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Abstract

We study a first price package auction with many buyers and many sellers in a decentralized
networked market. We show that any payoff vector in equilibria with profit-target strategies is
efficient and in bidder optimal core relative to an exogenously given network. Each buyer earns a
less payoff in the bidder optimal core than the VCG payoff. Furthermore, any efficient network is
stable if each buyer unilaterally links with sellers. However, it is not pairwise stable if each link is
formed by bilateral agreement in general.

1 Introduction

A package auction is a selling problem of the seller where each buyer bids on bundles of multiple
items (package). The theory of the package auction nowadays play an important role in the real econ-
omy. For example, U.S. and U.K. governments sells their bundles of spectrum under the guidance of
the auction theorists.

In their seminal paper, Bernheim and Whinston [3] first analyzes the package auction in which
only one seller exists. They show that there exist equilibria where each bidder is truth-telling, and the
corresponding equilibriumpayoffs are in the bidder-optimal frontier of the core. Ausubel andMilgrom
[2] show that in their dynamic ascending proxy package auction with a single seller, the same results
holds true. This paper extends the static first price package auction model with a single seller to that
with multiple sellers.

One natural class of mechanisms to allocate goods between multiple buyers and multiple sellers
is a class of centralized mechanisms. Each centralized mechanism (e.g. the VCG mechanism and the
Double auction) assumes the existence of the unique auctioneer (or the uniquemarketmaker) who can
collect all messages from all buyers and all sellers, compute an array of trades and prices, and impose
them. If the market maker exists, using the VCG mechanism yields the efficient allocation.

However, we assume that there exists no market maker. In many real exchange markets (e.g. a
wholesaler-retailer market and a manufacturer-supplier market), there is no market maker. Further-
more, in such markets, an emergence of market makers is prohibited by the government from the view
of antitrust law.
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Thus, we study a class of decentralized mechanisms. The decentralized mechanism assumes that
each buyer’s message is a collection of separate messages sent to different sellers–one for each seller,
and all actions of a particular seller and her final allocation are independent ofmessages that the buyers
send to other sellers (Peters and Severinov [8]).

Peters and Severinov [8] first analyzes a decentralized auction with many sellers where buyers have
single-unit demands and sellers have single-unit supplies. They show that the existence of a symmetric
perfect Bayesian equilibrium resulting in theVickrey outcome. Anwar et al. [1] support their prediction
by testing the data from competing auctions in eBay.

Furthermore, we embed a network structure into a market. We observe that a large two-sided
market with many traders is often networked. Each trader cannot encounter any other trader because
of opportunity cost. Kranton andMinehart [5] and Corominas-Bosch [4] characterize a relation to the
competitive equilibrium in networked markets using centralized mechanisms.

We show that there exist equilibria where each buyer bids truthfully given trading histories, and any
corresponding equilibrium payoff vector is efficient and in bidder optimal core relative to an exoge-
nously given network. This result is an extension of Milgrom [6]. He also shows that the equilibrium
outcome is unique and the VCG outcome if there is a single seller and goods are substitutes for all
buyers. However, we show that in any equilibrium, each buyer earns strictly less payoff than the VCG
payoff if there are multiple sellers.

The rest of paper is organized as follows. Section 2 introduces a networked market with many
buyers and many sellers. Section 3 develops a first price package auction. Section 4 provides our main
results. We show that the set of equilibrium payoffs is the same as the bidder-optimal core relative to
an exogenously given network. Section 5 investigates a relation to the VCG mechanisms. Section 6
examines stability of networks. Section 7 discusses our results.

2 The Model

2.1 A Pure Exchange Networked Market

A (pure exchange) networked market consists of buyers I indexed by i = 1, ..., b and sellers J
indexed by j = 1, ..., s, commodities indexed by n = 1, ..., N, money, and network g ∈ 2I×J . We
denote each package or bundle of commodities by x ∈ RN

+ and the set of all bundles by X. Each seller j
who has endowments ωj ∈ RN

+ is characterized valuation function vj over X. Each buyer who has no
endowments is characterized by valuation function vi over X. Valuation functions vi and vj satisfies
free disposal, i.e. vi(x) ≥ vi(x′) and vj(x) ≥ vj(x′) for all x, x′ ∈ X with x ≥ x′. We assume that all
agents know vi, vj, and ωj for all i and j (Complete information).

All trading between buyers and sellers are restricted by bipartite network g ⊂ {ij}i∈I,j∈J . Each
buyer i and seller j can engage to trade if a link between i and j, ij, is formed (i.e. ij ∈ g). Let Li(g) be
a set of sellers who are connected to i, and Lj(g) be a set of buyers who are connected to j. We denote
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an allotment from seller j to buyer i by xi
j = (xi

j,1, ..., xi
j,N).

Definition 1. An allocation x = (x1
1, x1

2, ..., xb
s ) ∈ Rb × Rs is g-feasible if

∑
j

ωj ≥ ∑
i,j

xi
j,

xi
j ≥ 0 for all ij ∈ g, and

xi
j = 0 for all ij /∈ g.

Let F(g) be the set of feasible allocations if g is formed.

We assume the transferable quasi-linear payoff function for all buyers and sellers. A Pareto-efficient
allocation relative to g is defined as follows: An allocation x̄(g) = (x̄1(g), ..., x̄b(g), x̄1(g), ..., x̄s(g))
in the networked market g is g-efficient if

x̄(g) ∈ arg max
x∈F(g)

∑
i

vi(xi) + ∑
j

vj(xj).

3 First price package auctions in a networked market

We consider a decentralized mechanism in which each seller j sells j’s endowments using a first
price package auction. First price package auctions are organized as follows:

Step 1. All sellers are ordered at random. Set j = 1.

Step 2. Each buyer i bids a payment schedule ti
j(xi

j) to each seller j if j ∈ Li(g) simultaneously, where
xi

j = (xi
j1, ..., xi

jN) is an allocation from j to i.

Step 3. Seller j allocates goods to buyers xj = (x0
j , x1

j , ..., xb
j ) (x

i
j ≡ (0, ..., 0) for all i /∈ Lj(g)), where

x0
j is an allocation to j. By the resource constraint, ∑b

i=0 xi
j = ωj

Step 4. If j + 1 ≤ s, then the auction goes back to Step 2 with j = j + 1. Otherwise, it ends.

In each round, each buyer i bids a payment schedule ti
j(xi

j) to seller j ∈ Li(g) simultaneously where
xi

j = (xi
j1, ..., xi

jN) is an allocation from j to i. Then, seller j allocate its goods to buyers xj =

(x0
j , x1

j , ..., xb
j ) (x

i
j ≡ (0, ..., 0) for all i /∈ Lj(g)), where x0

j is an allocation to himself. Finally, each
buyer i pays sellers for an allocation to i, xi = (xi

1, ..., xi
s), according to schedules ti = (ti

1, ..., ti
s).

Note that the payment from i to j depends only on the allocation from j to i. The payoff functions for
buyer i and seller j over a profile (t, x) are described by

Πi(t, x) = vi( ∑
j∈Li(g)

xi
j)− ∑

j∈Li(g)

ti
j(xi

j) (1)

Πj(t, x) = vj(x0
j ) + ∑

i∈Lj(g)
ti

j(xi
j), (2)
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where t = (t1, ..., tb) is a strategy profile of buyers, and x = (x1, ..., xs) is a strategy profile of sellers.

3.1 Profit-Target Strategies

Let tj = (t1
j , ..., tb

j ) be a bidding profile to j. Given tj, independently of other sellers, each seller
j maximizes its payoff function Πj. Let x∗j (tj) ∈ arg maxxj Πj(t, x) and X∗

j (tj) be the set of x∗j (t).
Without loss of generality, we assume that every seller j automatically chooses x∗j (tj) for any tj. Then,
a payoff function of buyer i is rewritten as

Πi(t) = vi(∑
j

xi∗
j (tj))− ∑

j∈Li(g)

ti
j(xi∗

j (tj)). (3)

Let hj = (x∗1(t1), ..., x∗j−1(tj−1)) be a trading history in round j.

Definition 2. Bidding strategy ti
j is a πi

j-profit-target strategy to j for history hj if for all xi
j,

ti
j(xi

j) = max[0, f i
j (xi

j)− πi
j],

where f i
j (xi

j) = vi(xi
j + ∑l<j xi∗

l (tl))− vi(∑l<j xi∗
l (tl)). The bidding strategy ti is πi-profit-target

strategy for history hs if ti
j is πi

j-profit-target strategy for all j ∈ Li(g), where πi = (πi
1, ..., πi

s).

The profit target strategy for buyer i reveals the i’s valuation function truthfully. Given i’s allotment
in all rounds l < j, buyer i paysmoney that the increase of true valuationminuses constant target profit
πi

j for any package xi
j in each round j.

Proposition 1. For any bids by other buyers t−i, let ti ∈ arg maxti Πi(ti, t−i) and

π̄i
j = vi(xi∗

j (t) + ∑
l<j

xi∗
l (t))− vi(∑

l<j
xi∗

l (t))− ti
j(xi∗

j (t))

f i
j (xi

j) = vi(xi
j + ∑

l<j
xi∗

l (t))− vi(∑
l<j

xi∗
l (t)).

Then, the π̄i-profit-target strategy is a best response of buyer i.

Proof. Let t̄i be the π̄i-profit-target strategy. Then ti
j(xi∗

j ) = t̄i
j(xi∗

j ) for all j. For all j and xj, since
t̄i

j(xi
j) = max[0, f i

j (xi
j)− π̄i

j],

∑
i∈Lj(g)

ti
j(xi

j) + vj(x0
j ) ≤ ∑

i∈Lj(g)
ti

j(xi∗
j ) + vj(x0∗

j )

∑
k ̸=i

tk
j (xk

j ) + t̄i
j(xi

j) + vj(x0
j ) ≤ ∑

k ̸=i
tk

j (xk∗
j ) + t̄i

j(xi∗
j ) + vj(x0∗

j ).

Thus, given (t̄i
j, t−i

j ), seller j holds to choose x∗j (t
i, t−i) for all j. Hence,Πi(t̄i, t−i) = vi(∑j∈Li(g) xi∗

j )−
∑j∈Li(g) ti

j(xi∗
j ) = Πi(ti, t−i).
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Proposition 1 holds for any v, b, and s. This implies that the continuation of the π̄i-profit-target
strategy is a best response for any subgame.

4 Equilibrium and Bidder-Optimal Core

Let M = I ∪ J, and S ⊂ M. Fix g. Let gS be a subnetwork for coalition S such that ij ∈ gS if
i, j ∈ S and ij ∈ g, and ij /∈ g otherwise. Let F(gS) be the set of gS-feasible allocations. We define a
cooperative game (M, g, w). The characteristic function w is defined as for all S ⊂ M,

w(S|g) = max
x∈F(gS)

∑
i∈S

vi(∑
j∈S

xi
j) + ∑

j∈S
vj(x0

j ). (4)

The payoff for i and j is denoted by ϕi and ϕj, respectively. Obviously, w(S|g) is super-additive. Thus,
the core is non-empty and defined as follows:

Definition 3. The core of (M, g, w) is given by

Core(M, g, w) = {ϕ|∑
i∈I

ϕi + ∑
j∈J

ϕj ≤ w(M|g)}

∩ {ϕ| ∑
i∈I∩S

ϕi + ∑
j∈J∩S

ϕj ≥ w(S|g)∀S ⊂ M}.

By definition, each payoff vector in core is g-efficient. When s = 1, the set of payoffs supported by
a SPE with profit-target strategies coincides with the bidder optimal core (Milgrom [6, Theorem 8.7]).
The following proposition shows the above result can be extended to cases s ≥ 2.

Definition 4 (Milgrom [6]). A payoff vector ϕ is bidder-optimal relative to g if ϕ ∈ Core(M, g, w)

and there exists no ϕ′ ∈ Core(M, g, w) with ϕ′i ≥ ϕi for all i ∈ I and ϕ′i > ϕi for some i ∈ I. The
set of bidder-optimal payoff vectors relative to g is the bidder-optimal core relative to g.

Proposition 2. Suppose ϕ is bidder optimal relative to g. Then, the profile t∗ of πi-profit-target strate-
gies and the corresponding x∗(t∗) yielding the payoff vector ϕ constitutes a subgame perfect equilibrium
(SPE). Conversely, suppose the profile t∗ of πi-profit-target strategies and the corresponding x∗(t) yielding
the payoff vector ϕ constitutes a SPE. Then, ϕ is bidder optimal relative to g.

Proof. First, we show that if ϕ is bidder optimal then the profile t∗ of πi-profit-target strategies and the
corresponding x∗ constitutes SPE. Since ϕ is in Core(M, g, w), we obtain ∑k∈I∩S ϕk + ∑l∈J∩S ϕl ≥
w(S|g) for any S ⊂ M. By Proposition 1, it suffice to show that there is no deviation to another
π′i-profit-target strategy.

Suppose that buyer i ∈ Lj(g) deviates to t′i with π′i = (πi
j + δ, πi

−j) for some j ∈ Li(g). If
xi∗

j (t
∗
j ) = 0 then xi∗

j (t
′i
j , t−i∗

j ) = 0. Thus, the deviation is not profitable.
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Suppose xi∗
j (t

∗
j ) > 0. Since ϕ is bidder optimal, the payoff vector (ϕi + δ, ϕj − δ, ϕ−i, ϕ−j) is not

in Core(M, g, w). Thus, there exists coalition S such that i /∈ S, j ∈ S, and

∑
k∈S

ϕk + ∑
l∈S

ϕl ≥ w(S|g) > ∑
k∈S

ϕk + ∑
l∈S

ϕl − δ.

Let tk
j be πk

j -profit-target strategy to j for k. Then, we obtain

max
{xj|xk

j =0∀k/∈S}
∑
k∈S

tk
j (xk

j ) + vj(x0
j ) ≥ max

{xj|xk
j =0∀k/∈S}

∑
k∈S

f k
j (xk

j )− πk
j + vj(x0

j )

≥ ∑
l∈S

max
{xl |xk

l =0∀k/∈S}
∑
k∈S

[ f k
l (xk

l )− πk
l + vl(x0

l )]− ∑
l∈S\{ j }

ϕl

≥ max
{x|xk

l =0∀k/∈S}
∑

k,l∈S
[vk(∑

l∈S
xk

l ) + vl(x0
l )]− ∑

k∈S
ϕk − ∑

l∈S\{ j }
ϕl

= w(S|g)− ∑
k∈S

ϕk − ∑
l∈S\{ j }

ϕl

> ϕj − δ

= max
xj

∑
k∈I

tk
j (xk

j ) + vj(x0
j )− δ

≥ max
{xj|xi

j>0}
∑
k∈I

ti
j(xi

j) + vj(x0
j )− δ.

The second inequality holds since ϕl = maxxl ∑k∈I [ f k
l (xk

l ) − πk
l + vl(x0

l )] for all l ∈ S. This
inequality shows that seller j excludes buyer i since i /∈ S. Then, the payoff for i decreases since ϕ is
bidder-optimal. Hence, there is no profitable deviation for any buyer i.

To show the converse, suppose that the profile t∗ of πi-profit-target strategies and the correspond-
ing x∗(t∗) constitutes a SPE with SPE payoff vector ϕ.

First, we show that ϕ ∈ Core(M, g, w). Suppose ϕ /∈ Core(M, g, w). Then, there exists coalition
S such that ∑i∈I∩S ϕi + ∑j∈J∩S ϕj < w(S|g). Since ti∗

j (xi
j) = max[0, f i

j (xi
j)− πi

j], we obtain

∑
j∈J∩S

ϕj = ∑
j∈J∩S

max
xj

∑
i∈I

ti∗
j (xi

j) + vj(x0
j )

≥ ∑
j∈J∩S

max
{xj|xi

j=0∀i/∈S}
∑
i∈I

ti∗
j (xi

j) + vj(x0
j )

≥ ∑
j∈J∩S

max
{xj|xi

j=0∀i/∈S}
∑

i∈I∩S
f i
j (xi

j)− πi
j + vj(x0

j )

= [ ∑
j∈J∩S

max
{xj|xi

j=0∀i/∈S}
∑

i∈I∩S
f i
j (xi

j) + vj(x0
j )]− ∑

i∈I∩S
ϕi

= w(S|g)− ∑
i∈I∩S

ϕi > ∑
j∈J∩S

ϕj.
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This is a contradiction. Hence, ϕ ∈ Core(M, g, w).
Next, wewill show thatϕ is bidder optimal. Let x̃ be a corresponding allocation toϕ. Suppose thatϕ

is not bidder optimal. Then, there exists (i, j) and δ > 0 such that ϕ̃ = (ϕj − 2δ, ϕi + 2δ, ϕ−i, ϕ−j) ∈
Core(M, g, w). Suppose that i deviates to π̂i-profit-target strategy such that π̂i = (πi

−j, πi
j + δ)with

∑l πi
l = ϕi, denoted by t̂i = (t̂i

j, ti∗
−j). Then, we obtain

max
xj

∑
k ̸=i

tk∗
j (xk

j ) + t̂i
j(xi

j) + vj(x0
j )

≥ ∑
k ̸=i

tk∗
j (x̃k

j ) + t̂i
j(x̃i

j) + vj(x̃0
j )

= ϕj − δ > ϕj − 2δ.

Let Sj be any coalition such that l ∈ Sj for all seller l ≤ j and l /∈ Sj for all seller l > j. Since
(ϕj − 2δ, ϕi + 2δ, ϕ−i, ϕ−j) is in Core(M, g, w),

ϕj − 2δ ≥ max
{Sj|i/∈Sj}

w(Sj|g)− ∑
k∈I∩Sj

ϕk − ∑
l∈J∩Sj\{j}

ϕl

= max
{Sj|i/∈Sj}

max
x ∑

k∈I∩Sj

vk( ∑
l∈J∩Sj

xk
l ) + ∑

l∈J∩Sj

vl(x0
l )

− ∑
k∈I∩Sj

ϕk − ∑
l∈J∩Sj\{j}

ϕl

≥ max
{Sj|i/∈Sj}

[
max

xj
∑

k∈I∩Sj

vk(xk
j + ∑

l<j
x̃k

l ) + ∑
l<j

vl(x̃0
l ) + vj(x0

j )

]
− ∑

k∈I∩Sj

ϕk − ∑
l<j

ϕl

= max
xj

[
max

{Sj|i/∈Sj}
∑

k∈I∩Sj

(vk(xk
j + ∑

l<j
x̃k

l ) + vj(x0
j )− πk

j − vk(∑
l<j

x̃k
l )

]

= max
xj

[
∑
k ̸=i

max[0, vk(xk
j + ∑

l<j
x̃k

l )− vk(∑
l<j

x̃k
l )− πk

j ] + vj(x0
j )

]

= max
xj

[
∑
k ̸=i

tk∗
j (xk

j ) + vj(x0
j )

]
.

The fourth equality holds sinceϕk = ∑l∈Sj πk
l andϕl = ∑k vk(∑m≤l x̃k

m)− vk(∑m<l x̃k
m)+ vl(x̃0

l )−
πk

l . This inequality implies that seller j decreases his payoff by rejecting i’s offer. Then, since the i’s
deviation is accepted by j, it is profitable for i. This contradicts with the assumption.

Remark 1. Consider the following two stage simultaneous-bidding game. In Stage 1, each buyer bids
schedules to all linked sellers. In Stage 2, each seller decides an allocation. Then, any profile of on-
the-path bids and allocations in an SPE of the first package auction constitutes a SPE in the above
simultaneous-bidding game. Thus, any bidder-optiaml core payoff vector is supported by an SPE in
the simultaneous-bidding game.
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By Proposition 2, x∗(t∗) is g-efficient for any g, where t∗ is an SPE bidding profile of πi-profit-
target strategies. Thus, any g-efficient outcome is implemented (in an SPEwith profit-target strategies)
by the first price package auction.

When s = 1, the set of above SPEs with profit-target strategies yielding the bidder-optimal payoff
vector is equal to the set of coalition-proof Nash equilibria (Bernheim and Whinston [3]). Thus, the
bidder optimal core is equal to the coalition-proof Nash equilibrium payoff vectors. This result also
holds when s ≥ 2.

Definition 5. Fix a networked market (vi, vj, ωj, g)i.j∈M.

(i) In a first price package auction with a single buyer and a single seller, (t1∗, x∗1(t
1∗)) is a perfectly

coalition-proof Nash equilibrium (PCPNE) if it is an SPE.

(ii) (a) For a first price package auction with the set S of buyers and sellers, (ti∗, x∗j (t
∗))i,j∈S is per-

fectly self-enforcing if for all coalition T ⊂ S, (ti∗, x∗j (t
∗))i,j∈T is a PCPNE in the auction

given profile (ti∗, x∗j (t
∗))i,j∈S\T , and if the restriction of (ti∗, x∗j (t

∗))i,j∈S to any proper sub-
game constitutes a PCPNE.

(b) For any auction with the set S of buyers and sellers, (ti∗, x∗j (t
∗))i,j∈S is a PCPNE if it is

perfectly self-enforcing, and it does not Pareto-dominated by another perfectly self-enforcing
profile.

Proposition 3. The bidder-optimal core is equal to the set of PCPNE payoff vectors.

Proof. We first show that any PCPNE payoff vector is in the bidder-optimal core. Suppose that there
exists a PCPNE payoff vector ψ that is not in the bidder optimal core. Let t be the corresponding
bidding profile. Then, there is ψ′ that dominates ψ for buyers in some coalition S. Let t′ be a bidding
profile such that buyer i and seller j in S obtains ψ′i and ψ′

j respectively. Then, each i ∈ S deviates t′i.
Since buyers in S have deviation, it is not a PCPNE. This is a contradiction. Therefore, any PCPNE
payoff vector is bidder-optimal.

We next show the converse by induction. In any auction with single pair of a buyer and a seller,
it is obvious that the unique SPE is a PCPNE. For any bidder-optimal payoff vector ϕ, there is an SPE
with profit-target strategies yielding ϕ in any auction with S of buyers and sellers. Suppose that any
SPE yielding ϕ is perfectly coalition-proof for an auction with n buyers and m sellers. Consider an
auction with m + 1 sellers, and take an SPE profile t yielding bidder-optimal ϕ. Any proper subgame
is an auction with l ≤ m sellers. Given trading x∗j (t) in any single period j, t is a PCPNE since
it is equivalent to an auction with m sellers and n buyers in which vi(∑l xi

l + xi∗
j ) (l ̸= j). Thus,

t is perfectly self-enforcing. Since ϕ is bidder-optimal, there is no Pareto-dominating perfectly self-
enforcing profile. By induction, any SPE yielding ϕ is a PCPNE for any s ∈ N.

In any auction with one seller and any number of buyers, any SPE yielding ϕ is a PCPNE by Bern-
heim andWhinston [3]. Thus, applying the above argument for any auctionwith any number of buyers
shows that any bidder optimal payoff vector is a PCPNE payoff vector.
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5 Substitutes and the VCG outcome

This section studies a relation to between bidder optimal core, which is implemented by the decen-
tralized first price package auction mechanism, and the VCG outcome, which is implemented by the
centralized VCGmechanism. For simplification, we assume that each seller has no valuation over any
package (vj ≡ 0). Milgrom [6] shows that, when s = 1, the bidder-optimal payoff vector is unique
and coincide with the VCG payoff vector if valuations satisfy concavity and a substitute condition.Ƭ

Formally, we denote a price vector over commodities N by p = (pn)n∈N (pn ∈ R+). A demand
correspondence for agent i is given by Di(p) = arg max vi(∑j yij)−∑j p · yij.Valuation vi is linear-
substitute if whenever pn ≤ p̃n, p−n = p̃−n, and x ∈ Di(p), there exists x̃ ∈ Di( p̃) such that
x−n ≤ x̃−n.

In the VCGmechanism, there is a unique planner. Each buyer i reports valuation v̂i to the planner
(valuations of sellers are known). Then, the planner imposes a g-feasible allocation of commodities
xV(v̂) and transfer tV(v̂). It is well-known that each buyer i earns i’smarginal contributionw(M|g)−
w(M \ { i } |g) in the VCG outcome. We denote buyer i’s VCG payoff by ϕi

V and i’s bidder optimal
payoff by ϕi

B for i ∈ I.

Proposition 4. For any i ∈ I, ϕi
V ≥ max ϕi

B.

Proof. Any payoff vector such that some buyer i’s payoff is strictly greater than i’smarginal contribution
is not in core. Thus, i’s VCG payoff is greater than or equal to i’s maximumpayoff in the bidder optimal
core.

If Proposition 4 holds with equalities, then the payoff equivalence might be true as s = 1. In the
following example, equalities hold.

Example 1. Let I = {1, 2, 3}, J = {1, 2}, N = 1, and g = gc (complete bipartite graph). Suppose
that ωj = 1 for all j. Each buyer has a valuation function given in Table 1. Each vi is concave and
linear-substitute valuation for i = 1, 2, 3. The marginal contribution of buyer 1, 2, and 3 are given by
2, 1, 0, respectively. Hence, (ϕ1

V , ϕ2
V , ϕ3

V) = (2, 1, 0). The bidder optimal payoff vector for buyers is
uniquely given by (ϕ1

B, ϕ2
B, ϕ3

B) = (2, 1, 0). This example demonstrates that each buyer i = 1, 2 earns
i’s marginal contribution, which is the VCG outcome.

The next example, however, shows a strict inequity even if the substitute condition holds for buyers.

Example 2. Let I = {1, 2}, J = {1, 2}, N = 1, and g = gc. Suppose that ωj = 1 for all j. The
valuation function for buyers are also given in Table 1. The marginal contributions of buyer 1 and 2
are 3 and 1 respectively. Thus, (ϕ1

V , ϕ2
V) = (3, 1). However, the set of bidder optimal payoff vector

ƬWe additionally require concavity since goods are divisible. If we consider multiple indivisible goods, the strong-
substitute property is sufficient. The statement holds true when valuation functions are concave nonlinear-substitute val-
uations since the linear-substitute valuation and the nonlinear-substitute valuation are equivalent for concave valuations.
See Milgrom and Strulovici [7].
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x v1 v2 v3

≤ 1 10x 9x 8x
≤ 2 10 + 8(x − 1) 9 + 7(x − 1) 8 + 6(x − 1)
> 2 18 16 14

Table 1: Valuation functions for buyers

for buyers (ϕ1
B, ϕ2

B) is {(2, 1)}. This example demonstrates that each buyer i = 1, 2 earns less payoff
than i’s marginal contribution while goods are substitutes for buyer i = 1, 2.

Thus, the payoff equivalence does not hold when s ≥ 2 even if commodities are substitutes for all
buyers. Note that in the above two examples, the price for a commodity is 8 in the bidder optimal core,
which is equal to a competitive price. However, the following example shows that this relation does not
hold.

Example 3. Let I = {1, 2, 3}, J = {1, 2}, N = 1, and g = gc. Suppose that ωj = 2 for all j.
The valuation function for buyers are also given in Table 1. The minimum competitive price is 7. The
corresponding competitive payoff vector (ϕ1

C, ϕ2
C, ϕ2

C) = (4, 2, 1). However, the set of bidder optimal
payoff vector for buyers is {(5, 3, 1)}. This example demonstrates that each buyer i = 1, 2, 3 earns
greater payoff than i’s maximum competitive payoff.

6 Stable Network

We have investigated the allocation problem given networks. This section discusses an efficiency
and a stability of networks. Let W(g) = w(M|g) − L(g), where L is a link cost function to form
network g. We assume that L(g) = ∑i liηi(g) + ∑j ljηj(g), where ηi and ηj are a number of links of
i and j on g for all i and j, respectively. The network g is efficient if g ∈ arg max W(g). This implies
that w(M|g + ij)− w(M|g) ≤ L(g + ij)− L(g) for all ij /∈ g and w(M|g)− w(M|g − ij) ≥
L(g)− L(g − ij) for all ij ∈ g if g is efficient.

First, we develop a model of unilateral formation of networks. Each buyer i unilaterally form link
with j with whom i want to link at cost li > 0 and lj = 0 for all i and j. A network g is stable if

(i) for ij ∈ g, ϕi(g)− ϕi(g − ij) ≥ Li(g)− Li(g − ij), and

(ii) for ij /∈ g, ϕi(g + ij)− ϕi(g) ≤ Li(g + ij)− Li(g).

Proposition 5. Any efficient network is stable if buyers unilaterally form links.

Proof. Since ϕi is the marginal contribution of i, ϕi(g + ij) − ϕi(g) = w(M|g + ij) − w(M|g).
Thus, every efficient network is stable.

Next, wemodel a bilateral formation of networks. A link ij is formed if and only if both i and j agree
with forming link ij. We allow side-payments between i and j to form link ij. A network g satisfies
pairwise stability with side-payments if
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(i) for ij ∈ g, [ϕi(g)− ϕi(g − ij)] + [ϕj(g)− ϕj(g − ij)] ≥ L(g)− L(g − ij), and

(ii) for ij /∈ g, [ϕi(g + ij)− ϕi(g)] + [ϕj(g + ij)− ϕj(g)] ≤ L(g + ij)− L(g).

If an efficient network is pairwise stable, then the payoff increase of seller j by forming new link ij is
smaller than decrease of social welfare; ϕj(g + ij)− ϕj(g) ≤ [L(g + ij)− L(g)]− [w(M, g + ij)−
w(M, g)] = W(g)− W(g + ij). Thus, for any ij /∈ g, if ϕj(g + ij)− ϕj(g) > W(g)− W(g + ij)
then an efficient network g is not pairwise stable.

Example 4 (Efficient but not pairwise stable network). Suppose that all buyers are symmetric (vi = v)
for all i, all sellers are symmetric and obtain no gain from commodities (vj ≡ 0 and ωj = ω) for all
j, and b = s. Let the link cost l be relatively low such that v(2ω)− v(ω) > 2l. Then, the unique
architecture of an efficient network is g = {11, 22, ..., ss}. Given g, each seller obtains no surplus
(ϕs(g) = 0). If the last seller s forms link is with is /∈ g, then s earns ϕs(g + is) = v(2ω)− v(ω).
Since ϕs(g + ij) − ϕs(g) = v(2ω) − v(ω) > 2l for any ij /∈ g, it is profitable for s. Hence, the
efficient network is not pairwise stable.

A sufficient condition that efficient network is pairwise stable is given as follows.

Proposition 6. Suppose the complete network gc is an efficient network. Then, it is pairwise stable.

Proof. Since ϕi(g + ij)− ϕi(g) = w(M|g + ij)− w(M|g) and ϕj(g + ij) ≥ ϕj(g) for all g, any
efficient network satisfies the condition (i). Since there is no ij /∈ gc, the condition (ii) is satisfied.

7 Concluding remarks

Wehave studied decentralized trading in networked two-sided network. It is shown that the results
Bernheim and Whinston [3] holds true. There exist equilibria where each buyer bids truthfully given
trading histories, and any corresponding equilibrium payoff vector is in bidder optimal core relative to
an exogenously given network. Our analysis has the following two limitations.

The first is information structure. Throughout the paper, we have assumed complete information
among traders. Buyers and sellers, however, usually have private information for their valuations or
endowments in auctions. The second is optimality. We have assumed that all sellers sell endowments
by the first price package auction. However, it would not be an optimal selling mechanism for sell-
ers. Solving an optimal auction to sell multiple goods is an open question even when an auction with
one seller. Analyzing the private information and the optimal mechanism in decentralized two-sided
markets is left for future research.
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