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Abstract

This paper studies the behavior of strategic corporate default when corporate

cash-flows are unobservable directly to outside investors but are verifiable at a

cost of disclosure. In particular, this paper looks at two types of default: liquida-

tion and restructuring. Using the mathematical method of impulse control, this

paper shows that an optimal contract takes the form of a debt contract that per-

mits a debtor’s ex-post strategic default. In equilibrium, restructuring occurs only

when the corporate outcome is currently poor but is expected to recover enough

in the future. After one or more restructurings occur, the defaulting firm is liqui-

dated eventually. Quantitatively, expected probability of strategic restructuring
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1 Introduction

Information disclosure is important in actual corporate practices when corporate information is

unobservable directly to outside investors. However, the quantitative effect of disclosure on default

behavior has not been made clear enough. In previous literature, Duffie and Lando (2001) and

Yu (2005) study the effect of corporate accounting transparency (or, disclosure quality) on credit

spreads by incorporating incomplete information into Merton (1974)’s contingent-claim models.1

However, under exogenous, symmetric security structures in the contingent-claim models, their

models lack investigation into the role of strategic information disclosure in optimally designed

defaultable contracts.2

The purpose of this paper is to examine strategic information disclosure and strategic default

in optimal contracts under informational asymmetry. In particular, this paper looks at equilib-

rium expected default probability in a continuous-time environment with Markov income shocks

and costly verifiable information. As a consequence, it shows that an ex-ante optimal contract

takes the form of a debt contract that permits a debtor’s ex-post strategic default. The default

is a discontinuous, downward jump of equilibrium payment path as forgiveness,3 and enables the

contracting players to keep their contractual relationship beyond the debtor’s temporary poor per-

formance and to hold the possibility that they will obtain higher cash-flows after the debtor’s future

recovery. In equilibrium, creditors expect the strategic debtor to default based on an explicit (i.e.,

closed-form) exponential distribution, in which the default probability is decreasing (increasing) in

the disclosure cost when the cost is low (high, respectively).

This model structure is an infinite-horizon, continuous-time version of costly state verification

(CSV) models, which are explored seminally by Townsend (1979). The infinite-horizon game con-

sists of a series of very-fine-grid component games, each of which is similar to the standard 2- or

3-period CSV game.4 Specifically, there exists two risk-averse players: one firm and one lender.

The lender invests in the firm’s project. The firm’s cash-flow process from the project is uncertain,

and its realization is privately observable only to the firm but is verifiable to the lender via a costly

disclosure technology.5 The cash-flows are allocated at the end of each component game according

to contract terms. In contrast to the standard 2- or 3-period CSV model, the contract may be

continued beyond default in this dynamic CSV model. In equilibrium, the firm decides whether to

continue, to liquidate, or to restructure the contract strategically from a dynamic perspective.

2



This model extends Wang (2005)’s infinite-horizon discrete-time CSV model mainly in two

points. First, the income process is Markov, whereas Wang assumes individually and indepen-

dently distributed (i.i.d.) income shocks.6 The Markovian income shocks are obviously more

realistic than i.i.d. shocks. Second, this model has a continuous-time structure by formalizing the

dynamic CSV game as a continuous limit of discrete-time games with fine grids. The best feature

of the continuous-time model is tractability based on the well-established mathematical theory of

stochastic processes.7 This method makes complex, dynamic Bayesian games tractable so as to

achieve complete characterizations of the equilibrium.8

More specifically, I solve for the optimal contract via the impulse control method of Bensoussan

and Lions (1982) and Øksendal and Sulem (2005). Restructuring in default is characterized by

impulse control. Contrary to continuous control problems, the timing, number, size, and intensity

of jumps (i.e., “impulses”) are decision variables. Precisely, under some regularities, the firm’s

default behavior is characterized by one equation:

max
(

sup
µS

{f(y) + Lu(y)} ,Mu(y)− u(y)
)

= 0 for all y ∈ S (1.1)

where u and f represent the firm’s continuation utility and instantaneous utility, respectively, each

of which is a funciton of the state vector y in a solvency space S; Lu denotes the generator of the

state process Y ∈ S; µS denotes the drift coefficient of the payment process, which is controlled

continuously;9 supµS
{f(y) + Lu(y)} = 0 stands for the Hamilton-Jacobi-Bellman (HJB) equation

when the firm keeps the payment promise according to contract terms; Mu(y) stands for the

firm’s optimally restructured utility after the firm’s bad shape y is disclosed at a cost of disclosure.

Eq.(1.1) implies that, when the current utility under the contract is higher than the restructured

utility (i.e., Mu(y) < u(y)), the firm commits to the contract, and his utility evolves based on the

HJB equation; when y is low such that Mu(y) = u(y), the firm discloses his bad condition and

requests restructuring. When the lender expects the firm’s future recovery, she accepts the request;

otherwise, the contract is terminated. Using the result of Eq.(1.1), this paper obtains equilibrium

default probability in a closed form.

This paper is in line with a large literature on dynamic optimal contracting using recursive

methods under asymmetric information environments, which started with a seminal paper of

Green (1987). Recently, DeMarzo and Fishman (2007) study a dynamic optimal capital struc-
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ture in finitely horizontal discrete time when a borrower privately observes independent cash flows

from his investment project and is able to enjoy costly diversion from them. Tchistyi (2005) extends

DeMarzo and Fishman’s model into a two-state Markov chain model. Furthermore, DeMarzo and

Sannikov (2006) extend Tchistyi’s model into an infinitely horizontal continuous-time framework.

The paper of DeMarzo and Sannikov is close to mine in the sense of studying an optimal long-term

contract under Markovian technological environments in continuous time. The difference is that

they study costly diversion, whereas this paper explores costly disclosure and strategic default.

This paper is organized as follows. The next section defines an environment. Section 3 solves

for an optimal contract and characterizes it qualitatively. Section 4 shows quantitative results. The

final section concludes.

2 Environment

2.1 Set-up

Consider a stochastic economy with a single non-storable consumption good in infinite-horizon

continuous time with time parameter t ∈ [0,∞). There is also single storable capital. Assume

that there are no capital depreciation and no capital accumulation, in order to confine our atten-

tion simply to level-stationary equilibrium. Uncertainty is governed by a complete filtered space

(Ω,F , F = {Ft}t≥0, P ), which satisfies the usual conditions. In particular, the filtration F = {Ft}t≥0

is generated by a one-dimensional standard Brownian motion B.

There are two infinitely-lived risk-averse agents: an entrepreneurial firm and a representative

lender, indexed by i = 1, 2, respectively. Individual preferences over deterministic consumption

sequences {γi(t), t ≥ 0} (for i = 1, 2) are representable by
∫∞
t=0 exp(−δt)

{
− exp(−αγ1(t))

α

}
dt , and

by
∫∞
t=0 exp(−δt) log(γ2(t)) dt, where δ ∈ (0, 1) is their common discount factor.10 The firm’s

and the lender’s autarky utility are constants Ū and V̄ , respectively, and work as reservation

utility.11 Agent i (∈ {1, 2})’s information set, denoted by {F i
t}t≥0, is generated by the processes

distinguishable to agent i up to time t – call it agent i’s filtration. As I will specify below, {F2
t }t≥0

is no finer than either {F1
t }t≥0 since the firm has informational advantages in this model. Let

E
[
·|F i

t

]
= Ei

t [·] denote agent i’s expectation operator conditional on F i
t . Especially, when the

game starts at time t with a given certain state denoted by y, their expectation operator is written

as Ei,y
t [·]. I may suppress the time parameter unless it causes any confusion. For convenience, I
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will use female pronouns for the lender, and male ones for the firm.

The firm has no capital, whereas the lender has one unit of the capital.12 The firm has access

to a production technology that requires one unit of the capital for production, whereas the lender

does not. The firm and the lender make a loan contract of the capital if it provides both of the

players with higher utility than their reservation utility, and share the outcome of the production.

For simplicity, assume that there is no capital accumulation and no depreciation.13 The technol-

ogy, if invested, produces a predictable cash-flow (or income) process of the consumption good,

denoted by {Xt}t≥0, being characterized by the following stochastic differential equation (SDE):

with constants µ ∈ R, σ > 0 given,

dXt = µdt + σ dBt; X0 = x > 0. (2.1)

The values µ, σ are public information, but the realization of the cash flows is private information

of the firm, except for X0 = x.

Also, a costly, deterministic14 disclosure technology is available in this economy. This technology

reveals the firm’s current true cash-flow level to the lender with perfect accuracy. The disclosure

technology is used not only by the lender, but also voluntarily by the firm in this model, in contrast

to the previous costly disclosure literature in which the lender alone discloses. Precisely, the firm

makes a voluntary disclosure at a positive constant disclosure cost CX > 0 in a state of restructuring

(i.e., continuation of the contract beyond default), whereas the lender uses the disclosure technology

at a positive constant cost CL > 0 in a state of liquidation (i.e., termination of the contract). Note

that I will define the two types of default in more detail below. The firm’s disclosure cost CX

is dead-weight resource loss and causes the time path of the cash flows to decrease permanently

relative to what it would otherwise be: Xτ = Xτ− −CX . On the other hand, the lender’s cost is a

utility cost, and includes not only a disclosure cost but also all other costs in liquidation procedures

– called CL a liquidation cost. The values CX , CL are public information. For convenience, in the

following, the disclosure made by the lender is called (a part of) liquidation; I mean by “disclosure”

only the voluntary disclosure made by the firm. Assume that the stochastic process of the disclosure,

denoted by {dt ∈ {0, 1}, t ∈ {0,∞}}, is predictable. In particular, a disclosure can be undertaken

only at the left-limit time t− := lims↑t s for t > 0: that is, if dt− = 1, a disclosure is made (if

dt− = 0, no disclosure).
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2.2 Contracts

The firm designs a contract, which prescribe a rule of payments, and makes a take-it-or-leave-it

offer to the lender in order to raise one unit of the capital just before time 0.15 If they do not

reach agreement on the contracting, then they live in autarky from the time onwards forever. If

both of the agents agree, then the contract is restructured ex post. Assume that there are no

other renegotiation opportunities than restructuring in default, to make clear the strategic role of

restructuring as compared to the one of liquidation. Let {St}t≥0 denote the process of payments

from the firm to the lender.

In addition, assume that this contracting is competitive in the sense that the contract promises

the lender the maximum amount the firm would be willing to pay. Behind this, I implicitly assume

that, when writing the contract, the firm exposes himself to the risk of losing a competition with

outside firms. Being under such a competitive threat, the contract is designed so as to provide the

lender with the firm’s willing-to-pay, rather than with the lender’s autarky utility.

A dynamic game follows after the contracting. Assume that time-t component game (for t > 0)

evolves for a very short fine duration {t−} ∪ [t, t + dt) (or grid t). Note that this assumption

will be verified later.16 Mathematically, the left-limit time t− = lims↑t s is an isolated point and is

attached to the time-t component game. However, from a game-theoretic viewpoint, {t−} stands for

the last stage of the “previous” component game. In order to help understand the game structure

intuitively, the description of time-t (≥ 0) component game starts after {t−}: the grid-t cash flows

are produced and the true realization is revealed only to the firm. The firm then makes a report

of his current cash flow level, denoted by X̂, at no cost, and transfers the reported amount to

the lender. The report can be a lie. As usual in the costly-disclosure literature, the reports are

unverifiable.17 In particular, assume that the report is continuous, {Ft}t≥0-adjusted, and square

integrable. There exists a predictable process µ̂ such that dX̂t = µ̂dt + σ dBt, X̂0 = x. Define

u := (µ− µ̂)/σ and Bu
t := Bt −

∫ t
0 us ds for each t. Let {Fu

t }t≥0 denote the filtration generated by

Bu – call it a reported Brownian motion. That is,

dX̂t = µdt + σ dBu
t , X̂0 = x.

In other words, the firm can pretend as if his cash-flow process is {Fu
t }t≥0-adjusted. After the

reported cash-flows are transferred, the lender seizes the promised payment out of them and returns
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the residual cash flows to the firm. If the reported cash flows are short of the promised payment,

then the lender keeps the whole reported cash flows. This stage has started with {Xt, X̂t, St}.

Notice that X0 = X̂0 = x, S0 = s at time 0.

Next, the game reaches the left-limit time of the next-grid (call it time-t′) component game.

The firm decides whether or not to disclose the true current cash-flow level. On the one hand,

suppose that the firm does not disclose. If the reported cash flow level is lower than the promised

payment level, then the contract is terminated, that is, the lender verifies the truth by incurring

the cost CL, repossesses the capital and seizes the capital and all the true cash flows X from the

firm. This is the liquidation that I define in this paper.18 Assume that, even if the true cash

flows turn out to be larger than the promised payment, the contract must be liquidated in order

to penalize the lie-telling firm. Subsequently, the firm and the lender live in autarky from the time

onwards forever: the firm receives the autarky utility Ū , whereas the lender receives some utility

from the seized cash flows, denoted by g(max{X, 0}), where g is an increasing function and receives

V̄ additionally. If the firm makes the promised payment, then both of the agents consume the

allocated goods, that is, the component game then moves on to the next stage.

On the other hand, suppose that the firm discloses. The firm is then given the right to ask

for restructuring of the contract – call it re-contracting. The contract re-contracted at t′ is called

time-t′ contract. After the lender is informed of the firm’s current state, the income path is

lowered discontinuously by the disclosure cost, and then moves to another contracting (i.e., re-

contracting) stage. The re-contracting is also competitive. Suppose that the lender rejects the

firm’s newly announced contract denoted by {Su, u ≥ t′;St′ = s′}. If Xt′− − CX < St′− , then

the firm misses (defaults on) the payment promise. The contract is terminated and liquidated. If

Xt′−−CX ≥ St′− , then both of the agents consume the allocated goods. The component game then

moves on to the next stage, taking Xt′ = X̂t′ = Xt′− − CX and St′ = St′− as given. If the lender

accepts the re-contracting plan, the game goes on to the next stage under the new contract, taking

Xt′ = X̂t′ = Xt′−−CX and St′ = s′ as given, after the firm suffers reputation loss R(Xt′− , St′− , St′):

R(Xt′− , St′− , St′) := CR [K + (St′− − St′)− (Xt′− − St′−)] > 0 (2.2)

where CR,K > 0 are constants. This is a utility cost. (St′− − St′) represents the payment allowance

at the re-contracting, and (Xt′− − St′−) represents the firm’s consumption. Roughly speaking, the
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reputation loss is increasing in the payment allowance that is discounted by the consumption size

of the firm. Assume that K > 0 is large enough to satisfy R(Xt′− , St′− , St′) > 0 for all t′−.

This technical assumption is imposed in order to prevent a large discount factor (Xt′− − St′−)

from causing negative reputation loss. Note that this assumption will be satisfied in equilibrium

numerically. The total costs of the disclosure and the reputation loss are called default costs in this

paper. As I will discuss below, the existence of the reputation loss ensures that the accumulated

default costs are finite for any finite time in equilibrium.

I focus on a particular form of the rule of payments: the payment {St} is characterized as:

Assumption 2.1 Unless a disclosure is made,

dSt(X̂t, St) = µS(X̂t, St) dt + σS(X̂t, St) dBu
t ; S0 = s ∈ R. (2.3)

The sets of the controls µS and σS are well-defined, given sets MS and ΣS , respectively. Assume

that the process {St} satisfying Eq.(2.3) exists. In other words, a contract is characterized by

{s, µS , σS}. Recall that Bu is the reported Brownian motion. That is,

dSt(X̂t, St) =
(
µS(X̂t, St)− ut

)
dt + σS(X̂t, St) dBt; S0 = s ∈ R.

The Markovian property of the payment rule may look restrictive. However, as I will show below,

under some mild conditions, we can obtain as good performance with the optimal Markov control

as with an arbitrary F1
t -adapted control in equilibrium. Accordingly, the Markovian property is

not restrictive.

Finally, players’ strategies are very general: with such contracts given, the firm’s strategies

of the contract announcements, the disclosures and the reports, and the lender’s (re-)contracting

strategy are assumed to depend on his or her information set F i
t (for i ∈ {1, 2}).

3 Optimal contracting

3.1 Formal representation

This subsection formulates an optimal contracting problem as a control problem with the initial

states X0 = x, S0 = s. For mathematical convenience, S0 = s is given here. A control for this

system is then a quartet sequence: v := {τ, κ, µS , σS} where (1) τ = {τ1, τ2, · · · , τj , · · · } where
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τj denotes the jth disclosure time and τ1 ≤ τ2 ≤ · · · ≤ τj ≤ · · · , (2) κ = {κ1, κ2, · · · , κj , · · · }

where κj = κτj := Sτj− − Sτj denotes a downward jump of the payment path at τj , (3) µS =

{µ0, µ1, µ2, · · · , µj , · · · } where µj = µS(τj) − u is the drift coefficient in the τj contract, and (4)

σS = {σ0, σ1, σ2, · · · , σj , · · · } where σj = σS(τj) is the diffusion coefficient in the τj contract. In

other words, this control is a combination of stochastic controls {µS , σS} ∈ MS×ΣS and an impulse

control {τ, κ} ∈ W that is well-defined in [0,∞)×R. Note that, as I will show below, disclosures are

not undertaken continuously because of the default costs in equilibrium: τ1 < τ2 < · · · < τj < · · · .

For convenience, define τ0 := 0. With the combined control v given, the corresponding state

process Y
(v)
t :=

[
X

(v)
t S

(v)
t

]>
, where the superscript > of a vector and a matrix represents their

transpose, is defined inductively by: for each natural number j ∈ N = {1, 2, 3, ...},

dY (v)
t =

 µ

µ0

dt +

 σ

σ0

dBt for τ0 ≤ t ≤ τ−1 ; Y
(v)
0 = y =

 x

s


Y (v)

τj
=

 Xτ−j
− CX

Sτ−j
− κj

 for t = τj ; (3.1)

dY (v)
t =

 µ

µj

dt +

 σ

σj

dBt for τj ≤ t ≤ τ−j+1.

I may suppress the superscript (v) unless it causes any confusion. A contract is said to be feasible

if the allocation satisfies the condition:

S
(v)
t ≥ 0, X

(v)
t ≥ 0, X

(v)
t − S

(v)
t ≥ 0 for all t. (3.2)

Since the lender possesses log utility, the feasibility condition should be satisfied in the optimal

contract. Define the explosion time of Y
(v)
t as τ∞ := τ∞(ω) = limR→∞

(
inf

{
t > 0;

∣∣∣Y (v)
t

∣∣∣ ≥ R
})

.

Also, a contract can be terminated before the explosion when it does not give the autarky utility

to either agent or both. Let S ⊂ R denote the set of the state variables that promise no smaller

than the autarky utility to the contracting agents – called a solvency region. Assume that there

exists an open set S such that Y0 = y = [x, s]> ∈ S. Define another Ft-stopping time τS as

τS := inf
{

t ∈ (0, τ∞) , Y
(v)
t /∈ S

}
. Call τS liquidation time. Assume that we are given a set V of

admissible combined controls v = (τ, κ, µS , σS) such that a unique strong solution Y
(v)
t of Eq.(3.1)
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exists, τ∞ = ∞, and limj→∞ τj = τS a.s. for all y. Define the firm’s expected utility, taking as

given Y0 = y and a quartet of the stochastic and impulse controls v:

J (v)(y) := Ee,y

 ∫ τS
0 e−δt

[
− 1

α exp {−α(Xt − St)}
]
dt + e−δτS Ū · χ{τS<∞}

−
∑

τj≤τS
e−δτjCR

[
K + κj −

(
Xτj− − Sτj−

)]
 (3.3)

where, for a condition O, χ{O} is an indicator function of O, i.e., it takes on 1 if O holds true

(otherwise, 0). Assume that the right hand side of Eq.(3.3) is finite for all Y0 = y = [x, s]> ∈ S, v ∈

V. Assume technically that:

Ee,y

[∫ τS

0
max

{
−

(
−exp(−α(Xt − St))

α

)
, 0

}
dt

]
< ∞ for all y ∈ S, v ∈ V,

Ee,y

 ∑
τj<τS

max
{
−CR

[
K + κj −

(
Xτj− − Sτj−

)]
, 0

}
dt

 < ∞ for all y ∈ S, v ∈ V.

The expected liquidation utility is also finite. Now, our optimal contracting problem is written as:

with Y0 = y ∈ S as given,

U(y) = sup
v∈V

{
J (v)(y)

}
= J (v̂)(y) (3.4)

subject to Eq.(3.1),(3.2). U(y) denotes the firm’s value function, and v̂ ∈ V is an optimal control.

3.2 Incentive compatibility

As usual in contract theory, I impose the incentive compatibility condition: I restrict the contract

space to the set of the contracts that induce the firm to tell the truth. A contract is said to be

incentive compatible if the firm is better off telling the truth than telling a lie for a.a y ∈ S for all

t. Define a temporary incentive compatibility condition: for a.a. (Xt, St) ∈ S for each t,

Ee
t−

 ∫ τS
t e−δu

[
− 1

α exp {−α(Xu − S(Xu, Su−))}
]
du + e−δτS Ū · χ{τS<∞}

−
∑

τj≤τS
e−δτjCR

[
K +

(
Sτ−j

− Sτj

)
−

(
Xτ−j

− Sτ−j

)]
 ≥ (3.5)

Ee
t−


∫ τ ′S
t e−δu

[
− 1

α exp {−α(X ′
u − S(X ′

u + Iu, Su−))}
]
du + e−δτ ′S Ū · χ{τ ′S<∞}

−
∑

τ ′j≤τ ′S
e−δτ ′jCR

[
K +

(
S′

τ ′−j
− S′τ ′j

)
−

(
X ′

τ ′−j
− S′

τ ′−j

)]

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such that Iu = 0 if u > t (that is, the firm always tells the truth after time t), where I := X̂ −X

denotes the deviation of the report from the truth. The superscript x′ of a variable x means that x′

is the variable that is realized when the firm does not report the truth, whereas x is the one when

he does. Accordingly, Eq.(3.5) means that, for each t, the firm is better off telling the truth than

telling a lie only at the time-t component game. Note that, when the firm’s reports deviate from the

truth only at one time in Eq.(3.5), the one-time lie-telling influences the future state process and

the future information set in a history-dependent way. Similarly to Fernandes and Phelan (2000),

Lemma 3.1 The incentive compatibility condition holds true if, and only if, the temporary incen-

tive compatibility condition holds true.

Proof of Lemma 3.1: See Appendix.

With regard to the firm’s disclosure strategy, define the following two disjoint, complementary

sets: Dt := {Yt− ∈ S : dt− = d̃(F1
t−) = 1} and Dc

t := {Yt− ∈ S : dt− = d̃(F1
t−) = 0} where d̃(F1

t−)

represents the disclosure strategy. Dt denotes the set of Yt− that triggers disclosure at left-limit

time t− with the information set F1
t− given – call it disclosure region (of the cash-flow set); Dc

t is its

complementary set – call it non-disclosure region. The temporary incentive compatibility condition

is then characterized by the following two conditions: for a.a. (Xt, St) ∈ S for each t,

Condition 3.1 When the truth is in the disclosure region (i.e., (Xt− , St−) ∈ Dt), the firm should

not make any reports X̂t− that satisfy
(
X̂t− , St−

)
∈ Dc

t .

Condition 3.2 When the truth is in the non-disclosure region (i.e., (Xt− , St−) ∈ Dc
t ), the firm

should not make any reports X̂t− that satisfy
(
X̂t− , St−

)
∈ Dc

t and X̂t− 6= Xt−.

Suppose
(
X̂t− , St−

)
∈ Dt. Since the truth is disclosed, the incentive-compatibility problem does

not matter in the case. Thus, I must look only at the case that disclosures are not triggered, that

is,
(
X̂t− , St−

)
∈ Dc

t . We can classify this case further into two sub-categories: (Xt− , St−) ∈ Dt

and (Xt− , St−) ∈ Dc
t . They are corresponding to Condition 3.1 and Condition 3.2, respectively.

Condition 3.1 implies that when the truth is in the disclosure region (i.e., (Xt− , St−) ∈ Dt), the

firm should not make a lie-telling report in order to avoid disclosure. Condition 3.2 implies that

the firm should make a truth-telling report even when the truth is in the non-disclosure region (i.e.,

(Xt− , St−) ∈ Dc
t ). Since the reports are unverifiable, from the two conditions,

11



Lemma 3.2 The incentive compatibility contracts are characterized as follows:

(1) µS is a function only of S and σS = 0 where 0 denotes a zero vector,

(2) a disclosure occurs when, and only when, restructuring occurs,

(3) re-contracting provides the firm with no lower continuation utility (i.e., the remaining utility

under future truth revelation) than when re-contracting is not undertaken.

Proof of Lemma 3.2: See Appendix.

In other words, first, the incentive compatible contract is deterministic. Still, the payment may

be time-varying. Second, disclosure is necessary and sufficient for restructuring. Finally, restruc-

turing should provide the firm with the payoffs enough to induce the firm to disclose voluntarily.

For the lender, the restructuring has both its pros and cons. A lack of the firm’s commitment is

obviously averse to the lender. At the same time, however, restructuring is favorable to the lender

because it induces the firm to reveal his true current cash flows to the lender at some intervals

and of mitigating the firm’s misbehavior. If the firm is not expected to be profitable in the future,

restructuring could not provide sufficiently high future payoffs for either the firm or the lender.

The firm is then enforced into liquidation. From Lemma 3.1 and Lemma 3.2,

Proposition 3.1 Eq.(3.3) satisfies the incentive compatibility condition if (1) µS = µS(S) and

σS = 0, (2) a disclosure occurs when, and only when, restructuring occurs, and (3) restructuring

provides the firm with no lower continuation utility than when restructuring is not undertaken.

Impose µS = µS(S) and σS = 0 henceforth. The contracts are characterized by {s, µS(S)}.

3.3 Verification theorem

In this subsection, I show a verification theorem for the firm’s optimization problem (3.4) by

using the Hamilton-Jacobi-Bellman (HJB) equation of a Markov continuous control and the quasi-

variational inequalities (QVI) of an impulse control. Call this method quasi-variational Hamilton-

Jacobi-Bellman inequalities (HJBQVI). Define the generator of Yt is:

L(µS)h(y) := −δh(y) + µ
∂h

∂X(v)

∣∣∣∣
X(v)=x

+ µS
∂h

∂S(v)

∣∣∣∣
S(v)=s

+
1
2
σ2 ∂2h

∂(X(v))2

∣∣∣∣
X(v)=x

12



for each µS ∈ MS and for a twice differentiable function h under the evolution Eq.(3.1). Also,

define a restructuring operator:

Mh(y) := sup
κ∈R

h(y −

 CX

κ

)−RY (y, κ); y −

 CX

κ

 ∈ S


where RY (y, κ) := R(x, s, s− κ). In addition, for some h(y), define a set:

G := {y ∈ S;h(y) > Mh(y)} .

In other words, G stands for the continuation region for h, that is, the region the firm does not

choose default strategically and keeps the promised payment.

Theorem 3.1 Suppose that we can find a continuation utility function u : S̄ 7→ R such that19

(i) u ∈ C1(S) ∩ C(S̄),

(ii) u ≥Mu on S, and u = Mu on ∂G almost surely,

Suppose that Y
(v)
t spends 0 time on ∂G a.s., i.e.,

(iii) Ee,y
[∫ τS

0 χ{Y (v)
t ∈∂G} dt

]
= 0 ∀ y ∈ S, v ∈ V,

and suppose that

(iv) ∂G is locally the graph of a Lipschitz continuous function,

(v) u ∈ C2(S0 \ ∂G) and the second order derivatives of u are locally bounded near ∂G,

(vi) f(y) + L(µS)u(y) ≤ 0 ∀µS ∈ MS , y ∈ S0 \ ∂G where f(y) := − exp(−α(x−s))
α ,

(vii) YτS ∈ ∂S a.s. P y,v on {τS < ∞}, and u(Y (v)
t ) → Ū · χ{τS<∞} as t → τ−S a.s. P y,v

∀ y ∈ S, v ∈ V,

(viii) the family {u−(Y (v)
τ )}τ≤τS is uniformly P y,v-integrable ∀ y ∈ S, v ∈ V where u−(y) :=

max(−u(y), 0),

(ix) Ee,y
[
|u(Yτ )|+

∫ τ
0

{∣∣L(µS)u(Yt)
∣∣ +

∣∣σ>Ou(Yt)
∣∣2}dt

]
< ∞ ∀ y ∈ S, v ∈ V, τ ,

where Ou(y) :=
[

∂u
∂yi

]n

i=1
. Then,

u(y) ≥ U(y) ∀ y ∈ S. (3.6)

In addition, suppose that

(x) there exists a function µ̂S : G 7→ R such that f + L(µ̂S)u(y) = 0 ∀ y ∈ G, and

13



(xi) κ̂ = κ̂(y) ∈ arg maxκ

u(y −

 CX

κ

)−RY (y, κ)

 exists for all y ∈ S.

Define an impulse control {τ̂ , κ̂} = {τ̂1, τ̂2, · · · ; κ̂1, κ̂2, · · · } as: Put τ0 = 0 and inductively

τ̂k+1 = inf{t > τ̂k;Y (vk) /∈ G} ∧ τS (3.7)

κ̂k+1 = κ̂(Y (vk)

τ̂−k+1

) if τ̂k+1 < τS ; k = 1, 2, · · · (3.8)

where Y (v̂k) is defined as the result of applying the combined control

v̂k := {µ̂S , {τ̂1, · · · , τ̂k; κ̂1, · · · , κ̂k}}

Put v̂ = {µ̂S , τ̂ , κ̂}. Suppose

(xii) v̂ ∈ V, and {u(Y (v̂))} is uniformly P y,v̂-integrable ∀ y ∈ S. Then

u(y) = U(y) ∀ y ∈ S (3.9)

and v̂ ∈ V is an optimal combined control.

Proof of Theorem 3.1: See Appendix.

Let us look at the economic motivations of the conditions in Theorem 3.1. Conditions (i),(iv),(v)

represent the continuous differentiability of the utility function. In general, the value function need

not be differentiable everywhere – not even continuous. In that case, we may interpret the above

equations in the sense of viscosity solutions (see Øksendal and Sulem (2005), Ch.9). However,

I look for classical solutions here by imposing Conditions (i),(iv),(v), because they are a good

fit for this economic analysis. Condition (ii) stands for the temporary incentive compatibility

condition of Proposition 3.1, together with σS = 0. Without Condition (iii), the default costs

could become infinite for some finite period, i.e., which is not an equilibrium. Also, restructuring

is instantaneous, i.e., I ignore the periods of Chapter 11 bankruptcy protection, for simplicity.

Conditions (vi),(x),(xi) characterize the optimal conditions. Condition (vii) regulates the terminal

condition of the firm’s payoffs. Suppose that this condition is violated. If u(Y (v)

τ−S
) > Ū , there

could exist some other renegotiation chances than restructuring. This is not an equilibrium. If

u(Y (v)

τ−S
) < Ū , the liquidation time should be earlier. It contradicts the definition of liquidation.

Finally, Conditions (viii),(ix),(xii) ensure the integrability of the payoffs. The plausibility of these

14



conditions will be checked numerically later.

From Theorem 3.1, the optimization problem can be rewritten into:

max
(

sup
µS

{
f(y) + L(µS)u(y)

}
,Mu(y)− u(y)

)
= 0 for all y ∈ S. (3.10)

Call this the HJBQVI equation. The HJB equation f(y) + L(µ̂S)u(y) = 0 holds when the state

is inside the continuation region G (i.e., u(y) > Mu(y)). When the state hits the boundary of

G (i.e., u(y) = Mu(y)), restructuring is filed for. Since the continuation utility function u is C1,

“high contact (smooth fit)” conditions hold: in a default state (say, yd ∈ ∂G), u(yd) = Mu(yd)

for continuity and ∂u(y)
∂y |y=yd = ∂Mu(y)

∂y |y=yd for differentiability – call them value-matching and

smooth-pasting conditions, respectively.

The continuation utility u(y) and the optimal stochastic/impulse control v̂ ∈ V are characterized

inductively by {τ, kτ , µS} such that

u (y) = max
{τ, κτ , µS}

Ee,y

 ∫ τ
0 e−δt

{
− 1

αe−α(Xt−St)
}

dt

+e−δτ {u (Xτ , Sτ )− CR [K + κτ − (Xτ− − Sτ−)]}


s.t. dXt = µdt + σ dBt for 0 ≤ t < τ,

dSt = µS dt for 0 ≤ t < τ,

Xτ = Xτ− − CX for t = τ,

u(y) ≥ Ū ,

V (y) := Em,y

[∫ τS

0
e−δt ln [St] dt + e−δτS

{
V̄ + g(XτS )− CL

}
· χ{τS<∞}

]
≥ V̄ .

I have assumed that the payment rule is Markovian. With the Markov control, the HJB equation

provides a very nice solution. Still, one might think that the assumption is too restrictive. However,

I can show that we necessarily obtain as good performance with the optimal Markov control as

performance with an arbitrary F1
t -adapted control if mild conditions are satisfied:

Theorem 3.2 Let

Um := sup{J (v) : Markov control}

Ua := sup{J (v) : F1
t -adapted control}

15



Suppose that there exists an optimal Markov control for the Markov control problem for all y ∈ S

such that all the boundary points of S are regular with respect to Y
(v̂)
t (i.e., for y ∈ ∂S, P y [τS = 0] =

1) and that Um is a bounded function in C2(S) ∩ C(S̄). Then

Um = Ua for all y ∈ S.

Proof of Theorem 3.2: See Appendix.

3.4 Characterization of the optimal contract

I examine the characteristics of the equilibria in detail. The solution procedures for the HJBQVI

equation (3.10) are as follows. First, I find the optimal re-contracted payment rule in the QVI,

taking as given a contract (s, µS) and {τ−, Xτ− , Sτ−}. Second, I solve the corresponding optimal

stopping problem, taking as given the optimal re-contracted payment rule.

Fix a trio {τ−, Xτ− , Sτ−}. I examine the optimal payment allowance κτ in the restructuring

operation Mu(yτ−), that is, the optimization with respect to κ at given τ :

max
κτ

{u (Xτ , Sτ )− CR [K + κτ − (Xτ− − Sτ−)]}

The first-order condition with respect to κτ (or Sτ ) is:

∂u (Xτ , Sτ )
∂Sτ

+ CR = 0. (3.11)

Assume that, for each {τ−, Xτ− , Sτ−}, there exists some Sτ satisfying Eq.(3.11), denoted by S∗τ .

Let κ∗τ := Sτ− − S∗τ denote the optimal payment allowance. For the sufficiency of the optimality,

the second-order condition should be satisfied:

∂2u (Xτ , Sτ )
∂S2

τ

∣∣∣∣
Sτ=S∗τ

< 0. (3.12)

Define Zt = Xt − St. With small abuse of language, let us redefine U (Z) = U (X, S), u (Z) =

u (X, S), and V (Z) = V (X, S). I can conjecture that the firm’s program is rewritten as: with
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Z0 = z = x− s given, I solve for the value function U(z) = u(z) and the optimal control v̂ ∈ V:

u (z) = max
{τ, µS}

Ee,y

 ∫ τ
0 e−δt

{
− 1

α exp [−αZt]
}

dt

+e−δτ {u (Z∗τ )− CR [K + κ∗τ − Zτ− ]}

 (3.13)

s.t. dZt = (µ− µS) dt + σ dBt for 0 ≤ t < τ,

Z∗τ = Zτ− + κ∗τ − CX for t = τ,

u(z) ≥ Ū and V (z) ≥ V̄ .

The continuation region G is redefined as GZ := {Z ∈ Z;Y ∈ G} where Z denotes the set of Z ∈ R

that is consistent with Y ∈ S. u (Zt) is twice continuously differentiable with respect to Zt. The

first-order condition (3.11) and the second-order condition (3.12) are rewritten as:

uz (Z∗τ ) = CR and uzz (Z∗τ ) < 0. (3.14)

where uz := du
dZ and uzz := d2u

dZ2 . The original problem is now being reduced into an optimal stopping

problem, that is, I solve for the first default time τ .

For further analytic investigation, I look at some characteristics of the value function. A re-

structuring time is expected to arrive based on probability distributions, called intearrival dis-

tributions. Because of the value-matching and the smooth-pasting condition, there is no jump

of the utility at points of restructuring. I can use the same generator as above: L(µS)u(z) =

−δu(z) + (µ− µS)uz(z) + 1
2σ2uzz(z). Impose an assumption:

Assumption 3.1 The firm expects τ0
S ≤ τ1

S for any z0, z1 ∈ R satisfying z0 < z1, where τ0
S and τ1

S

denote the liquidation times in case of Z0 = z0 and of Z0 = z1, respectively.

In other words, when the firm’s initial consumption level is higher, the default time is expected to

arrive later. When the initial income is lower, the liquidation time is expected to arrive earlier.

τS = ∞ may also hold true. Impose another assumption:

Assumption 3.2 There is a constant L > 0 such that
∣∣∣ z1−z0

u(z1)−u(z0)

∣∣∣ ≤ L for any z0, z1 ∈ GZ

satisfying u(z1) 6= u(z0).∣∣∣ z1−z0

u(z1)−u(z0)

∣∣∣ < L means that the inverse of the slope of the value function is finite on GZ . As I will

show later, this is satisfied in equilibrium numerically. Under Assumption 3.2,
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Lemma 3.3 u(z) is strictly increasing and strictly concave.

Proof of Lemma 3.3: See Appendix.

As a result, the value function satisfies the usual characteristics of the utility function.

Now, I characterize the optimal contract explicitly. From Lemma 3.3, there exists a unique Z∗

satisfying Eq.(3.14). Furthermore, I characterize GZ more precisely:

Lemma 3.4 GZ is not bounded from above. If restructuring occurs in equilibrium, there are b =

inf GZ ∈ R and z∗ ∈ GZ = (b,∞) such that

(i) If Z ≤ b , then the path immediately jumps to z∗ unless liquidation occurs,

(ii) If for some t, Z is inside GZ = (b,∞), the firm commits to the payment rule.

Proof of Lemma 3.4 : See Appendix.

Figure 1 illustrates the optimal contract structure. Given the deterministic payment rule,

the consumption space Z is divided into two parts: non-default region (i.e., continuation re-

gion GZ = (b, +∞)) and default region. The default region is categorized further into two

subregions: restructuring region and liquidation region. Inside the continuation region GZ (i.e.,

Z ∈ (b, +∞)), the firm commits to the contract. The evolution of the firm’s continuation utility

u(Z) is characterized by the HJB equation: δu(Z) =
{
− 1

α exp (−αZ)
}

+(µ−µS)uz(Z)+ σ2

2 uzz(Z).

The lower barrier b provides the firm with a “put-option” opportunity: i.e., when the firm’s current

cash flows become so low that his after-payment income Z is below b, he files for restructuring,

so long as restructuring is possible (that is, the lender will accept the restructuring in a default

state when believing that the defaulting firm will recover enough in the future). The consumption

level then jumps to z∗ ∈ GZ . Notice that b and z∗ are {Ft}t≥0-adjusted. Restructuring is always

preferred to liquidation in a default state if the restructuring region exists, because it provides

both of the players with higher utility than the autarky utility. That is, the restructuring region

is located on the right side of the liquidation region. The costly restructuring reduces the whole

income, and shrinks the restructuring region. After one or more restructurings, the restructuring

region vanishes eventually, that is, the defaulting firm is then enforced into a liquidation. Since

the uncontrolled cash-flow process is continuous here, restructuring necessarily occurs in advance

of liquidation, unless the restructuring region vanishes. I will later modify the state process to have

a jump term, so as to have a sudden liquidation beyond the restructuring region.

From the proof of Lemma 3.4, the following three by-products are obtained. First, the smooth-
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Figure 1: Impulse control

pasting condition is: for a boundary b ∈ ∂GZ ,

uz (b) = uz (z∗) + CR = 2CR (3.15)

where z∗ := b + κ∗τ −CX represents the firm’s restructured allocation after the costly default. The

last equality uses the result of Eq.(3.14). The value-matching condition is: for b ∈ ∂GZ ,

u (b) = u (z∗)− CR (K + κ∗τ − b) . (3.16)

Second, without the reputation cost RY , the disclosure costs could become infinite for some

finite periods of time. Autarky would then be an equilibrium from the initial point. This would

violate Condition (iii). Thus, the existence of the reputation cost is justified in this model. Third,

Corollary 3.1 The contract is necessarily feasible right after restructuring in equilibrium.

This is because the payment allowance is higher than the disclosure cost, i.e., κ∗τ > CX . z∗ is

necessarily inside GZ . From this corollary, restructuring never occurs continuously. Accordingly,

the very fine interval {t−} ∪ [t, t + dt) for each t can be interpreted as a component game. This

also means that the probability of restructuring becomes zero shortly after restructuring. That is,

based on this model, the short-term default probability is underestimated as compared to actual

data. I will overcome this difficulty by introducing the jump term later.20 From Lemma 3.4 and

Corollary 3.1,

Proposition 3.2 The optimal contract takes the form of a debt contract in the sense that, (1)

the contract promises the lender deterministic payments, (2) if the firm defaults on the promised
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payment, the lender has the right to choose either restructuring or liquidation, and (3) the contract

has priority for repayment in a liquidation.

In this paper, the debt contract stipulates only deterministic payments, not constant ones. In fact,

µS = 0 (i.e., a constant coupon) may not be necessarily optimal. So far I have not solved for the

optimal µS explicitly, since I have not obtained the explicit form of the value function. In the next

section, I will find the optimal µS numerically.

4 Quantitative results

This section examines quantitatively the optimal contract and the equilibrium default behavior in

structural relationships with underlying economic factors. I focus on a specific form of the contract

in the following two respects. First, assume that the payment process is linear in S.

Assumption 4.1 µS is a linear function of S.

Lemma 4.1 µS ≥ 0

Proof of Lemma 4.1: Suppose that µS < 0. The payment becomes negative with some positive

probability. Since the lender has the log utility, the contract is not feasible. Hence, µS ≥ 0.

Correspondingly, Condition (ix) of Theorem 3.1 is modified to solve the optimization problem

with a constraint µS ≥ 0. Second, assume that the first-order condition holds true at t = 0:

Assumption 4.2 At the initial point of time t = 0 with Z0 = z = x− s, uz (z) = CR.

This assumption means that Eq.(3.14) holds true at time 0. Since this paper focuses on stationary

(i.e., long-run) characteristics of the equilibria, I assume that the contract starts with some re-

contracted state at the initial point. It looks as if the default occurs at 0−.

4.1 Parametrization

Table 1 shows baseline parametrization. Specifically, I set the cash-flow volatility at a conventional

level σ = 25%. With regard to µ, Goldstein, Ju, and Leland (2001) calibrate a slightly negative µ,

whereas Leland (1998) chooses µ = 1%. This paper follows the parameterization of Leland (1998).

Next, the coefficient of absolute risk aversion is set at 0.7. In previous literature, there exist

very few empirical studies of the CARA parameters, as compared to the CRRA parameters. As
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Kimball and Mankiw (1989) discuss, the product of the CARA coefficient and the average wealth

(or endowed income) (i.e., α · z on average) can be interpreted as a good proxy for the CRRA

coefficient. I choose the CARA parameter α = 0.7 so that the value α · z, on average, ranges over

the conventional region of the CRRA parameters from 1 to 50. Finally, as for estimates of the

default costs (i.e., the disclosure cost and the reputation cost), there is a controversy in previous

empirical literature. Warner (1977) estimates a bankruptcy cost at approximately 1.0% ∼ 5.3%

of firm value, by using the data of US railroad firms in 1933-1955. However, in his paper, the costs

are only direct bankruptcy costs such as legal fees. Altman (1984) estimates the sum of direct and

indirect bankruptcy costs at about 11% ∼ 17% of firm value. In addition, the disclosure costs

may be currently bigger after recent dramatic financial innovations and the Subprime crisis than

before. Based on those observations, in this analysis, CX ranges over 0.01 ∼ 0.51 widely relative

to the resource levels. Also, I do a comparative static analysis in order to check robustness of this

model.

Table 1: Baseline Parameters

Cash flows Drift µ 1%
Diffusion σ 25%

Disclosure cost CX 0.01 ∼ 0.51
Reputation cost K 0.5

CR 0.1
Utility Risk aversion α 0.7

Time preference δ 0.03

4.2 Optimal contract

Following standard discussions of ordinary differential equations, try the functional form of u: with

three parameters A,C1, C2 ∈ R,

u(z) = A · exp (−αz) + C1 · exp (ν1z) + C2 · exp (ν2z) (4.1)

where {ν1, ν2} (ν1 ≤ ν2) are the roots of the equation σ2

2 ν2 + (µ − µS)ν − δ = 0. This numerical

method is based on Eq.(3.14), Eq.(3.15), Eq.(3.16) and Eq.(4.1) as follows:

{b̂, ẑ∗, κ̂∗} = arg max
{b, z∗, κ∗}

−
 {uz (z∗)− CR}2 + {uz (b)− 2CR}2

+ {u (b)− (u (z∗)− CR (K + κ∗ − b))}2


 .
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From quantitative results, I find that there exists an open set S such that Y0 = y = [x, s]> ∈ S. All

the high-level assumptions Condition (i)-Condition (xii) of Theorem 3.1 are relevant numerically.

In particular, uz(ẑ∗) > 0, uzz(ẑ∗) < 0, z0 = ẑ∗ > 0, and 0 < b̂ < ẑ∗. Also, the inverse of the

slope of the utility is finite numerically. From Figure 2, the optimal µ̂S = 0. That is, the zero drift

is desirable to the firm because of high payoffs during the continuation periods and low default

probability. There exists a stationary equilibrium such that z∗(τj) = ẑ∗, bj = b̂, and κ∗(τj) = κ̂∗

are constants over time beyond default. In consequence, the optimal contract takes the form of a

debt contract with fixed constant coupons.
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Figure 2: Effect of the drift coefficient µ on the firm’s utility u

4.3 Equilibrium default behavior

A default time is expected to arrive based on an endogenously formed probability distribution.

The Laplace transform of the default probability distribution Q0 := Prob[Zτ = b̂|Z0 = ẑ∗ ∈

GZ \∂GZ ] = exp
{

ν1(ẑ∗ − b̂)
}

stands for the probability that the firm files for restructuring (i.e., Z

reaches b̂ at a stopping time τ) at least once after the initial state starts with Z0 = ẑ∗ ∈ GZ \ ∂GZ

(Harrison (1985)). It is useful for analyzing endogenous default behavior because it has an explicit

solution here. Note that Assumption 3.1 is satisfied.

I examine the case ẑ∗ ∈ GZ \ ∂GZ . In Figure 3, the drift coefficient takes on the values of the

range (−50%,+70%), with everything else remaining the same. In Figure 4, the diffusion coefficient

takes on the values of the range (5%, 50%), with everything else remaining the same. From the

results, the default probability is decreasing (increasing) in the disclosure cost when the cost is low

(high) relative to expected cash flows. Note that the expected cash flows are measured by Sharpe
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Figure 3: Effect of µ on Q0
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Figure 4: Effect of σ on Q0
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Figure 5: Effect of α on Q0

ratios µ
σ . When the disclosure cost is relatively low, restructuring occurs as frequently as possible

in order to make the firm reveal the truth, because the disclosure is a convenient method of truth

revelation. The default probability is decreasing in the cost. On the other hand, when the cost is

high, restructuring occurs as infrequently as possible in order to minimize expected dead-weight loss

of the costs dynamically, because the large cost shrinks the whole income excessively and increases

the default probability. This result shows a non-monotonic relationship between the disclosure cost

and the default probability. Also, the default probability is increasing in risk aversion (Figure 5).

5 Concluding remarks

This paper studied the role of strategic restructuring in optimally designed defaultable long-term

loans and securities in a continuous-time environment with the agency problem caused by costly

information disclosure. For future research, I will extend this model into a model of valuation of
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loans and securities.
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Cyclical Behavior of Financial Market Frictions,” mimeo.

[32] Mella-Barral, Pierre, and William Perraudin (1997): “Strategic Debt Service,” Journal of
Finance, 52, 531-556.

[33] Merton, R. C. (1974): “On the Pricing of Corporate Debt: the Risk Structure of Interest Rates,”
Journal of Finance, 29, 449-470.

[34] Nakamura, Hisashi (2006): “A Dynamic Theory of Debt Restructuring,” Working Paper, #CARF-
F-072, University of Tokyo.

[35] Øksendal, Bernt (2003): Stochastic Differential Equations, 6th Edition, Berlin Heidelberg: Springer-
Verlag.

[36] Øksendal, Bernt, and Agnès Sulem (2005): Applied Stochastic Control of Jump Diffusions, Berlin
Heidelberg: Springer-Verlag.

[37] Peters, Michael (2001): “Common Agency and the Revelation Principle,” Econometrica, 69, 1649-
1672.

[38] Simon, Leo K., and Maxwell B. Stinchcombe (1989): “Extensive Form Games in Continuous
Time: Pure Strategies,” Econometrica, 57, 1171-1214.

[39] Tchistyi, Alexei (2005): “Security Design with Correlated Hidden Cash Flows: The Optimality of
Performance Pricing,” mimeo.

[40] Townsend, Robert (1979): “Optimal Contracts and Competitive Markets with Costly State Verifi-
cation,” Journal of Economic Theory, 21, 265-293.

[41] Wang, Cheng (2005): “Dynamic Costly State Verification,” Economic Theory, 25, 887-916.

25



[42] Warner, Jerold B. (1977): “Bankruptcy Costs: Some Evidence,” Journal of Finance, Papers and
Proceedings of the Thirty-Fifth Annual Meeting of the American Finance Association, Atlantic City,
New Jersey, September 16-18, 32, 337-347.

[43] Yu, Fan (2005): “Accounting Transparency and the Term Structure of Credit Spreads,” Journal of
Financial Economics, 75, 53-84.

Appendices

A Supplementary remark on voluntary information disclosure

In the main text, I have focused on voluntary information disclosure. The reasoning for that is as

follows. The defaulting firm has an incentive to request restructuring by disclosing his current bad

condition at the cost CX voluntarily, in order to enjoy payoffs from future production. In addition,

if the lender believes that the defaulting firm will recover enough in the future and she will receive

higher payoffs in the restructuring than when liquidated, then she accepts the restructuring offer

by the firm. Such voluntary corporate disclosures are prevalent in practice, and have been studied

a lot in accounting literature (e.g., Dye (2001)). Following the line of research, I stressed the role

of the disclosure by the firm.

Although the cost is incurred directly by the firm, it is also loss for the lender from a dynamic

viewpoint, because it is dead-weight loss and shrinks the whole income. In addition, the lender

compensates, in equilibrium, for the firm’s disclosure cost by giving some payment allowance to

the firm, in order to induce the firm’s voluntary disclosure. Meanwhile, if the defaulting firm is

expected to have a poor future, then the contract is terminated (i.e., liquidated) in the default

state. Since the firm walks away from the contract after the liquidation, he has no incentive to

disclose voluntarily. That is why I assumed that the lender discloses at the cost CL.

In practice, the lender should bear some costs during a restructuring process. Also, the firm

should incur some direct costs in a liquidation in actual legal procedures. However, I omit those

realistic factors from this model in order to confine attention to the discussion of how such voluntary

corporate disclosure influences equilibrium default behavior and optimal allocations. Note that, in

order to save the disclosure costs, the defaulting firm should disclose voluntarily only when he

expects that the request of restructuring will be accepted in a bad condition. If the defaulting firm

is expected to have a poor future, equilibrium should be a liquidation. Accordingly, without loss

of generality, I can assume that the lender does not disclose except in a liquidation.
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B Proofs of theorems

B.1 Proof of Lemma 3.1

Suppose that the temporary incentive compatibility condition holds true for all t. Then, by in-

duction, the incentive compatibility condition necessarily holds true. Conversely, suppose that the

temporary incentive compatibility condition does not hold true in some state that occurs almost

surely at some point of time. When the game reaches this state at this point of time, the firm is

better off telling a lie. That contradicts the incentive compatibility condition.

B.2 Proof of Lemma 3.2

First, noting that the reports are unverifiable, in order to satisfy Condition 3.2, the payment rule

should not depend on B, that is, σS = 0 and µS is independent of the report. Otherwise, when

the truth is in the non-disclosure region, the firm would make a lie-telling report that minimizes

the payment. Second, by construction, the restructuring of the contract needs disclosure. Also,

disclosure is costly for the firm. As usual in contract theory, when the firm is indifferent between

two actions, the firm will choose the one that is better to the lender. The firm chooses disclosure

only when the lender accepts a file for restructuring in equilibrium. Third, in order to satisfy

Condition 3.1, when the truth is in the disclosure region, disclosure should provide the firm with

no lower continuation utility than when he would not undertake disclosure. Otherwise, the firm

would pretend as if the cash flows would be in the non-disclosure region when it is in the disclosure

region. The firm’s re-contracted utility should be no less than the utility when restructuring is not

undertaken.

B.3 Proof of Theorem 3.1

First, look at Dynkin’s formula.

Lemma B.1 L(µS)u(y) exists for a.a. y with respect to the Green measure GY (v)

S (y, ·), and with

Y = Y (v), the Dynkin formula holds true for u:

Ee,y[u(Yτ )]− Ee,y[u(Yτ ′)] = −Ee,y

[∫ τ ′

τ
L(µS)u(Yt) dt

]

for all bounded stopping times τ, τ ′ with τ ≤ τ ′ ≤ inf{t > 0; |Yt| ≥ R} for some R < ∞.
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Note that GY (v)

S (y, H) := Ee,y
[∫ τS

0 χ{Y (v)∈H} dt
]

for H ∈ S.

Proof of Lemma B.1: From Theorem 2.1 of Øksendal and Sulem (2005), by Condition (i),(iv),

and (v), we can assume u ∈ C2(S) ∩ C(S̄). Condition (ii) stands for the temporary incentive

compatibility condition of Proposition 3.1. By Condition (iii), directly from Lemma 1 of Brekke

and Øksendal (1991), the result is obtained.

Now, prove Theorem 3.1. From Proposition 3.1 and Condition (ii)(iii), restructuring occurs

only on ∂G and u = Mu holds true there. For R > 0, put

TR = R ∧ inf{t > 0; |Y (v)
t | ≥ R}

and set

θk+1 = θ
(R)
k+1 = τk ∨ (τk+1 ∧ TR), Yt = Y

(v)
t

Then, by Lemma B.1 and Condition (vi), for each k = 0, 1, · · · ,

Ee,y[u(Yτk
)]− Ee,y[u(Yθ−k+1

)] = −Ee,y

[∫ θk+1

τk

L(µS)u(Yt) dt
]

≥ Ee,y

[∫ θk+1

τk

f(Yt) dt
]

Letting R →∞, we obtain, by using Condition (viii),(ix) and Fatou’s lemma,

Ee,y[u(Yτk
)]− Ee,y[u(Yτ−k+1

)] ≥ Ee,y

[∫ τk+1

τk

f(Yt) dt
]

Summing up this from k = 0 to k = m, we obtain:

u(y) +
m∑

k=1

Ee,y[u(Yτk
)− u(Yτ−k

)]− Ee,y[u(Yτ−m+1
)] ≥ Ee,y

[∫ τm+1

0
f(Yt) dt

]

Now, using Condition (vii),

u(Yτk
) = u(Yτ−k

−

 CX

κk

) ≤Mu(Yτ−k
) + RY (Yτ−k

, κk) if τk < τS

u(Yτk
) = u(Yτ−k

) = Ū · χ{τS<τ∞} if τk = τS
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and therefore

u(y) +
m∑

k=1

Ee,y[(Mu(Yτ−k
)− u(Yτ−k

)) · χ{τk<τS}]

≥ Ee,y

[∫ τm+1

0
f(Yt) dt + u(Yτ−m+1

)−
m∑

k=1

RY (Yτ−k
, κk)

]

By Condition (ii),

Mu(Yτ−k
)− u(Yτ−k

) ≤ 0

and hence

u(y) ≥ Ee,y

[∫ τm+1

0
f(Yt) dt + u(Yτ−m+1

)−
m∑

k=1

RY (Yτ−k
, κk)

]

Letting m → N (N ≤ ∞),

u(y) ≥ Ee,y

[∫ τS

0
f(Yt) dt + Ū · χ{τS<τ∞} −

N∑
k=1

RY (Yτ−k
, κk)

]

Hence, u(y) ≥ J (v)(y) as claimed in Eq.(3.6).

Next, assume that the equality in Condition (x) also holds true. Define (τ̂ , κ̂) by Eq.(3.7) and

Eq.(3.8) and define v̂ = (µ̂S , τ̂ , κ̂). By Condition (x), we obtain equalities in the above inequalities.

That is, for m,

u(y) = Ee,y

[∫ τm+1

0
f(Yt) dt + u(Yτ−m+1

)−
m∑

k=1

RY (Yτ−k
, κk)

]

Letting m → N (N ≤ ∞), u(y) = J (v̂)(y). Combining this with Eq.(3.6), we obtain

u(y) ≥ sup
v∈V

J (v)(y) ≥ J (v̂)(y) = u(y)

Hence, u(y) = U(y) and v̂ is optimal.
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B.4 Proof of Theorem 3.2

Let u be a bounded function in C2(S) ∩ C(S̄) satisfying

f + L(µS)u(y) ≤ 0 for all y ∈ S, v ∈ V (B.1)

u(y) = Ū for all y ∈ ∂S (B.2)

where µS represents F1
t -adapted control. Let the combined controls induced by the F1

t -adapted

control be denoted by va. The payment process is given by dSt = µS dt with S0 = s. From

Lemma B.1, Dynkin’s formula holds true for the Ito process that is controlled by va (Lemma 7.8

of Øksendal (2003), p.112). Hence,

u(y) ≥ J (va)(y) (B.3)

However, by Theorem 3.1, u(y) = Um(y) satisfies Eq.(B.1) and Eq.(B.2). By Eq.(B.3), we obtain

Um(y) ≥ Ua(y) and Theorem 3.2 follows.

B.5 Proof of Lemma 3.3

First, prove the monotonicity of the value function. From Theorem 3.1, by Ito’s formula,

d
(
e−δtu(Zt)

)
= e−δt

(
−δu(Zt) + (µ− µS)uz(Zt) +

1
2
uzz(Zt)σ2

)
dt + Σ(Zt) dBt

where Σ(Zt) := e−δtuz(Zt)σ. For any z0, z1 ∈ GZ with z0 < z1, let Z0 and Z1 denote the process Z

with Z(0) = z0 and Z(0) = z1, respectively. Define

∆z(t) := Z1
t − Z0

t ,

∆u(t) := u(Z1
t )− u(Z0

t ),

∆Σ(t) := Σ(Z1
t )− Σ(Z0

t ).

Then,

d
(
e−δt∆u

)
= e−δt


(
−δu(Z1) + (µ− µS)uz(Z1) + 1

2uzz(Z1)σ2
)

−
(
−δu(Z0) + (µ− µS)uz(Z0) + 1

2uzz(Z0)σ2
)

 dt + ∆Σ dB.
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Since the HJB equation f(y) + L(µ̂S)u(y) = 0 holds,

d
(
e−δt∆u

)
= −e−δt

(
f(Z1)− f(Z0)

)
dt + ∆Σ dB. (B.4)

Since f(z) is strictly concave, there is an {Ft}t≥0-adapted, strictly positive process ζt such that

f(Z1
t ) = f(Z0

t ) + ζt + f ′(Z1
t )∆z(t).

Therefore, Eq.(B.4) can be rewritten into:

d
(
e−δt∆u(t)

)
= −e−δt

(
ζt + f ′(Z1

t )∆z(t)
)
dt + ∆Σ(t) dBt.

Next, define an {Ft}t≥0-adapted, strictly positive process {Et}t≥0: for all t ≥ 0,

dEt

Et
:=


f ′(Z1

t )∆z(t)
∆u(t) dt when ∆u(t) 6= 0

0 when ∆u(t) = 0
; E0 = 1.

Therefore,

d
(
Ete

−δt∆u(t)
)

= dEt

(
e−δt∆u(t)

)
+ d

(
e−δt∆u(t)

)
Et

= −e−δt (Etζt) dt + Et∆Σ(t) dBt

By taking conditional expectation, for a stopping time τn,

e−δtEt∆u(t) = Ee
t

[
e−δτnEτn∆u(τn) +

∫ τn

t
e−δs (Esζs) ds

]

Since Z ≥ 0 by the feasibility condition, 0 ≤ f ′ ≤ 1. By assumptions, using the method of successive

approximations, Ee
[
supt ∆u(t)2

]
< ∞. Also, it is clear that, by the assumption of

∣∣∣∆z(t)
∆u(t)

∣∣∣ < L,

there is a unique solution E such that Ee
[
supt(Et)2

]
< ∞. Therefore, Ee

[
supt

∣∣Ete
−δt∆u(t)

∣∣] < ∞.

Letting n →∞, and using dominated convergence,

∆u(0) = Ee
0

[
e−δ(τ0

S∧τ1
S)Eτ0

S∧τ1
S
∆u(τ0

S ∧ τ1
S) +

∫ τ0
S∧τ1

S

0
e−δs (Esζs) ds

]
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where τ0
S and τ1

S denote the liquidation times of Z0 and Z1, respectively. By assumptions, the

transversality condition holds true: i.e., when liquidation never occurs, limT→∞ e−δT u(ZT ) = 0.

From this transversality condition and Assumption 3.1, by E > 0 and ζ > 0, ∆u(0) > 0. Hence,

u(z) is strictly increasing.

Next, examine the concavity of the value function. For any z0, z1 ∈ GZ where Z0(0) =

z0, Z1(0) = z1 and z0 < z1, and for φ ∈ (0, 1) ⊂ R+, define

∆φ
u(t) := u

(
φZ1

t + (1− φ)Z0
t

)
−

(
φu(Z1

t ) + (1− φ)u(Z0
t )

)
,

∆φ
Σ(t) := Σ

(
φZ1

t + (1− φ)Z0
t

)
−

(
φΣ(Z1

t ) + (1− φ)Σ(Z0
t )

)
.

Since f is strictly concave, by following the same procedures as above, ∆φ
u(0) > 0. That is, the

strict concavity of u(z) is proved.

B.6 Proof of Lemma 3.4

Suppose that there exists the least upper bound supGZ , denoted by c. That is, restructuring is

accepted when the firm is in sufficiently good shape at Z ≥ c. The firm verifies his true state by

using the costly disclosure. Since u = Mu holds true at c = supGZ , the payment allowance should

be strictly higher than the cost, because of the reputation loss. Every disclosure would lead to a

strictly higher level of the re-contracted consumption, which must be in GZ . Thus, c is not an

upper bound. This contradicts.

Next, suppose that restructuring occurs in equilibrium. There exists b = inf GZ . At the

boundary b, the smooth-pasting condition is: for a boundary b ∈ ∂GZ ,

uz (b) = uz (z∗) + CR = 2CR

where z∗ := b+κ∗τ −CX represents the firm’s restructured allocation after the costly default. Note

that the last equality uses the result of Eq.(3.14). The value-matching condition is: for the same

b ∈ ∂GZ ,

u (b) = u (z∗)− CR (K + κ∗τ − b)

Hence, z∗ > b. From Lemma 3.3, since u is strictly concave, such b is unique for u = Mu. z∗ is also
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uniquely determined. In addition, since u is strictly increasing, for all z such that z > b, z ∈ GZ .

That is, z∗ is inside in GZ , and so GZ = (b,∞).
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Notes

1Duffie and Lando (2001) and Yu (2005) are in line with the literature on structural credit

risk, which studies endogenous default under some exogenously given, sufficiently complete secu-

rity structure of equity and debt (e.g., Leland (1994)) It also studies strategic debt services and

debt renegotiation (e.g., Anderson and Sundaresan (1996), Broadie, et al. (2007), Fan and Sun-

daresan (2000), Mella-Barral and Perraudin (1997)).

2The paper of Chen (2003) applies the full-information strategic-renegotiation framework of Fan

and Sundaresan (2000) to an informational asymmetry environment, by (i) restricting contracts a

priori to having a debt contract providing constant coupons and (ii) taking as given constant loss

rates and constant bargaining rates in default. My paper, by contrast, characterizes optimal com-

petitive contracts and endogenous loss rates explicitly in more general economic settings, without

imposing those restrictions, and provides deeper insights into optimal capital structure and equi-

librium strategic default. Also, He (2010) extends a Leland (1994)-type structural default model

to a moral hazard (hidden entrepreneurial effort) problem.

3In practice, debt restructuring can take the form either of a cut in principal, a lengthening of

maturity, or a reduction in interest payments. This paper focuses only on the form of a reduction

in interest payments.

4In previous literature, the finite-period CSV models have been successful in capturing the role

of monitoring and auditing in strategically defaultable loans and securities, and have been often

used for examining empirically default costs in aggregate economies. For example, see Bernanke,

Gertler, and Gilchrist (1999), Levin, Natalucci, and Zakraǰsek (2004).

5Contrary to Townsend (1979)’s model, the firm has the right to demand disclosure by incurring

the costs. This twist simplifies the outcome function form in the contract, in the sense that the

less informed lender designs a contract ex ante whereas the fully informed firm undertakes all the

ex post actions.

6In his model, due to a lack of inter-temporal links across stages, the equilibrium disclosure

strategy is static, in that only a current shock triggers a disclosure in a history-independent way.

Also, Nakamura (2006) extends Wang’s model to have two-state Markov chain shocks, which are

restrictive. In contrast, this paper generalizes the Markov shock process to have a continuum of

states.

34



7For example, see Biais, et al. (2007), Cvitanić, Wan, and Zhang (2006, 2009), Cvitanić and

Zhang (2007), DeMarzo and Sannikov (2006), and He (2010).

8Let me mention one caveat: in general, we must be careful when constructing a continuous-time

game. A discrete-time dynamic model can form an extensive-form game in a straightforward way

by defining some relevant time interval of each stage (e.g., day, week, month, year, etc.) and the

timing of events during a component game. In contrast, a continuous-time game has no natural

notion of a “previous” stage before a point of time (Fudenberg and Tirole (1985)). Thus, it often

faces some difficulty with extensive-form interpretations. Against this problem, this paper shows

that {t−} ∪ [t, t +4) is a relevant grid of an infinitesimal component game at a point of time t.

9The control problem in Eq.(1.1) is a combination of an impulse control and a continuous Markov

control.

10CARA utility has no wealth effect. Using the firm’s utility, I characterize level-stationary

equilibrium allocations under the optimal contract explicitly. On the other hand, in order to draw

pricing implications conveniently, I assume the lender’s log utility. The utility forms could be

modified to take more general forms like HARA-type one. However, these simple forms are good

enough to derive interesting results.

11In practice, the outside options are not necessarily exogenous. Rather, they might be state-

dependent and influenced by strategic disclosure behavior. However, for simplicity, this model

assumes the exogenous autarky utility.

12For simplicity, I omit corporate net-worth problems in this model.

13Another paper of mine modifies the model to have capital accumulation.

14This technology is deterministic in the sense that, when demanded, it occurs with probability

one.

15Much corporate finance literature assumes that a lender is a principal and a borrower is an agent.

In this current paper, the relationship is the opposite. I am considering the following situation: a

firm writes a security (probably, with the assistance of an underwriter) in order to raise funds in

markets, and an investor buys it.

16As Simon and Stinchcombe (1989) discuss, there is no natural notion of the “previous” stage

before a point of time t in a continuous-time game. In other words, generally, there may not exist a

sequence of the discrete-time games that would converge to the continuous-time game (with some

relevant topology) as the discrete-time grid goes to zero. In this paper, by contrast, there exists.

35



This is because, due to default costs, information flows occur only discontinuously in equilibrium.

As I will verify below in Corollary 3.1, for each t, I can define the very fine time grid {t−}∪[t, t + dt)

during which a component game is played.

17There are no verifiable reports and no cheap talk here.

18The liquidation procedures are almost the same as in the previous costly disclosure models.

19 With regard to mathematical notations, for any set O, ∂O is the boundary of the set O. Ō

is the closure of the set. O0 is the interior of the set. In addition, C(O) denotes the continuous

functions from O to S. Ck(O) denotes the functions in C(O) with continuous derivatives up to

order k. Also, P y,v denotes the probability law of the stochastic process Y (v)(t) starting at Y
(v)
0 = y.

20 Note that Duffie and Lando (2001) overcome this difficulty by incorporating incomplete infor-

mation of the cash flows.
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