S in χ̃ if there exists the allocation g for S such
that g(a) Âa f(a) for all a ∈ S. The core of χ̃ is the set of allocations which cannot be
blocked by any coalition, and it is denoted by C (χ̃).

For p ∈ ∆L
+ and (%, e) ∈ P × RL

+, the demand set is

d(p,Â, e) =
{
x ∈ X

∣∣ p · x ≤ p · e and y Â x ⇒ p · y > p · e
}
.

By abuse of notation, we let d(p, a) = d(p,Âa, e(a)) for a ∈ A.

Definition 7. Let χ be an exchange economy and χ̃ be the associated auxiliary economy.
A Walrasian equilibrium of χ̃ is a pair (p, f) of the price and allocation such that
f(a) ∈ d(p, a) for any a ∈ A.

Remark 3. If f is a Walrasian alloation in χ̃, then f ∈ C (χ̃). The proof is routine, so
we omit it.

5.2 Preliminary Results

We begin with a property of the induced preference relation %. As we have already
remarked, % is not continuous. It is easy to check that the result in the next lemma
holds if % is continuous. The lemma says that the same result still holds even in the
absence of the continuity.

Lemma 1. For any x, y ∈ X, if x Â y, then there exists z ∈ RL
+\{0} such that x−z Â y.

Proof . See Appendix A.

The next lemma clarifies the relationship between the coarse core of the original
economy and the core of the associated auxiliary economy: The coarse core is a subset
of the core of the auxiliary economy.

15A binary relation Â on X is strongly convex if for any x, y ∈ X, x 6= y, either x+y
2

Â x or x+y
2

Â y

holds.
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Lemma 2. C C (χ) ⊂ C (χ̃) for any exchange economy χ.

Proof . See Appendix A.

The next lemma states that the GM equilibrium in the original economy is almost
equivalent to the Walrasian equilibrium in the associated auxiliary economy.

Lemma 3. Let χ be an exchange economy and p ∈ ∆L
++. For any a ∈ A, x ∈ D(p, a; βa)

for some βa if and only if x ∈ d(p, a). In particular, (p, f) is a GM equilibrium of χ if
and only if (p, f) is a Walrasian equilibrium of χ̃ and f is interim individually rational.

Proof . See Appendix A.

By Lemmas 2 and 3, we see that the core convergence in the original economy is
derived from that in the auxiliary economy. Therefore, our main task is to establish the
core convergence in the auxiliary economy.

For p ∈ ∆L
+, x, e ∈ RL

+, and %∈ P, we define the demand gap φ as follows:

φ(p, x,%, e) := |p · (x − e)| + | inf{p · (y − e) | y Â x}|.

Roughly speaking, if φ(p, x, %, e) is small, then x is “near” a quasi-demand at (p,%, e);
p · x ≤ p · e and y Â x ⇒ p · y ≥ p · e. The following lemma on the demand gap is due
to Anderson [2]. The lemma claims that there is the upper bound for the total demand
gap of the core allocations in the auxiliary economy.

Lemma 4. Let χ be an exchange economy and χ̃ be the associated auxiliary economy.
If f ∈ C (χ̃), then there exists p ∈ ∆L

+ such that
∑

a∈A φ(p, f, a) ≤ 4Lmaxa∈A ‖e(a)‖∞
where φ(p, f, a) = φ(p, f(a),%a, e(a)).

Proof . Since the preference % is transitive and monotonic, the proof in Anderson [2]
also works in our setting. We provide the formal proof in Appendix A for the reader’s
convinience.

The proofs of Theorems 1 and 3 are based on nonstandard analysis,16 especially
Loeb measure theory developed by Anderson [1], [4], and Loeb [25], while Theorem 2 is
proved in a standard way. For the readers unfamiliar with nonstandard analysis, we shall
sketch the proofs informally. At first, notice that the upper bound 4Lmaxa∈An ‖e(a)‖∞
in Lemma 4 is independent of index n for any type sequence of economies χn. Hence,
the average of the demand gaps, 1

|An|
∑

a∈An
φ(p, f, a), is “infinitesimal” when |An| is

“infinite”. This means that φ(p, f, a) is “infinitesimal” for “almost all” a ∈ An. Next,
if φ(p, f, a) is “infinitesimal” and p À 0, then f(a) is “near” the Walrasian demand
d(p, a).17 Since we can show p À 0, we see that the core allocation f is approximately
Walrasian. Combined with Lemmas 2 and 3, we obtain the desired results.

The readers who are not interested in technical arguments may skip the following
formal proofs to Section 6.

16Brown and Robinson [9], [10] are pioneering works in mathematical economcs. Anderson [6] is the

excellent introduction to nonstandard analysis with applications to economics.
17We use Lemma 1 to prove this statement.
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5.3 Proof of Theorem 1

Let f be an allocation in χ. Suppose that fn ∈ C C (χn) for all n. Then, Lemma 2 implies
that fn ∈ C (χ̃n) for all n. By the Transfer Principle, fn ∈ ∗C (χ̃n) for n ∈ ∗N \N. Also,
by Lemma 4 and the Transfer Principle, for n ∈ ∗N \ N, there exists p ∈ ∗∆L

+ such
that (1/|An|)

∑
α∈An

∗φ(p, fn, α) ' 0, because maxα∈An ‖e(α)‖∞ = maxa∈A ‖e(a)‖∞ is
finite. Since both fn(α) and e(α) are finite, ∗φ(◦p, fn, α) ' 0 for L(ν)-almost all α ∈ An

where ν is the counting probability measure and L(ν) is the associated Loeb measure.18

We show that ◦p À 0. Suppose not, i.e., ◦pω,i = 0 for some ω and i. It follows
from (A2) that ◦p · e(a) > 0 for some a ∈ A. Let us define Bn := {a} × {1, . . . , n},
so ν(Bn) = 1/|A|. Without loss of generality, ∗φ(◦p, fn, α) ' 0 for all α ∈ Bn. If
◦p · f(a) = 0, then ◦p · f(a) < ◦p · e(a), which contradicts ∗φ(◦p, fn, α) ' 0 for α ∈ Bn.
Therefore, ◦pω′,j > 0 and fω′,j(a) > 0 for some ω′ and j. For notational simplicity, we
assume that ◦p1 = ◦pω,i = 0 and ◦p2 = ◦pω′,j > 0 by reindexing the goods. If we set
x := f(a)+(1, 0, . . . , 0), then x Âα f(a) and ◦p ·x = ◦p ·f(a) for all α = (a, i) ∈ Bn. Fix
α ∈ Bn arbitrarily. Since ∗φ(◦p, fn, α) ' 0, ◦p ·x = ◦p ·e(a). Since ua(·, ω′) is continuous
and strictly incerasing, if we set y = x − (0, ε, 0, . . . , 0) for sufficiently small ε > 0, then
y Âα f(a) and ◦p · y < ◦p · e(a). That is contradiction.

We show that (◦p, f) is the Walrasian equilibrium in χ̃. Suppose not. Then, there
exists a ∈ A and y ∈ RL

+ such that y Âa f(a) and ◦p · y ≤ ◦p · e(a). By Lemma
1, we may assume that ◦p · y < ◦p · e(a). Therefore, there exists ε > 0 such that
φ(◦p, f(a), a) > ε. For any n ∈ N, there exists Cn ⊂ An such that Cn = {a}×{1, . . . , n}
and φ(◦p, fn(α), α) > ε for all α ∈ Cn. By the Transfer Principle, for n ∈ ∗N \ N,
∗φ(◦p, fn(α), α) > ε for α ∈ Cn and ν(Cn) = 1/|A|. That is contradiction.

Finally, Lemma 3 implies that (◦p, f) is a GM equilibrium in χ, so we obtain the
desired result.

5.4 Proof of Theorem 2

The “if” part is a direct consequence of Theorem 1.
For the converse, we will show that M (χ) ⊂ C C (χ) under (i) and (ii). This implies

that M (χn) ⊂ C C (χn) for n ≥ 1, because χn also satisfies (i) and (ii) if χ does so.
Suppose that a coalition S has a coarse objection to an allocation f ∈ M (χ). Then,

there exist the event E ∈
∧

a∈S Pa and the allocation g for S satisfying (1).
If S contains several types of agents, i.e., there exist a, b ∈ S such that χ(a) 6= χ(b),

then (ii) implies
∧

a∈S Pa = {Ω}. Since (1) implies g(a) Âa f(a) for all a ∈ S, f is
blocked by S in χ̃. On the other hand, It follows from Lemma 3 and Remark 3 that
f ∈ C (χ̃). That is contradiction.

If S consists of single type of agents, i.e., S ⊂ χ−1(t) for some t ∈ T , then E ∈ Pt

and ∑
a∈S

g(a) =
∑
a∈S

e(a) = |S| · e(t) ⇐⇒ 1
|S|

·
∑
a∈S

g(a) = e(t).

18See Anderson [4], [6], Hurd and Loeb [20], and Loeb [25] for details on the Loeb measure.
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Let a∗ ∈ arg mina∈S{Ut(g(a)|E)}. By (1) and (i),

Ua∗(e(a∗)|E) = Ut(e(t)|E) = Ut

(
1
|S|

·
∑
a∈S

g(a)
∣∣∣∣ E

)
≥ Ut(g(a∗)|E) > Ua∗(f(a∗)|E).

Thus, f is not interim individually rational. That is contradiction.

5.5 Proof of Theorem 3

Fix p ∈ ∆L
++ and (%, e) ∈ T arbitrarily.19 We show that

∀ε > 0 ∃δ > 0 ∀x ∈ RL
+ : φ(x, p, %, e) < δ =⇒ ρ(x, d(p, %, e)) < ε. (2)

Suppose not. Then there exist some ε > 0 and a sequence {x(n)} ⊂ RL
+ such that

φ(x(n), p, %, e) → 0 and ρ(x(n), d(p, %, e)) ≥ ε. Since {x(n)} is bounded, we may assume
that x(n) → x for some x ∈ RL

+. Then φ(x, p,%, e) = 0, that is, |p · (x − e)| = 0 and∣∣inf{p·(y−e) | y Â x}
∣∣ = 0. It follows from p À 0 and Lemma 1 that y Â x ⇒ p·y > p·e.

Thus x ∈ d(p,%, e), which contradicts ρ(x(n), d(p, %, e)) ≥ ε for all n.
By the transfer of (2), given p ∈ ∗∆L

++ and (%, e) ∈ ∗T , we obtain

∀x ∈ ∗RL
+ : ∗φ(x, p, %, e) ' 0 =⇒ ∗ρ(x, ∗d(p, %, e)) ' 0. (3)

Let fn ∈ C C (χn) be any sequence of the core allocations. By Lemma 2, fn ∈ C (χ̃n).
We consider the hyperfinite economy ∗χ̃n : An → ∗T for n ∈ ∗N \ N. Note that in ∗χ̃n,
e(a) is finite for all a ∈ An and e is S-integrable, because T is finite. By Lemma 4 and
the Transfer Principle, there exists p ∈ ∗∆L

+ such that (1/|An|)
∑

a∈An

∗φ(p, fn(a), a) '
0. Since (1/|An|)

∑
a∈An

fn(a) = (1/|An|)
∑

a∈An
e(a), fn(a) is finite for L(ν)-almost

all a ∈ An. Thus, ∗φ(p, fn(a), a) ' 0 for L(ν)-almost all a ∈ An. By the similar
argument in the proof of Theorem 1, we can show that ◦p À 0. Therfore, (3) implies
∗ρ(fn(a), d(◦p, a)) ' 0 for L(ν)-almost all a ∈ An.

Since ‖x‖ ≤ min{1/◦p1, . . . , 1/◦pL} · ‖e(a)‖ for any x ∈ d(◦p, a), ∗ρ(fn(a), d(◦p, a)) ≤
‖fn(a)‖+min{1/◦p1, . . . , 1/◦pL}·‖e(a)‖. Following the argument in the Appendix of An-
derson [3], if e is S-integrable, then the core allocation fn is also S-integrable. It follows
from Corollary 5 in Anderson [1] that ∗ρ(fn(a), d(◦p, a)) is S-integrable. Therefore,

1
|An|

∑
a∈An

∗ρ(fn(a), d(◦p, a)) =
∫

An

◦(∗ρ(fn(a), d(◦p, a)))dL(ν) ' 0,

because the integrand is zero for L(ν)-almost all a ∈ An.
Hence, given ε ∈ R++, for any n ∈ ∗N \ N and fn ∈ C C (χn), there exists p ∈ ∆L

++

such that
1

|An|
∑

a∈An

∗ρ(fn(a), d(p, a)) < ε.

By the Overspill Principle, for sufficiently large n ∈ N,

1
|An|

∑
a∈An

ρ(fn(a), d(p, a)) < ε.

19Note that if p À 0, then d(p,Â, e) 6= ∅.
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By Lemma 3, there exists β such that

1
|An|

∑
a∈An

ρ(fn(a), D(p, a; βa)) < ε.

Since ε is arbitrary, we complete the proof.

6 Discussion

Serrano et al.[27] is the most related research to this paper. We need to clarify the
relationship between our results and theirs. The aim of this section is to examine the
counter-example given by [27] in detail and to illustrate how our theory works well.

Example 2 ([27], p.1689). Let Ω = {ω1, ω2}, ` = 2, and A = {a, b}. The exchange
economy χSV V , which we call the SVV economy, is defined as allows:

• Pa = {{ω1}, {ω2}} and Pb = {{ω1, ω2}}.

• ua(x1, x2, ω) = ub(x1, x2, ω) = 4
√

x1 · x2 for any ω ∈ Ω.

• eω1(a) = eω2(a) = (24, 0) and eω1(b) = eω2(b) = (0, 24).

• πa(ω) = πb(ω) = 1
2 for any ω ∈ Ω.

Let us define the allocation g in χ and the price q as follows:

g(a) = g(b) = ((12, 12), (12, 12)),

q = (q1,ω1 , q2,ω1 , q1,ω2 , q2,ω2) = (1/4, 1/4, 1/4, 1/4).

Then, (q, g) is unique CM equilibrium of χSV V .
Consider the allocation f∗ : A → R2

⊕ × R2
⊕ in χSV V as follows:

f∗(a) = (f∗
ω1

(a), f∗
ω2

(a)) = ((15, 15), (8, 8)),

f∗(b) = (f∗
ω1

(b), f∗
ω2

(b)) = ((9, 9), (16, 16)).

Then, the replicated allocation f∗n is in C C (χSV V
n ) for all n, but f∗ is not supported

as a CM equilibrium, because f∗ 6= g.

Let us begin with identifying C C (χSV V ) and M (χSV V ). Consider an allocation
f : A → R2

⊕ × R2
⊕ satisfying

(S): f1,ωi(a) = f2,ωi(a), f1,ωi(b) = f2,ωi(b) for i = 1, 2.

For such f , we define f̂ : A → R2
⊕ as follows: f̂ = (f̂ω1 , f̂ω2) and

f̂ωi(a) := f1,ωi(a) = f2,ωi(a), f̂ωi(b) := f1,ωi(b) = f2,ωi(b) for i = 1, 2.

The set of all allocations satisfying (S) is denoted by F̂ :

F̂ =
{
f̂ : A → R2

⊕
∣∣ f̂ωi(a) + f̂ωi(b) = 24 for i = 1, 2

}
.

Then, we can show that
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(i) C C (χSV V ) coincides with F̂ , and

(ii) M (χSV V ) is a one-dimensional curve in F̂ .

The formal discussion and proofs about these facts will be provided in Appendix B.
The figure illustrates the observations described above. In the figure, F̂ is represented

as the “Edgeworth Box”. All the points in the square region are elements in C C (χSV V )
while ĝ is the unique CM equilibrium allocation. M (χSV V ) is represented as the curve
(thick line) in the region. Clearly, the curve passes through the point ĝ.

It is important to note that f̂∗ is on the curve, that is, f∗ ∈ M (χSV V ). Indeed, f∗

is the GM equilibrium allocation under the price p∗ = (2/7, 2/7, 3/14, 3/14).20 In the
figure, the indifference curve of agent b through f̂∗ is tangent to the budget line under
p∗ while the demand set of agent a at p∗ is the budget line itself. This fact is consistent
with our theory: f∗ survives replication, because f∗ ∈ M (χSV V ) !

-

6

¾

?

v
v

f̂ω1(a)

f̂ω2(a)

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S
SOa

Ob

f̂∗

ĝ

M (χSV V )

p∗ω1
· xω1 + p∗ω2

· xω2 = 6Ub = 7
2

Figure: The SVV economy

The main reason for the non-convergence to a CM equilibrium is that the budget
constraint in a CM equilibrium is too stringent to afford the core allocation at the
supporting price: In particular, agent (a, {ω1}) does not afford the consumption f∗

ω1
(a)

at p∗, i.e., p∗ω1
· f∗

ω1
(a) = 60/7 > 48/7 = p∗ω1

· eω1(a). This problem does not occur in the
GM equilibrium, because there exists a budget-sharing rule under which f∗

ω1
(a) is the

demand of agent (a, ω1) at p∗.
It is important to note that the SVV economy satisfies the assumptions in Theorem

2. This means that the set of coarse core allocations which survive replication coincides

20See Appendix B for detail.
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with M (χSV V ). This fact demonstrates the relevance of our equilibrium concept: It
seems necessary to consider the GM equilibrium allocations if we examine the limiting
behavior of the coarse core.

Serrano et al.[27] also showed that the equal treatment property does not hold in
the example (p.1692 of [27]). Let us explain this fact from our point of view. We can
show that the coarse core of the SVV economy coincides with the core of the auxiliary
economy: C C (χSV V

n ) = C (χ̃SV V
n ) for n ≥ 1.21 Therefore, we can restrict our attention

to the auxiliary economy. As we pointed out in Section 5, the auxiliary economy is the
Arrow-Debreu economy with symmetric information. Now, it is clear why the Debreu-
Scarf argument does not work in χ̃SV V : This is because the preference %a of agent a in
χ̃SV V is not strongly convex. As discussed in [12], it is obvious that the equal treatment
property cannot be expected when the preference is not strongly convex.

Finally, notice that χSV V
n trivially satisfies the non-exclusivity condition of Postle-

waite and Schmeidler [26] with n ≥ 2. By Lemma 3.1 of Vohra [28], we can safely
say that any allocation in C C (χSV V

n ) is incentive compatible.22 Our result, therefore,
implies the convergence of the incentive compatible coarse core of Vohra [28].23

7 Concluding Remarks

In this paper, the core convergence principle was extended to economies with differential
information. We established the several limit theorems on the coarse core. Furthermore,
we provided the core-equivalence result for the replicated economies under certain con-
ditions. As the final remark, we notice that the GM equilibrium allocation may not be
in the coarse core. Although we cannot expect the inclusion in the general case, we may
extend the core-equivalence reult of Aumann [8] within the framework of Theorem 2.
This issue is left to the future work.
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Appendix

A Proof of Lemmas

A.1 Proof of Lemma 1

If x Â y, then U(x|P ) ≥ U(y|P ) for all P ∈ P with at least one strict inequality.
Suppose that U(x|P ∗) > U(y|P ∗) for some P ∗. Since U(·|P ∗) is continuous and strictly
increasing on XP ∗ , there exists w ∈ XP ∗ such that w > 0 and U(x − w|P ∗) > U(y|P ∗).
If we define z = (zω)ω∈Ω as

zω =

wω if ω ∈ P ∗

0 otherwise,

then we obtain the desired result.

A.2 Proof of Lemma 2

We show that if an allocation f is blocked by a coalition S, then S has a coarse objection
to f . Suppose that f is blocked by S. Then, there exists the allocation g for S such
that for any a ∈ S, Ua(g(a)|P ) ≥ Ua(f(a)|P ) for all P ∈ Pa with at least one strict
inequality. Select a∗ from S arbitrarily. Let P ∗ be the element of Pa∗ such that
Ua∗(g(a∗)|P ∗) > Ua∗(f(a∗)|P ∗). Let E be the element of

∧
a∈S Pa satisfying P ∗ ⊂ E.

It suffices to show that there exists the allocation g̃ for S such that

∀ω ∈ E ∃aω ∈ S : Uaω(g̃(aω)|Paω(ω)) > Uaω(f(aω)|Paω(ω)).

For if so, then all the member of S can be better off on E by the commodity-transfer
from aω to all the other members at each ω ∈ E.

We shall construct g̃ by modifying g in the following manner. At the first step, we
consider the event E0 such that

E0 := {ω ∈ E | ∀a ∈ S : Ua(g(a)|Pa(ω)) = Ua(f(a)|Pa(ω))}.

Note that E0 ( E, because P ∗ ⊂ E \ E0. If E0 = ∅, then we have done by setting
g̃ = g. Suppose E0 6= ∅. Then, there exists a0 ∈ S and P0 ∈ Pa0 such that P0 6⊂ E0

and P0 ∩ E0 6= ∅, because E ∈
∧

a∈S Pa. By the definition of E0, for any ω0 ∈
P0 ∩ (E \ E0), there is b0 ∈ S such that Ub0(g(b0)|Pb0(ω0)) > Ub0(f(b0)|Pb0(ω0)). If g0

is the modification of g obtained by the sufficiently small transfer of goods from b0 to
a0 at ω0, then Ua0(g

0(a0)|P0) > Ua0(f(a0)|P0). At the next step, we consider the event
E1 as follows:

E1 := {ω ∈ E | ∀a ∈ S : Ua(g0(a)|Pa(ω)) = Ua(f(a)|Pa(ω))}.

It follows from the construction of g0 that E1 ( E0. If E1 = ∅, then we have done
by setting g̃ = g0. If E1 6= ∅, then we obtain the allocation g1 for S by applying
the similar arguments. By repeating this procedure, we obtain the decreasing sequence
E0 ) E1 ) · · · . Since E is finite, En = ∅ for some n. By setting g̃ = gn−1, we obtain
the desired result.
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A.3 Proof of Lemma 3

Let p ∈ ∆L
++ and a ∈ A. Suppose x ∈ D(p, a; βa) for some βa. It is obvious that

p·x ≤ p·e(a). Suppose that y Â x. Then, Ua(y|P ) ≥ U(x|P ) for all P ∈ Pa with at least
one strict inequality. Since x ∈ D(p, a; βa), this implies that

∑
ω∈P pω · yω ≥ βa(p, P )

for all P ∈ Pa with at least one strict inequality. Therefore,

p · y =
∑

P∈Pa

∑
ω∈P

pω · yω >
∑

P∈Pa

βa(p, P ) = p · e(a),

which means x ∈ d(p, a).
Conversely, Suppose x ∈ d(p, a). Set the budget-sharing rule β as follows:

βa(p, P ) =
∑
ω∈P

pω · xω for all P ∈ Pa.

Fix P ∈ Pa arbitrarily. Suppose that Ua(y|P ) > Ua(x|P ) for some y ∈ X. If we
consider another ỹ ∈ X satisfying that

ỹω =

yω if ω ∈ P ,

xω otherwise,

then ỹ Âa x. Since x ∈ d(p, a), p · ỹ > p · e(a), which implies
∑

ω∈P pω · yω > βa(p, P ).
Therefore, we obtain x ∈ D(p, a;βa).

A.4 Proof of Lemma 4

We reproduce the proof of the lemma in Anderson [2]. For each a ∈ A, let φ(a) :={
x − e(a) ∈ RL

∣∣ x Âa f(a)
}
, and define Φ :=

∑
a∈A φ(a). For notatinal simplicity, we

write M := maxa∈A ‖e(a)‖∞.
At first, let us show that Φ ∩ −RL

++ = ∅. Suppose Z ∈ Φ ∩ −RL
++. Then there

exist z(a) ∈ φ(a) for every a ∈ A such that Z =
∑

a∈A z(a). Let us define S := {a ∈
A | z(a) 6= 0} and

g(a) := z(a) + e(a) − 1
|S|

· Z for all a ∈ S.

Then g(a) > z(a) + e(a) and∑
a∈S

g(a) =
∑
a∈S

z(a) +
∑
a∈S

e(a) − Z =
∑
a∈S

e(a).

Since z(a) ∈ φ(a) (and free disposal), g(a) Âa f(a) for all a ∈ S. Hence S blocks f ,
which is contradiction.

Next, we will show that coΦ ∩ {z ∈ RL|zi < M,∀i = 1, . . . , L} = ∅. Suppose
Z ∈ coΦ∩{z ∈ RL|zi < M, ∀i = 1, . . . , L}. By Shapley-Folkman Theorem, we can write

Z =
k∑

i=1

z(ai) +
∑

a/∈{a1,...,ak}

z(a)
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where z(a) ∈ co φ(a), z(a) ∈ φ(a) for a /∈ {a1 . . . , ak}, and k ≤ L. Let us define z′(a)
for every a ∈ A as follows;

z′(a) :=

z(a) if a /∈ {a1 . . . , ak}

0 otherwise.

Let Z ′ :=
∑

a∈A z′(a). Then Z ′ ∈ Φ and

Z ′ = Z −
k∑

i=1

z(ai) ≤ Z +
k∑

i=1

e(ai) ≤ Z + (M, . . . ,M) < 0.

That is contradiction.
By Minkowski’s separation hyperplane theorem, there exists p ∈ ∆+ such that p

separates coΦ, therefore Φ, from {z ∈ RL|zi < M,∀i = 1, . . . , L}. Thus inf p · Φ ≥
sup{p · z|zi < M, ∀i = 1, . . . , L} = −M .

Finally, we will show that
∑

a∈A |p · (f(a) − e(a))| ≤ 2M and
∑

a∈A | inf{p · z|z ∈
φ(a)}| ≤ 2M , which imply

∑
a∈A φ(p, f, a) < 4M . Let B := {a ∈ A|p·(f(a)−e(a)) < 0}.

Then ∑
a∈B

p · (f(a) − e(a)) ≥
∑
a∈A

inf p · φ(a) ≥ −M, and∑
h∈A

p · (f(a) − e(a)) = 0.

Therefore ∑
a∈A

|p · (f(a) − e(a))| = 2
∑
a∈B

|p · (f(a) − e(a))| ≤ 2M

∑
a∈A

| inf p · φ(a)| ≤ −
∑
a∈A

inf p · φ(a) +
∑
a/∈B

inf p · (f(a) − e(a))

≤ M + M = 2M.

This completes the proof.

B Core and Equilibria of the SVV Economy

This section supplements our arguments in Section 6. We provide a complete charac-
terization of the coarse core and GM equilibrium allocations in the SVV economy.

We begin with the characterization of C C (χSV V ). Since there are only two agents
in χSV V , the next proposition is straightforward.

Proposition B.1. f ∈ C C (χSV V ) if and only if f is ex-post efficient and interim
individually rational.

Proof . Suppose that f ∈ C C (χSV V ). Clearly, f must be interim individually ratio-
nal. If f is not ex-post efficient, then there exist x : A → R2

⊕ and ωi ∈ Ω such that
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ua(x(a), ωi) > ua(fωi(a), ω), ub(x(b), ωi) > ub(fωi(b), ωi), and x(a) + x(b) = (24, 24).
Consider the allocation g as follows:

gω(a) :=

x(a) if ω = ωi

fω(a) + z otherwise
, and gω(b) :=

x(b) if ω = ωi

fω(b) − z otherwise

where z ∈ R2
⊕ is a commodity-transfer from b to a. Then, g becomes a coarse objection

to f for A when ‖z‖ is sufficiently small. That is contradiction.
Conversely, if f /∈ C C (χSV V ), then there exist a coalition S ⊂ A, an allocation g for

S, and an event E ∈
∧

a∈S Pa satisfying (1). If S = {a} or {b}, then f is not interim
individually rational. If S = A, then E = Ω. Since Ub(g(b)|Ω) > Ub(f(b)|Ω) by (1),
there exists ω ∈ Ω such that ub(gω(b), ω) > ub(fω(b), ω). It follows from this fact and
(1) that f is not ex-post efficient at ω.

By Proposition B.1, we can explicitly calculate all allocations in C C (χSV V ). On the
one hand, the ex-post efficiency in χSV V implies the symmetric consumption of goods
at every state:

(S) ∀ω ∈ Ω : f1,ω(a) = f2,ω(a), f1,ω(b) = f2,ω(b).

On the other hand, the individual rationality gives no restriction on f in χSV V . Hence,
we obtain the following result as a corollary.

Corollary B.1. C C (χSV V ) coincides with a set of all allocations satisfying (S).

We shall provide a characterization of M (χSV V ). The next proposition states that
M (χSV V ) is a “one-dimensional curve” in the feasible set.

Proposition B.2. f ∈ M (χSV V ) if and only if there exists t ∈ R, 0.5 < t < 2 such
that

f(a) = ((24 − 12t, 24 − 12t), (24 − 12/t, 24 − 12t))
f(b) = ((12t, 12t), (12/t, 12/t)).

(4)

Proof . Since M (χSV V ) ⊂ C C (χSV V ) by Theorem 2, we can restrict our attention to
the allocation satisfying (S). Therefore, any GM equilibrium price p ∈ ∆4

++ in χSV V

also satisfies the similar symmetric condition: p1,ω = p2,ω for all ω ∈ Ω. The set of such
prices is denoted by ∆S . For any p ∈ ∆S , let us denote p̂ω := p1,ω = p2,ω for ω ∈ Ω.

We shall derive the demand set of agent b, D(p, b).24 Recall that D(p, b) is a solution
of the maximization problem

max
1
2
( 4
√

x1,ω1 · x2,ω1 + 4
√

x1,ω2 · x2,ω2)

sub.to p1,ω1 · x1,ω1 + p2,ω1 · x2,ω1 + p1,ω2 · x1,ω2 + p2,ω2 · x2,ω2 ≤ p2,ω1 · 24 + p2,ω2 · 24,

x1,ω1 ≥ 0, x2,ω1 ≥ 0, x1,ω2 ≥ 0, x2,ω2 ≥ 0.

24Note that the budget sharing rule is not relevant for agent b.
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For p ∈ ∆S , this problem is reduced to the following:

max
1
2
(
√

x̂ω1 +
√

x̂ω2)

sub.to p̂ω1 · x̂ω1 + p̂ω2 · x̂ω2 ≤ 6, x̂ω1 ≥ 0, x̂ω2 ≥ 0,

where x̂ωi := x1,ωi = x2,ωi for i = 1, 2. Hence, we can explicitly calculate D(p, b) for
p ∈ ∆S as follows:

D1,ω1(p, b) = D2,ω1(p, b) = 12 · p̂ω2/p̂ω1 ,

D1,ω2(p, b) = D2,ω2(p, b) = 12 · p̂ω1/p̂ω2 .
(5)

Therefore, it is necessary for f ∈ M (χSV V ) to satisfy (4).
It is easy to calculate the demand of agent a, because it is almost arbitrary: For any

p ∈ ∆S and any (xω1 , xω2) ∈ R2
++ satisfying p̂ω1 · xω1 + p̂ω2 · xω2 = 6, there exists βa

such that D(p, a; βa) = ((xω1 , xω1), (xω2 , xω2)). It is easy to check this fact by setting
βa(p, ωi) = 2pωi · xωi for i = 1, 2. So the proof is left to the reader.

We shall show that if an allocation f satisfies (4), then f ∈ M (χSV V ). Let f be an
allocation satisfying (4). For any t ∈ R+ satisfying 0.5 < t < 2, there exists p ∈ ∆S

such that t = p̂ω2/p̂ω1 . It follows form (5) that f(b) = D(p, b). Since

pω1 ·
(

24 − 12 · p̂ω2

p̂ω1

)
+ p̂ω2 ·

(
24 − 12 · p̂ω1

p̂ω2

)
= 6,

f(a) = D(p, a; βa) for some βa.

It follows from Proposition B.2 that f∗ ∈ M (χSV V ), because f∗ satisfies (4) when
t = 3/4. Since t = p̂ω2/p̂ω1 and p̂ω1 + p̂ω2 = 1/2, pω1 = 2/7 and pω2 = 3/14. Thus,
(p∗, f∗) is the GM equilibrium of χSV V where p∗ = (2/7, 2/7, 3/14, 3/14).

Finally, since χSV V
n satisfies the conditions in Theorem 2 for all n ≥ 1, we obtain

the following proposition. The proof is essentially same as Theorem 2.

Proposition B.3. C C (χSV V
n ) = C (χ̃SV V

n ) for all n ≥ 1.

Proof . Suppose that a coalition S ⊂ An has a coarse objection to an allocation f in
χSV V

n . Then, there exists an allocation g for S and an event E ∈
∧

α∈S Pα satisfying (1).
If S contains both types of agents, then E = Ω, which means f is blocked by S through
g. If S consists of single type of agents, then some agent α∗ ∈ S prefers the average
1
|S|

∑
α∈S g(α) to g(α∗) conditional on E. On the other hand, since 1

|S|
∑

α∈S g(α) is
either e(a) or e(b), Uα∗(f(α∗)|E) < 0. That is impossible, because f is an allocation,
i.e., f(α) ∈ R4

+ for all α ∈ An.

All allocations in χSV V
n are interim individually rational for all n ≥ 1. By Lemma 3,

Remark 3, and Proposition B.3, we see that the core convergence in the original economy
is equivalent to that in the auxiliary economy.
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