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Abstract

This paper characterizes the decision maker whose choice over menus, i.e., sets of al-
ternatives, is deterministic while choice of an alternative from a menu is stochastic. A key
idea of this paper is to consider perfectly correlated mixtures of menus, i.e., the mixture
of two menus includes only the mixtures of particular pairs of alternatives. Our main
theorem axiomatizes an anticipated stochastic choice (ASC) representation, in which a
state-generating function, or a probability measure over mental states, is chosen from a
closed and convex set so that the expected utility is maximized. ASC representations
accommodate choice anomalies such as the attraction effect, cyclical choice, and Allais
paradox. Special cases of ASC representations are trembling hands, i.e., the best al-
ternative is chosen from a menu with probability close to 1 while arbitrary suboptimal
alternatives are chosen with positive probability, and choice under limited consideration
sets, i.e., the DM maximizes her utility by only considering alternatives in the unions of
supports of state-generating functions. Moreover, the sets of state-generating functions in
ASC representations are unique, thus they can be interpreted as indices of a preference
for commitment to singleton menus.
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1 Introduction

1.1 Outline and Background

Does a decision maker (DM) prefer a larger or smaller menu, i.e., feasible set of alternatives?

Not to mention traditional consumer theory, we usually assume that larger menus are (at least

weakly) preferred since they provide more flexibility ex post; larger menus enable the DM to

depend her choice of alternatives on unforeseen contingencies that are resolved ex post. This

intuition is formalized by Koopmans (1964), and axiomatized by authors such as Kreps (1979,

1992), Nehring (1999), and Dekel, Lipman, and Rustichini (2001).

The objective of this paper is to demonstrate that this intuition does not necessarily hold

if the DM stochastically chooses an alternative from a menu, rather than deterministically:

suppose that the DM is asked to choose a restaurant that serves both chicken and fish or that

serves only chicken. She has a strict preference for chicken over fish, but when arriving at

the former restaurant, she may end up choosing the unwanted fish dish for some reason – its

description is typed in red so that it attracts her attention, she is in a rush and chooses it

without intention, or she forgets her original plan when she chooses an alternative.

Since we can naturally regard such choice behavior as stochastic, ex post choice is also

regarded as stochastic. Then, fully anticipating this ex ante, she may prefer commitment to a

singleton menu. Namely, she prefers the restaurant that serves only chicken to the one that

serves both chicken and fish, to avoid “mistakenly” choosing suboptimal alternatives ex post.

This paper formalizes this intuition.

A key assumption of the characterization is that mixtures of menus are perfectly correlated,

i.e., they include only mixtures of particular pairs of alternatives. This is the case if the common

set of underlying mental states determine the choice of alternatives from each menu. This clearly

contrasts with uncorrelated mixtures of menus employed in the existing studies, which include

mixtures of all pairs of alternatives from each menu.

Our main theorem (Theorem 1) axiomatizes the following preference representation, which

we refer to as an anticipated stochastic choice (ASC) representation:

V (x) = max
µ∈M|x|

∫

S|x|
u(φ(x, s))dµ(s), (1)

where x is a menu, S|x| is the set of mental states that depends on the cardinality of x, M|x| is a

set of probability measures over S|x|, or state-generating functions, S = ∪∞n=1Sn, M = ∪∞n=1Mn,

u is a (state-independent) utility function, and φ is a choice function, i.e., a function that yields

an alternative of a given menu, depending on a mental state si. Probability distributions over

the alternatives of a menu derived from a choice function φ and state-generating functions µ

can be interpreted as stochastic (probabilistic) choice functions.
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An important property of an ASC representation is the uniqueness of M. Hence, M is

naturally interpreted as an index of bounded rationality, or ability to control her future self. If

M|x| = ∆(S|x|), i.e., the set of state-generating functions is equivalent to the set of all probability

distributions over S|x|, then she has full control of her future choice. In this case, the DM can

always attain the exact maximization, i.e., V (x) = maxβ∈x u(β), which is roughly corresponds

to a preference for flexibility (with a state-independent utility function). On the other hand, if

M|x| = {µ} for some probability measure µ over S|x|, then her ex post choice is purely stochastic.

This case corresponds to Luce’s (1959) choice axiom approach. ASC representations include

these two as polar cases.

Moreover, there are two more notable special cases of an ASC representation. One is a

trembling-hand model (Selten 1975), which implies that the DM chooses the best alternative

with probability 1− ε and suboptimal alternatives with probability ε. The other is choice under

limited consideration sets (Wright and Barbour 1977; Masatlioglu, Nakajima, and Ozbay 2010),

i.e., the DM exactly maximizes her utility except that only alternatives within a specific set are

considered.

To summarize, the contributions of this paper are threefold. First, we demonstrate that

stochastic choice is a (potential) source of a preference for commitment, in addition to tempta-

tion (Gul and Pesendorfer 2001; Dekel, Lipman, and Rustichini 2009; Dekel and Lipman 2010;

Stovall 2010; Chatterjee and Krishna 2009; Noor and Takeoka 2009, 2010) and ex post regret

(Sarver 2008).

Second, we endogenize a wide range of stochastic choice models from a preference for menus.

Although many studies have discussed stochastic choice, they directly assume, rather than

derive from a preference, a probability measure over alternatives or related objects (e.g., Debreu

1958; Luce 1959; Davidson and Marschak 1959; Luce and Suppes 1965; Selten 1975; McFadden

and Richter 1991; Harless and Camerer 1994; Bandyopadhyay et al. 1999; Gul and Pesendorfer

2006; Manzini and Mariotti 2010). In contrast, we derive a subjective probability measure over

alternatives from a preference for menus.

Finally, an ASC representation is more flexible than stochastic choice models described by

a single probability measure over alternatives, so that it does not necessarily satisfy regularity

(Luce and Suppes 1965) or Weak Axiom of Revealed Stochastic Preference (WARSP, Bandy-

opadhyay et al. 1999). Hence, it accommodates anomalies of stochastic choice such as the

attraction effect, cyclical choice, and Allais paradox. (We will discuss this in Section 4.)

The remainder of this paper is organized as follows. In the next subsection, we review

the related literature. In Section 2, we provide the basic framework that we focus on. In

Section 3, we provide basic axioms, and in Section 4, we propose the main representation
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theorem (Theorem 1). Section 5 characterizes the relation between preferences over menus

of different cardinalities. We examine the implication of ASC representations regarding size-

related axioms (such as monotonicity) in Section 6 and the pure stochastic case, where the

set of state-generating function is a singleton, in Section 7. We discuss ASC representations

accommodating some anomalies of stochastic or deterministic choice and the implications of

mental states compared to the literature in Section 8. Concluding remarks are made in Section

9.

1.2 Related Literature

In this section, we will review the relevant literature. First, our model is related to menu choice

models, in particular, the models of a preference for flexibility and commitment (Kreps 1979,

1992; Nehring 1999; Dekel, Lipman, and Rustichini 2001, 2009; Gul and Pesendorfer 2001;

Sarver 2008; Chatterjee and Krishna 2009; Noor and Takeoka 2009, 2010; Stovall 2010; Ergin

and Sarver 2010; Dekel and Lipman 2010). Three remarks are in order.

The first is that an ASC representation does not generally satisfy extremeness (Gul and

Pesendorfer 2006), i.e., an ASC representation generally permits non-extreme points of (the

convex hull of) a menu to be chosen with positive probability. On the other hand, as Gul

and Pesendorfer point out, the studies mentioned above do satisfy extremeness since they are

random utility models. Accordingly, our ASC representation outperforms these studies as a

model of stochastic choice, because extremeness is violated in many experiments.

The second (somewhat technical but related to the first) remark is that we employ perfectly

correlated mixtures of menus whereas they employ uncorrelated mixtures. The difference leads

to representations over choice functions in this paper and over support functions in the studies

mentioned above, which changes the relevance of extremeness.

The final remark is on Ergin and Sarver’s (2010, Section 5.1) constant (in particular, zero)

contemplation cost representation. The reader may suspect that their representation looks

similar to an ASC representation in that the optimal probability measure over “subjective”

states is chosen from a set, as well as their set of axioms are similar to ours. However, our

model differs from theirs for the following two reasons. First, as we mentioned, their model

satisfies extremeness, which is difficult to interpret as a stochastic choice model. Second, Ergin

and Sarver’s representation is compatible with monotonicity, i.e., menu x is preferred to y if x

⊇ y, whereas our representation contradicts it unless it reduces to the exact maximization case

as we will indicate in Section 6.

Next, we discuss the relations to various stochastic choice models. First, ASC representa-

tions are generally more flexible than a stochastic choice model described by a single probability
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measure over alternatives (e.g., Luce 1959) since they admit more than one state-generating

functions. This property enables them to accommodate choice anomalies as we will demonstrate

in Section 8. Second, this paper provides a decision theoretic foundation for trembling-hand

models, which are employed in game theory and experimental economics (e.g., Selten 1975;

Harless and Camerer 1994). Moreover, Theorem 4 in Section 6 also provides a foundation for

the argument that the less rational the DM becomes (parameter ε increases), the higher the

probability of choosing suboptimal alternatives becomes.

Choice under limited consideration sets was originally considered in psychology and mar-

keting science and has also been studied in economics (for extensive references, see Masatlioglu,

Nakajima, and Ozbay 2010). As we mentioned in the previous section, if the union of supports

of state-generating functions is a proper subset of the set of all mental states, the corresponding

ASC representation can be interpreted as (exact) utility maximization under limited consid-

eration sets, whereby only specific (e.g., N most salient) alternatives are chosen from a menu

with positive probability. On the other hand, Manzini and Mariotti (2010) assume stochastic

consideration sets and derive a stochastic choice model from them. Unlike their approach, we

first derive a stochastic choice model from a menu preference, then derive consideration sets in

a special case of ASC representations.

The separation between ex ante optimality and ex post choice/optimality assumed in this

paper resembles the dichotomy of deliberative and affective (and often automatic) systems

(Loewenstein and O’donoghue 2004). Similar dichotomies prevail in economics (Thaler and

Shefrin 1981; Loewenstein 1996; Kahneman 1994; Kahneman, Wakker, and Sarin 1997; Gul

and Pesendorfer 2001; Fudenberg and Levine 2006; Chatterjee and Krishna 2009), as well as

psychology and neuroscience. From this point of view, an ASC representation describes a situ-

ation in which the affective system triggers stochastic ex post choice, whereas fully anticipating

this, the DM deliberatively chooses a menu and controls the realization of mental states to

maximize her ex ante (expected) utility.

2 Preliminaries

Let Z be a finite set of prizes and ∆(Z) the set of lotteries, i.e., Borel measures over Z, or

alternatives. The symbol K(·) denotes the set of all subsets of ∆(Z), where K0(·) denotes the

set of all finite subsets. We set A = K0(∆(Z)), the set of finite subsets of ∆(Z), as the domain

of choice in this paper.1 We denoted by AM the set of menus with cardinality M = 1, 2, · · ·.
1We restrict our attention to finite menus since a key assumption of our analysis is that there exists a bijection

(or onto) function between alternatives in each menu, which is not generally satisfied with (uncountably) infinite
menus. Note that our approach can be easily extended to the case with countable menus. On the other hand,
many studies focus on finite menus or convex hulls of finite menus (Gul and Pesendorfer 2001; Dekel, Lipman,
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A menu is chosen

0 1 2 3

An alternative is chosen
depending on the mental state

The optimal state-generating
function is chosen

A mental state
is triggered

Figure 1: Timeline

We apply the topology to A that is induced by the Hausdorff (semi-)metric

dh(x, y) = max{max
β∈x

min
γ∈y

dp(β, γ), max
γ∈y

min
β∈x

dp(β, γ)},

where x, y ∈ A and dp is a metric that generates the weak topology.2

In this paper, we assume a preference relation % on A. We refer to the restriction of % to

singleton menus, i.e., a binary relation on ∆(Z), as the commitment ranking. For simplicity, we

denote β % γ to indicate {β} % {γ} for β, γ ∈ ∆(Z).

2.1 Timeline

Now, we explain the timeline assumed in this paper.3 At period 0, the DM chooses a menu x.

Then, at period 1, the DM chooses a state-generating function µ, i.e., a probability measure

over mental states, anticipating her own ex post stochastic choice, to maximize the ex ante

expected utility. At period 2, a (subjective) mental state s, which will govern choice at period

3, is triggered. Finally, the DM chooses an alternative β from menu x at period 3, depending

on the mental state s.

Unlike the existing studies on unforeseen contingencies (e.g., Dekel, Lipman, and Rustichini

2001), we do not necessarily assume a utility maximizing stage after the realization of a mental

state (this is the reason that we apply the terminology “mental state” rather than “subjective

state,” which is often employed in the literature): even if β2 is not preferred to β1 by the

commitment ranking, it can be chosen from menu {β1, β2} with positive probability.

There are two possible interpretations for this assumption. The first views that ex post

choice as an (automatic) process that is irrelevant to utility maximization, despite the DM is

fully aware of this ex ante.4 This interpretation reflects the dichotomy between the deliberative

and Rustichini 2009; Stovall 2010; Chatterjee and Krishna 2009).
2Since we focus on finite menus in this paper, both the maxima and minima exist.
3The timeline detailed here is an interpretation, rather than a part of the model, since we assume that only

choice over menus at period 1 is observable.
4Some psychology literature reported that the subjects’ estimations of the probability to make a specific form

of mistakes conform with their partners’, are steady in the long run, and correlate with those of the probability
to make other forms of mistakes, despite they still cannot avoid making the mistakes in practice (e.g., Broadbent
et al. 1982).
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and affective systems in decision making that we discussed in Subsection 1.2, where the ex ante

preference corresponds to the former while the ex post preference corresponds to the latter.

In contrast, the second interpretation regards that each mental state renders the correspond-

ing alternative optimal in terms of the ex post preference, i.e., each alternative is the (unique)

maximizer of the ex post utility given some mental state s. According to this view, ex ante

suboptimal alternatives are chosen ex post because of the discrepancy between the ex ante and

ex post preferences, rather than non-utility-maximizing behavior such as mistakes.5

In the remainder of this paper, we follow the first interpretation unless otherwise stated, since

our main focus is stochastic choice rather than random utility, for which the first interpretation

is more relevant.

2.2 Correlated Mixtures

In this paper, we employ correlated mixtures of menus, instead of uncorrelated mixtures em-

ployed by the existing studies. We first provide an intuition. Suppose that each alternative

is associated with unique salience that is irrelevant to the prizes that an alternative induces,

e.g., the description of each alternative is printed in letters with different colors;6 the DM is

vulnerable to specific salience in some mental state – she chooses an alternative printed in red

in the mood that it attracts her attention, regardless of the prizes that it gives. Then, we

can reasonably assume that the DM chooses alternatives with the same type of salience in the

common mental state, i.e., she chooses an alternative printed in red from a menu whenever she

does from another menu. Since the timeline implies that mental states are realized before the

randomization between menus x and y of mixture λx+(1−λ)y is performed, the DM naturally

identifies the mixture with a menu that only includes mixtures of correlated alternatives. Con-

versely, if she always identifies the mixture of menus with a menu that only includes mixtures

of correlated alternatives, we can construct the set of mental states that trigger the choice of

the corresponding alternatives from a menu.

In the following, we formalize this idea. First, we coin ρx,y : x × y → {0, 1} as the mixture

coefficient for menus x and y and define λx+(1−λ)y ≡ {λβ+(1−λ)γ : β ∈ x, γ ∈ y, ρx,y(β, γ) =

1}. In other words, ρx,y(β, γ) = 1 indicates that the mixture of alternatives β and γ is included

in the mixture of menus x and y, while ρx,y(β, γ) = 0 indicates not.7 We say that alternatives

5This could also lead to a multi-agent interpretation, where ex ante and ex post preferences describe a
“principal” and an “agent,” respectively, rather than multiple selves of a single DM.

6It is possible that salience depends on the prizes that an alternative induces. For instance, many experiments
suggest that extreme (maximum and/or minimum) outcomes be crucial in some choice problems such as the
Allais paradox, in which case salience is no longer independent of the outcomes that an alternative induces. We
exclude these cases for simplicity.

7Note that ρx,y(β, γ) depends on members of x and y other than β and γ. Namely, it is possible that
ρx,y(β, γ) = 1 and ρx′,y′(β, γ) = 0 for some menus x, y, x′, and y′ such that β ∈ x, β ∈ x′, γ ∈ y, and γ ∈ y′.
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β and γ in menus x and y, respectively, are mixed if ρx,y(β, γ) = 1. Note that uncorrelated

mixtures in the literature correspond to the case that ρx,y(β, γ) = 1 for all x, y ∈ A, β ∈ x,

and γ ∈ y.

We impose the following conditions on mixture coefficients throughout this paper.

Definition 1 (Perfectly Correlated Mixture Coefficient) A mixture coefficient ρ is

called a perfectly correlated mixture coefficient if the following conditions hold:

(a) ρx,y(β, γ) = ρy,x(γ, β) for all x, y ∈ A, β ∈ x and γ ∈ y;

(b) ρx,y(β, γ) = 1 and ρy,z(γ, δ) = 1 imply ρx,z(β, δ) = 1 for all x, y, z ∈ A, |x| = |y| = |z| and

β ∈ x, γ ∈ y, and δ ∈ z;

(c) a function ξx,y : ∆(Z) → ∆(Z) such that ξx,y(β) = γ whenever ρx,y(β, γ) = 1 for all β ∈ x,

γ ∈ y is onto for all x, y ∈ A with |x| ≥ |y|;
(d) ρx,y(β, γ) = 1 implies ρx,λx+(1−λ)y(β, λβ + (1− λ)γ) = 1 for all x, y ∈ A, β ∈ x, γ ∈ y, and

λ ∈ [0, 1].

Condition (a) implies symmetry, i.e., alternative β in menu x is mixed with γ in y whenever

γ in y is mixed with β in x. Condition (b) implies transitivity, i.e., if alternative β in menu x

is mixed with γ in menu y and δ in menu z is mixed with δ in menu z, then β in x and δ in z

are mixed, with menus with the same cardinality. Condition (c) implies that for all x, y with

|x| ≥ |y|, each alternative in the menu x is mixed with exactly one alternative in the menu y

while each alternative in y is mixed with at least one alternative in x. Note that conditions

(a) to (c) render the mixture of menus well-defined. On the other hand, Condition (d) implies

that the correlation between alternatives is invariant with respect to the convex combinations

of alternatives, i.e., if β and γ are correlated, then β (and γ by condition (a)) is mixed with the

mixture of β and γ.

To illustrate the difference between perfectly correlated and uncorrelated mixtures, consider

menus x = {β1, β2} and y = {γ1, γ2}. If mixtures are uncorrelated as in the existing studies,

i.e., ρx,y(β, γ) = 1 for all β ∈ x and γ ∈ y, the mixture λx + (1 − λ)y with λ ∈ [0, 1] is

equivalent to {λβ1 + (1− λ)γ1, λβ1 + (1− λ)γ2, λβ2 + (1− λ)γ1, λβ2 + (1− λ)γ2}. On the other

hand, if the mixture is perfectly correlated and ρx,y(βi, γi) = 1 for i = 1, 2, it is equivalent to

{λβ1 + (1− λ)γ1, λβ2 + (1− λ)γ2}. Note that a perfectly correlated mixture is equivalent to an

uncorrelated mixture if one (or both) of the two menus is a singleton.

Next, we define a useful property of an alternative, which we call a mixture-invariant addi-

This reflects the fact that salience is often relative rather than absolute: the “redness” of a color is relatively
determined by other colors that the DM faces (orange is more red than yellow, but less red than red), which
may change the the mental state that triggers the choice of the alternative in the color.
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tion.

Definition 2 (Mixture-Invariant Addition) For x ∈ A, we call β̃ ∈ ∆(Z) a mixture-

invariant addition to x if there exists y ∈ A and γ̃ ∈ ∆(Z) such that ρx∪{β̃},y∪{γ̃}(β, γ) = 1

whenever ρx,y(β, γ) = 1, and ρx∪{β̃},y∪{γ̃}(β̃, γ̃) = 1. Further, given such y and γ̃, we call β̃ a

mixture-invariant addition to x with respect to (y, γ̃).

A mixture-invariant addition to a menu remains the mixtures of existing alternatives un-

changed, while it is mixed to the alternative that is added to the other menu. Note that the

alternative γ̃ in Definition 2 is a mixture-invariant addition to y by definition.

To obtain the main result, we need to make the following structural assumption.

Assumption 1 (a) for all x ∈ A, β̄ ∈ x, and β′ ∈ ∆(Z), there exists β̂ ∈ ∆(Z) such that β̂

∼ β′ and β̂ is a mixture-invariant addition to x \ {β̄} with respect to (x \ {β̄}, β̄), and

(b) for all x ∈ A, there exists a mixture-invariant addition to x.

Condition (a) assures that an arbitrary alternative can be replaced by the alternative of an

arbitrary commitment ranking without changing the mixtures between alternatives, whereas

(b) states that there exists an alternative such that its addition to a menu does not change the

mixture between alternatives.

The following lemma, whose proof is relegated in the Appendix, shows that a perfectly

correlated mixture coefficient derives the sets of mental states and a choice function.

Lemma 1 Under Assumption 1b, the following statements are equivalent:

(a) ρ is a perfectly correlated mixture coefficient.

(b) for all M , there exist SM = {s1, · · · , sM} and φ : AM × SM → ∆(Z) such that φ(x, s) ∈ x

for all s ∈ SM and φ(x, s) 6= φ(x, s′) for s 6= s′. Further, functions φx(·) ≡ φ(x, ·) for some x

∈ AM are closed under state-wise mixtures, i.e., (λφx + (1− λ)φy)(s) ≡ λφx(s) + (1− λ)φy(s)

for all x, y ∈ AM , λ ∈ [0, 1], and s ∈ SM are also functions from SM to ∆(Z).

3 Axioms

In this section, we state the axioms imposed on the preference relation %. The first axiom is

standard.

Axiom 1 (Weak Order) % is complete and transitive.
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The second axiom is also standard, except that it is restricted to menus of the same cardi-

nalities.

Axiom 2 (Archimedian Continuity for Menus of the Same Cardinalities) For all M

= 1, 2, · · · and x, y, z ∈ AM, if x Â y Â z, then there exists λ, λ′ ∈ (0, 1) such that λx+(1−λ)z

Â y Â λ′x + (1− λ′)z.

Intuitively, we need the restriction because the evaluation of a menu depends on the car-

dinality of mental states and eventually, the cardinality of the menu, as we will indicate. If a

menu is mixed with a menu of a different (typically, larger) cardinality, the mixture may have

a different cardinality and be evaluated differently from the original menu, which is a source of

discontinuity.

The next two are the key axioms of this paper. First, we require the independence axiom

only for mixtures with singleton menus.

Axiom 3 (Singleton Independence (S-Independence)) For x, y ∈ A, if x % y if and

only if λx + (1− λ){β} % λy + (1− λ){β} for all λ ∈ [0, 1] and β ∈ ∆(Z).

The intuition behind this axiom is as follows. Let x, y, and z be menus and λ ∈ [0, 1]. If the

preference ranking between λx + (1− λ)z and λy + (1− λ)z differs from the ranking between x

and y, the only reason is that mixing z affects the evaluations of x and y differently. However,

if z is a singleton, i.e., z = {β} for some β ∈ ∆(Z), then each alternative in x and y is mixed

by the same alternative β in λx + (1 − λ){β} and λy + (1 − λ){β}, which uniformly changes

the evaluations of alternatives. Thus, the ranking between x and y and the ranking between

λx + (1− λ){β} and λy + (1− λ){β} should be consistent.

This axiom is similar to C-independence by Gilboa and Schmeidler (1989), Set S-independence

by Olszewski (2007), the independence of degenerated decisions (IDD) by Ergin and Sarver

(2010). In particular, IDD adapted to correlated mixtures of menus is a weakening of S-

independence (which we might refer to as weak S-independence). If we impose the weaker axiom

instead of S-independence, we will obtain a more general representation similar to a costly con-

templation model by Ergin and Sarver, wherein choosing the optimal probability measure over

subjective states involves positive costs. However, we prefer to impose S-independence rather

than the weaker axiom, since that derives a sharper result regarding the relations between

preferences over menus of the different cardinalities (which we indicate in Section 5).

The next axiom requires that the DM prefer menus to mixtures of the menus with inferior

menus.
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Axiom 4 (Aversion to Mixtures of Inferior Menus, AMI) For all M = 1, 2, · · ·, x, y

∈ AM, if x % y, then x % λx + (1− λ)y for all λ ∈ [0, 1].

To understand the intuition behind this axiom, first consider exact maximization, i.e., the

ex ante optimal alternative is chosen from a menu with probability 1, as the benchmark. Let

alternatives β̄ and γ̄ be of the highest commitment ranking in menus x and y, respectively. If

β̄ Â γ̄, it is natural to assume that x Â λx + (1− λ)y since β̄ is the best alternative in the first

term, while β̄ is mixed with an inferior alternative in the second term.

On the other hand, suppose that β̄ ∼ γ̄. If the DM performs exact maximization, we have x

∼ y by construction. In this case, mixing y with x is innocuous since λx+(1−λ)y is evaluated

only by the mixture of best alternatives in x and y, i.e., λβ̄+(1−λ)γ̄ ∼ β̄ under S-independence,

concluding that x ∼ λx + (1− λ)y.

However, if the DM possibly chooses suboptimal alternatives from a menu with positive

probability, we may have x Â y because suboptimal alternatives in y worsen the evaluation of

the menu more than those in x. In this case, we naturally assume that mixing with y lowers

the evaluation of x, and thus we have x Â λx+(1−λ)y, which is the implication of the axiom.

Axiom 4 may look similar to Ergin and Sarver’s (2010) aversion to contingent planning

(ACP). However, we apply a different terminology since our axiom has a different interpretation

from theirs, because of correlated mixtures: Ergin and Sarver argue that making contingent

plans for the mixture of menus x and y is more costly than making contingent plans for x and y

themselves, and that is the reason for x to be preferred to λx+(1−λ)y. However, this argument

relies on the assumption of uncorrelated mixtures, which makes the cardinality of λx+(1−λ)y

much greater than those in x and y (note that |λx + (1− λ)y| = |x||y| in this case). Since we

assume correlated mixtures in this paper, which make the cardinality of λx + (1 − λ)y is at

most as large as the largest cardinality between x and y, the interpretation is not relevant to

our axiom.

Note that the axiom is imposed only on menus of a common cardinality, since imposing it

on menus of different cardinalities is too restrictive. For example, if |x| < |y| for x, y ∈ A, the

cardinality of λx+(1−λ)y equals |y|. Then, x may be evaluated differently from λx+(1−λ)y

as we discussed for Axiom 2, and there is no reasonable way to associate the evaluation of the

former with that of the latter.

Finally, the following two axioms are technical ones imposed on %.

Axiom 5 (Mixture-Wise Monotonicity) Let x and y be menus. If {β} % {γ} for all β ∈
x and γ ∈ y such that ρx,y(β, γ) = 1, then x % y.
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Axiom 6 (Nondegeneracy) There exist menus x, y such that x Â y.

Intuitively, Axiom 5 says that menu x is preferred to y if the alternative chosen from x is

better than the one chosen from y (with respect to the commitment ranking) in each mental

state. On the other hand, Axiom 6 assures that not all menus are indifferent.

4 Representation Theorem

Now, we are in the position to state our representation theorem. First, we define an ASC

representation, which is the main focus of this paper. We say that a functions W : A → <
represents % if x % y whenever W (x) ≥ W (y).

Definition 3 (Anticipated Stochastic Choice (ASC) Representation) We call that

(u, φ, S,M) is an anticipated stochastic choice (ASC) representation of the preference % if the

following conditions hold:

(i) S = ∪∞n=1Sn, where Sn = {s1, · · · , sn};
(ii) M = ∪∞n=1Mn, where Mn ⊆ ∆(Sn) is convex and closed for n = 1, 2, · · · ;

(iii) V : A → < is a function that represents % such that

V (x) = max
µ∈M|x|

∫

S|x|
u(φ(x, s))dµ(s), (2)

where u : ∆(Z) → < is an affine function and φ : A × S → ∆(Z) is a function, Further, the

restriction of φ on {x} × S|x|, i.e., φx(·) ≡ φ(x, ·), is a bijection.

Furthermore, we say that an ASC representation (u, φ, S,M) of % is essentially unique if

the following conditions hold for all ASC representations (u′, φ′, S ′,M′) of %:

(iv) u is unique up to a positive affine transformation, i.e., there exists a > 0 and b ∈ < such

that u′(β) = au(β) + b for all β ∈ ∆(Z);

(v) there exists a bijection η : S → S ′ such that φ′(x, η(s)) = φ(x, s) for all x ∈ A and s ∈ S;

(vi) M = {µ ◦ η ∈ ∆(S) : µ′ ∈M}.

This representation is interpreted as follows. Conditions (i) and (ii) define the sets of mental

states S and state-generating functions, i.e., probability distributions over the sets of mental

states, M. Condition (iii) denotes a representation V of %, where a choice function φ yields

an alternative in a given menu x, depending on the mental state s ∈ S|x|. For a menu x,

a state-generating function µ ∈ M|x| together with φ derives a probabiilty distribution over

alternatives in a given menu x, which is interpreted as a stochastic choice function, i.e., a

12



probability distribution over alternatives in x.8 Fully anticipating this, the DM chooses the

optimal state-generating function µ to maximize the expected utility with the utility function

u.9 Note that the bijectiveness of φx guarantees the minimality of the set of mental states

Sn for each n, i.e., if S ′n ) Sn, then S ′n is never the set of mental states. On the other hand,

uniqueness condition (iv) is straightforward. The implication of (v) is that the sets of mental

states that induce the same ex post choice after renumbering are considered equivalent, and

(vi) implies that after the renumbering, the sets of state-generating functions are equivalent.

Now, we state the main theorem of this paper.

Theorem 1 (Main Theorem) Under Assumption 1, % satisfies Axioms 1-6 if and only if %

admits an ASC representation (u, φ, S,M). Furthermore, the ASC representation is essentially

unique.

The proof is in the Appendix. A sketch of the proof is as follows: first, weak order, continu-

ity, and S-independence imply that there exists a von Neumann-Morgenstern function u that

represents the commitment ranking %. Without loss of generality, u is normalized to K ⊆ <.

Next, fix a finite number M of alternatives in each menu. Since Assumption 1 assures

that a mental state can be associated with an alternative of an arbitrary commitment ranking,

there exists a set of mental states SM such that the set of menus x and the set of functions

φx : SM → x are isomorphic. Moreover, by the definition of correlated mixtures that we

employ, the set of composite functions u ◦ φx : SM → K of utility functions u and functions

φx constructs a linear space, wherein addition and scalar multiplication are derived from the

perfectly correlated mixture coefficient.

Hence, over functions φx : SM → x, there exists a preference relation that satisfies the

counterparts of Axioms 1-6, which are similar to those imposed by Gilboa and Schmeidler

(1989). (Note that the counterpart of AMI has the inverse implication of Gilboa and Schmei-

dler’s uncertainty aversion, which makes our representation the maximum of expected utility as

opposed to the minimum.) Thus, an argument similar to theirs derives the desired preference

representation for the fixed M . Finally, since the same argument holds for all M , the desired

representation is obtained for any menu x. The uniqueness result is similar to that of Gilboa

and Schmeidler (1989).

8The stochastic choice function employed here is standard in the literature on stochastic choice (e.g., McFad-
den and Richter 1991) except that mental states s, which determine the choice of an alternative from a menu,
are explicit in an ASC representation, while they are implicit in the literature.

9We can easily derive a representation in which a state-generating function is chosen so that the expected
utility is minimized from reversing the implication of AIM. The obtained representation implies that ex post
choice of an alternative is made by nature, which makes the DM ambiguity averse. We will discuss more on the
difference in implication between the modified representation and an ASC representation in Subsection 8.2.
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A few remarks are in order. First, the (essential) uniqueness of S and M in an ASC

representation renders the interpersonal comparison of M meaningful: a larger set M of state-

generating functions provides the DM more freedom to control her future self, which can be

interpreted as more rationality. Conversely, a smallerM restricts the DM’s ability to control her

future self, thus she prefers commitment to singleton menus more, to avoid choosing suboptimal

alternatives. We will formalize this discussion in Subsection 6.2.

Second, an ASC representation generally derives probability distributions over the alterna-

tives of a menu that do not generally satisfy extremeness, i.e., ASC representations permit non-

extreme points to be chosen with positive probability. For example, let Z ⊂ <2 be {b1, b2, b3, b4},
where b1 = (0, 0), b2 = (0, 1), b3 = (1, 0), and b4 = (1/3, 1/3). Then, by assuming that all µ

∈ M4 have full supports, b4 is chosen from x = {b1, b2, b3, b4} (where bi denote degenerated

lotteries for i = 1, 2, 3, and 4) with positive probability. This property renders an ASC repre-

sentation more tractable than the random utility models such as Dekel, Lipman, and Rustichini

(2001), Dekel and Lipman (2010), and Ergin and Sarver (2010) as a stochastic choice model,

as we discussed in Subsection 1.2.

Finally, “on-path” stochastic choice functions, i.e., probability distributions over menus

induced by the optimal state-generating functions and the choice function, generally violate

regularity (Luce and Suppes 1965) and Weak Axiom of Revealed Stochastic Preference (WARSP,

Bandyopadhyay et al. 1999).10 This property provides flexibility to an ASC representation to

accommodate some choice anomalies as we will demonstrate in Section 8.

We conclude this section by discussing four special cases of an ASC representation. The first

is Mn = ∆(Sn) for n = 1, 2, · · ·. In this case the DM can exactly attain the optimality with

probability 1 since she chooses the optimal state-generating function among all the probability

measures over Sn. We will demonstrate in Subsection 6.1 that monotonicity implies (and is

implied by) this special case.

The second is Mn = {µn} for some probability measures µn ∈ ∆(Sn) with n = 1, 2, · · ·.
This corresponds to the pure stochastic choice case, i.e., the DM chooses alternatives with

probability specified by µn. In particular, if µn is such that µn({s1}) = 1 and µn({si}) = 0

for i 6= 1, only the alternative corresponding to s1 is chosen with probability 1 regardless of

its commitment ranking, which is interpreted that choice is so inadvertent that only the most

salient alternative is chosen with positive probability. We will discuss these special cases in

Section 7.

10Our approach shares the same spirit with Noor and Takeoka (2009, 2010), who consider a preference for
menus that violates independence or WARP (Weak Axiom of Revealed Preference). However, they focus on
deterministic choice of an alternative from a menu, whereas we focus on stochastic choice (they examine WARP
while we examine WARSP).
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The third special case of interest is Mn = {(1 − ε)µ + εµn : µ ∈ ∆(Sn)} for some state-

generating function µn ∈ ∆(Sn) and n = 1, 2, · · ·. In this case, all the state-generating functions

are available with probability 1− ε and only a purely stochastic choice is available with proba-

bility ε. Eventually, we obtain a trembling-hand representation (Selten 1975)

V (x) = (1− ε) max
β∈x

u(β) + ε
∫

S|x|
u(φ(x, s))dµ|x|(s), (3)

which implies that the DM chooses the best alternative with probability 1 − ε and arbitrary

alternatives with probability ε.1112

Finally, choice under limited consideration sets (Wright and Barbour 1977; Masatlioglu,

Nakajima, and Ozbay 2010) can be also considered as a special case of an ASC representation.

For each n = 1, 2, · · ·, let Qn ( Sn and Mn = {µ ∈ ∆(Sn) : supp(µ) ⊆ Qn} (supp(µ) de-

notes the support of µ). Then, the ASC representation becomes V (x) = maxβ∈φ(x,Q|x|) u(β). In

other words, the DM chooses the best alternative from the ones corresponding to mental states

in Qn, and the alternatives corresponding to mental states in Sn \ Qn will be never “consid-

ered,” irrespectively of their utility. Compared to a revealed attention model by Masatlioglu,

Nakajima, and Ozbay (2010), the ASC representation permits stochastic choice as well as de-

terministic choice, whereas the “consideration sets” φ(x,Qn) depend on the correspondences

between mental states and alternatives.

5 Relations between Preferences for Menus of Different

Cardinalities

In the previous section, we have not specified relations between the sets of mental states asso-

ciated with menus with different cardinalities. In other words, if the cardinalities of menus x

and y are different, there is not necessarily a correspondence between mental states associated

with x and y. On the other hand, the following analysis relates the sets of mental states by

imposing the following axiom.

11For the sake of simplicity, we do not provide a formal axiomatization for a trembling-hand ASC represen-
tation. However, the axiomatization will be easily obtained by exploiting an axiomatization of ε-contamination
(for example, Nishimura and Ozaki 2006), and the similarity between ASC and maxmin expected utility repre-
sentations.

12This representation may remind the reader of Chatterjee and Krishna (2009), who consider the DM that
maximizes the ex ante utility with probability 1− ε and the “alter-ego” utility with probability ε. In particular,
if we accept the second interpretation in Subsection 2.1, i.e., ex post choices in an ASC representation are made
to maximize the ex post utility given mental states, (3) implies that the DM maximizes the ex ante utility with
probability 1− ε and the multiple “alter-ego” utility, which depends on mental states, with probability ε.

Unlike their study, however, the ex post utility function in this interpretation is not generally a von Neumann-
Morgenstern utility function. Accordingly, an ASC representation does not satisfy extremeness as we mentioned,
while their model satisfies it.
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Axiom 7 (Indifference to Addition of Commitment Equivalent, IAC) For x ∈ A, if

x ∼ {β̄} and β̄ is a mixture-invariant addition to x, then x ∪ {β̄} ∼ {β̄}.

Suppose that the menu x is indifferent to a singleton menu {β̄} (which we refer to as the

commitment equivalent of x). Then, it is reasonable to assume that x∪{β̄} is also indifferent to

{β̄} since the addition of β̄ does not change the existing correspondences between alternatives

in x and mental states, which explains the implication of the axiom.

Now, we consider the following relation between the sets of state-generating functions.

Definition 4 (Set of State-Generating Functions Derived from the Bayes’ Rule) Let

Mn+k be the set of state-generating functions over Sn+k in an ASC representation (u, φ, S,M).

We refer to M∗
n,k as the set of state-generating functions over Sn derived from the Bayes rule

if the following condition is satisfied:

M∗
n,k = {µ(Sn ∩ ·)/µ(Sn)|µ ∈Mn+k, µ(Sn) > 0}. (4)

In other words, M∗
n,k consists of state-generating functions derived from the Bayes’ rule

applied to each state-generating function in Mn+k, while excluding the ones that assign zero

probability to Sn. If the sets of state-generating functions are singletons, then M∗
n,k are simply

derived from the Bayes’ rule applied to the singletons, which is compatible with Luce (1959)

(we will formally characterize this case in Section 7).

Now, the following theorem indicates that under Axiom 7, Mn includes state-generating

functions that are derived from the Bayes’ rule applied to each state-generating function in

Mn+k.

Theorem 2 Assume that % has an ASC representation (u, φ, S,M). Then, IAC implies the

following statements for all n, k ∈ N .

(i) M∗
n,k ⊆ Mn, and

(ii) M∗
n,k = Mn if µ(Sn) > 0 for all µ ∈ Mn+k.

The proof is relegated to the Appendix. To see the reason that we need the condition that

µ(Sn) > 0 for all µ ∈ Mn+k to obtain statement (ii), note that a key step of the proof is the

equality in (10), i.e., maxµ∈M∗
n,k

∫
Sn

u◦φ(x, s)dµ = maxµ∈Mn+k

∫
Sn

u◦φ(x,s)
µ(Sn)

dµ, the right-hand side

of which is not well-defined if there exists µ ∈ ∆(Sn+k) such that µ(Sn) = 0.
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Note also that dropping the condition in Axiom 7 that β̄ is a mixture-invariant addition is too

restrictive to obtain a general ASC representation: for example, let x = {β1, β2} and xi = x∪{β̄i}
with β̄i ∈ ∆(Z) such that ρxi,x∗3(β̄

i, β∗i ) = 1 for i = 1, 2, and 3. The strengthened version of

Axiom 7 implies that x1, x2, and x3 are all indifferent, while the original statement only implies

that x3 is indifferent to {β̄}. However, since β̄1, β̄2, and β̄3 have the same commitment ranking,

yet mixed with different β∗i , the indifference between x1, x2, and x3 implies that the alternative

of the same commitment ranking is chosen from each menu with the same probability (e.g., β̄i is

chosen from xi with the same probability for i = 1, 2, and 3). The only ASC representation that

satisfies the last condition is such that the set of state-generating functions for each cardinality

of menus is a singleton that gives the same probability to all mental states.

6 Monotonicity, Preferences for Commitment, and Set

Betweenness

In this section, we explore an important implication of an ASC representation regarding the

size of menus – whether the DM prefers flexibility or commitment – which is often examined in

the literature.

6.1 Monotonicity

In this subsection, we discuss monotonicity, i.e., a preference for larger menus, which is inter-

preted as a preference for flexibility. The following axiom is often discussed in the literature on

menu choice (e.g., Kreps 1979, 1992; Dekel, Lipman, and Rustichini 2001; Nehring 1999; Ergin

and Sarver 2010).

Axiom 8 (Monotonicity) For all x, y ∈ A, if x ⊇ y, then x % y.

The following theorem indicates that an ASC does not generally satisfy monotonicity unless

the sets of state-generating functions are equivalent to the sets of all probability measures over

mental states.

Theorem 3 Suppose that % has an ASC representation (u, φ, S,M). Then, the following

statements are equivalent.

(a) % satisfies monotonicity

(b) Mn = ∆(Sn) for n = 1, 2, · · ·.
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This theorem indicates that there is no nontrivial intersection between an ASC representa-

tion and the existing studies on a preference for flexibility à la Dekel, Lipman, and Rustichini

(2001). Namely, whenever we require monotonicity, an ASC representation reduces to a usual

utility maximization model with a state-independent utility function.

6.2 Preferences for Commitment

In this subsection, we investigate the other extreme, that is, a preference for commitment.

Definition 5 (Preferences for Commitment to Singleton Menus) (1) For x ∈ A,

preference % exhibits a preference for commitment to a singleton menu at x if there exists β ∈
x such that {β} Â x.

(2) Preference %2 exhibits a preference for commitment to a singleton menu more than preference

%1 if for all x ∈ A, there exists β ∈ x such that

{β} %1 x ⇒ {β} %2 x. (5)

Unlike Gul and Pesendorfer (2001), we restrict our attention to commitment to singleton

menus, which implies that a preference for commitment to a singleton menu is stronger than a

preference for commitment in their sense. Dekel and Lipman (2010) also focus on a preference

for commitment to a singleton menu and Ergin and Sarver (2010) employ a similar condition

to compare contemplation costs. The following observation indicates that an ASC preference

exhibits a preference for commitment to a singleton menu, which also implies that it exhibits a

preference for commitment in Gul and Pesendorfer’s sense.

Observation 1 Suppose that % has an ASC representation (u, φ, S,M) such that M (

∪∞n=1∆(Sn). Then, there exists x ∈ A with |x| ≥ 2 such that % exhibits preference for commit-

ment to a singleton menu at x.

To see why this implication holds, let β be the alternative of the highest commitment ranking

in x. Then, it is straightforward from the definition of an ASC representation that {β} Â x

unless M|x| = ∆(S|x|).

As is noted in Section 4, the size of the set of state-generating functions Mn can be inter-

preted as an index for the rationality of the DM. We provide a behavioral foundation for this

interpretation.
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Theorem 4 Suppose that the DMi’s preference %i has ASC representations (u, S,Mi) for i

= 1, 2. Then, %2 exhibits a preference for commitment to a singleton menu more than %1 if

and only if M1 ⊇ M2.

The proof can be found in the Appendix. Since the set of state-generating functions in

our representation describes state-generating functions from which the DM chooses the opti-

mal one, a smaller set of state-generating functions for DM2 than that for DM1 implies that

DM2 is more likely to “mistakenly” choose suboptimal alternatives from a menu ex post than

DM1. Eventually, DM2 prefers commitment more than DM1 to avoid unintentionally choosing

suboptimal alternatives.

In a trembling-hand case, the magnitude of ε implies (and is implied by) the set inclusion

condition above. LetMn = {(1−ε)µ+εµn : µ ∈ ∆(Sn)} andM′
n = {(1−ε′)µ+ε′µn : µ ∈ ∆(Sn)}

(note that µn is common between Mn and M′
n). Then, ε ≤ ε′ if and only if Mn ⊇ M′

n.

The proof of this theorem parallels with Ghirardato and Marinacci (2002, Theorem 17), who

relates an interpersonal comparison of ambiguity aversion to that of the set of priors in maxmin

expected utility. We should note, however, that we have the inverse implication about the

relation between the size of the set of state-generating functions and a preference for singleton

menus: the contraction of the set of priors is associated with a less preference for certainty in

their study, whereas the contraction of the set of state-generating functions is associated with a

more preference for commitment to a singleton menu in this paper. This reflects the fact that

the optimal state-generating function maximizes, instead of minimizes as in maxmin expected

utility, the expected utility.

6.3 Set Betweenness

Until this point, we have discussed the two extreme case, a preference for flexibility and com-

mitment. In this section, we explore something intermediate, i.e., set betweenness proposed by

Gul and Pesendorfer (2001).

Axiom 8’ (Set Betweenness) Let x, y ∈ A′ ⊆ A. If x % y, then x % x ∪ y % y.

It is easy to see that an ASC representation satisfies betweenness if it is restricted to singleton

menus. The statement is formalized as follows.

Observation 2 Suppose that % has an ASC representation (u, φ, S,M). Then, it satisfies set

betweenness if A′ = A1.
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Proof For singleton menus x = {β}, y = {γ}, β, γ ∈ ∆(Z), the utilities of x and y are the

(expected) utilities of choosing β and γ with probability 1, respectively. Accordingly, the utility

of x ∪ y = {β, β′} is the weighted sum of those of β and γ, whatever state-generating function

is chosen from the set, which leads to x % x ∪ y % y whenever x % y. Q.E.D.

The reader may suspect that set betweenness holds for non-singleton menus. However, it is

not generally true in an ASC representation. Consider the following example: let x = {β1}, y

= {β2, β3} such that β3 Â β1 Â β2. Suppose that M2 = {µ} such that µ ∈ ∆(S2) and µ(s1) =

1, M3 = {µ′} such that µ′ ∈ ∆(S3) and µ′(s3) = 1, and φ(x ∪ y, si) = βi for i = 1, 2, and 3.

Then, we obtain x Â y whereas x ∪ y Â x, which violates set betweenness.

To see the reason for the violation, notice the following two effects of the increase in the

cardinality of a menu, which results from combining menus x and y. The first is reducing

the probability of choosing the best alternative from the combined menu, given that the state-

generating function remains unchanged. The second is altering the set of state-generating

functions from which the optimal state-generating function is chosen. Singleton menus eliminate

the second effect since they derive singleton sets of state-generating functions for which the only

alternatives are chosen with probability 1, while they preserve the first.

Note that set betweenness is generally violated for non-singleton menus even under IAC: let

M′
3 = {µ′ ∈ ∆(S3) : µ′(s1) + µ′(s3) = 1}, which clearly includes M3 in the example above.

Then, we have M∗
2,1 = M2. Hence, it follows from Theorem 2 that an ASC representation with

M2 and M′
3 satisfies IAC, yet violates set betweenness.

7 Pure Stochastic Choice

In this section, we investigate a special case of ASC representation, in which the set of state-

generating functions is a singleton, which corresponds to Luce’s (1959) choice axiom approach.

Definition 6 (Pure Stochastic Choice) A pure stochastic choice representation is an ASC

representation (u, φ, S,M) such that M = ∪∞n {µn} for µn ∈ ∆(Sn), n = 1, 2, · · ·.

Next, we consider the following axiom, which is a strengthening of both S-independence

and AMI.

Axiom 3’ (Independence for Menus of the Same Cardinalities) For all M = 1, 2, · · ·,
x, y, z ∈ AM, and λ ∈ [0, 1], x % y if and only if λx + (1− λ)z % λy + (1− λ)z.

20



This axiom implies that for all menus z of the same cardinality as x and y, the ranking

between menus x and y never changes before and after they are mixed with z. Note that the

reason that we restrict our attention to menus of the same cardinality is to exclude the change

in the evaluation of menus resulted from the change of cardinality.

From a similarity of ASC representation to maxmin expected utility theory, we expect that

imposing the axiom derives a pure stochastic choice representation. The following theorem

indicates that this conjecture is correct.

Theorem 5 Under Assumption 1, preference % satisfies Axioms 1, 2, 3’, 5, and 6 if and only

if % admits a pure stochastic choice representation.

The proof is in the Appendix. Note that an ASC preference does not satisfy Axiom 3’

unless it is pure stochastic choice. For example, consider the exact maximization case, i.e.,

M = ∪∞n=1∆(Sn), and let x = {β1, β2}, y = {β′1, β′2}, and z = {γ1, γ2} with φ(x, si) = βi,

φ(y, si) = β′i, φ(z, si) = γi for i = 1, 2. Then, x % y implies that the best (with respect to

the commitment ranking) alternative βi of x is preferred to the best alternative β′j of y. Now,

consider mixtures λx + (1 − λ)z = {λβ1 + (1 − λ)γ1, λβ2 + (1 − λ)γ2} and λy + (1 − λ)z =

{λβ′1 +(1−λ)γ1, λβ′2 +(1−λ)γ2}. Then, λx+(1−λ)z % λy+(1−λ)z with exact maximization

implies that the best alternative λβk + (1 − λ)γk of λx + (1 − λ)z is preferred to the best

alternative λβ′l + (1− λ)γl of λy + (1− λ)z. However, it is not necessarily the case that i = k

and j = l since mixing γk and γl may change the commitment ranking among alternatives.

It is straightforward from Theorem 5 that together with IAC, state-generating functions in

a pure stochastic choice representation satisfy the Bayes’ rule.

Corollary 1 Suppose that % has a pure stochastic choice representation (u, φ, S,M). Then,

IAC holds if and only if

µn(E) =
µn+k(E ∩ Sn)

µn+k(Sn)

for all n, k = 1, 2, · · ·, and E ⊆ S.

In a pure stochastic choice case, we can consider several variations. To obtain the results,

we assume the existence of a complete and transitive salience ranking %∗.

Definition 7 (Salience Ranking) We refer to a complete and transitive order %∗ as the

salience ranking if for all x ∈ A and β, β′ ∈ x such that φ(x, si) = β and φ(x, sj) = β′, β %∗ β′

implies that i ≤ j. Moreover, β ∼∗ β′ implies that β = β′.
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A possible interpretation of %∗ is such that βi %∗ βj implies that “βi is (weakly) more

salient (thus, more prone to inadvertent choice) than βj.”
13 Note that unless otherwise stated,

the statement does not imply that βi is chosen with higher probability than βj from x. In

particular, unlike a preference order, β Â∗ β′ for all β′ ∈ x does not necessarily imply that β is

chosen from x with probability 1. Conversely, if there exists a salience ranking %∗, a perfectly

correlated mixture coefficient can be derived from %∗ as follows: for all x = {β1, · · · , βn} and y

= {γ1, · · · , γm} such that β1 Â∗ · · · Â∗ βn, γ1 Â∗ · · · Â∗ γm, and n ≥ m, define ρx,y(βi, γi) = 1

for i ≤ m and ρx,y(βi, γm) = 1 for i > m.

Now we consider the following axiom.

Axiom 9 (Preferences for Improvements in More Salient Alternatives) For n, i,

j ∈ N , i ≤ j, β1, Â∗ · · · Â∗ βn, β ∼∗ βi, β′ ∼∗ βj, and β ∼ β′ Â β1 ∼ · · · ∼ βn. Then,

{β1, · · · , βi−1, β, βi+1, · · · , βn} % {β1, · · · , βj−1, β
′, βj+1, · · · , βn}.

This axiom states that the higher the salience ranking of an alternative is, the larger the

impact of an improvement (in terms of the commitment ranking) in the alternative on the eval-

uation of a menu becomes. While the previous sections do not assume a specific order between

mental states, we demonstrate in the next theorem that for a pure stochastic choice represen-

tation, Axiom 9 assures monotonicity with respect to the salience ranking, i.e., alternatives

associated with higher salience rankings are chosen with higher probability.

Theorem 6 Suppose that % has a pure stochastic choice representation (u, φ, S,M). Then,

preferences for improvements in more salient alternatives is satisfied if and only if µ(si) ≥ µ(sj)

for i ≤ j.

The proof is in the Appendix. Note that without assuming a pure stochastic representation

or independence, Axiom 9 does not necessarily derive monotonicity with respect to the salience

ranking for a general (non-pure stochastic choice) ASC representation for all µ ∈ M. The

reason is that the axiom has a bite only on the “on-path” state-generating function, which is

actually chosen from the set of state-generating functions, and cannot specify the forms of other

state-generating functions.

The next axiom, which is a strengthen of the previous axiom, consider the case that inadver-

tent choice is dominant and the ranking between menus is solely determined by the alternatives

13Manzini and Mariotti (2010) and Bordalo, Gennaioli, and Shleifer (2010) also consider a ranking similar to
ours. Our model differs from the former in that we derive a choice probability from the menu preference rather
than directly assuming it. It differs from the latter in that we focus on menu choice rather than the choice of
alternatives, and stochastic choice (derived from the menu choice) rather than deterministic choice.
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of the highest salience ranking within menus, independently of its commitment ranking.

Axiom 9’ (Salience Ranking Dominance) Let x = {β1, · · · , βm} and y = {β′1, · · · , β′n}
with β1 Â∗ · · · Â∗ βm and β′1 Â∗ · · · Â∗ β′n. Then, x % y if and only if β1 % β′1.

The next theorem characterizes a pure stochastic choice representation that satisfies the

axiom.

Theorem 7 Suppose that % has an ASC representation (u, φ, S,M). Then, salience ranking

dominance is satisfied if and only if % has a pure stochastic choice representation such that

µn(s1) = 1 and µn(si) = 0 for i 6= 1, for n = 1, 2, · · ·.

The proof is in the Appendix. Intuitively, since the ranking among menus is solely deter-

mined by the alternative of the highest salience ranking, positive probability is assigned only

to the alternative and never assigned to other alternatives.

Note that this theorem only assumes an ASC representation, not a pure stochastic choice

representation, which contrasts with Theorem 6. In other words, Axiom 9’ is strong enough to

obtain a (special case of) pure stochastic choice representation without the help of independence.

This special case roughly corresponds to Strotz (1955) and an overwhelming temptation

representation by Gul and Pesendorfer (2001), wherein the ex post preference dominates the

choice of an alternative from a menu, yet the desirable alternative is determined by the ex ante

(or commitment) preference.

8 Discussion

8.1 Anomalies

In this subsection, we demonstrate that ASC representations accommodate choice anomalies

often reported by the literature. In the following, we denote c(x) = (β1, · · · , βn) where x =

{β1, · · · , βn}, to imply that φ(x, si) = βi for i = 1, · · ·, n for simplicity.

8.1.1 Attraction Effect

The attraction effect is such that adding an unchosen alternative to the existing menu changes

the choice of an alternative (for examples in specific contexts, see, e.g., Huber et al. 1982).

Typically, let β, γ, and δβ ∈ ∆(Z). Suppose that γ is preferred to β, but the addition of

δβ, which is dominated by β (and often referred to as a “decoy”) attracts the DM’s attention

to β. Then, the DM chooses γ from x = {β, γ} and chooses β from y = {β, γ, δβ} with the
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highest probabilities (or often, probability 1). This example clearly violates WAR(S)P since

the addition of δβ changes the alternative chosen with the highest probability (or probability 1

in the case of WARP) from γ to β.

It is easy to confirm that this behavioral pattern can be explained if we assume that γ

Â β Â δβ, c(y) = (β, δβ, γ), M2 = {µ ∈ ∆(S2) : µ(si) ≤ 1 − ε for i = 1, 2}, and M3 =

{µ ∈ ∆(S3) : µ(s3) ≤ ε′} for sufficiently small ε, ε′. In other words, despite γ has the highest

commitment ranking among the three alternatives (and is chosen from x with probability 1−ε),

it is chosen from y with very low probability (equal to ε′), since the addition of δβ drives γ out

to a “blind spot.”

8.1.2 Cyclical Choice

Let β, γ, δ ∈ ∆(Z). Suppose that c({β, γ}) = (β, γ), c({γ, δ}) = (γ, δ), c({β, δ}) = (δ, β) and

M2 = {µ ∈ ∆(S2) : µ(s1) = 1− ε} for a sufficiently small ε.

Then, β is chosen from {β, γ}, γ is chosen from {γ, δ}, and δ is chosen from {γ, δ} with

probability 1− ε, respectively. Namely, the more salient alternative (the alternative associated

with s1) in each pair is chosen with high probability, irrespectively of the commitment ranking.

This example indicates that in an ASC representation, M, the set of state-generating functions,

and φ (or equivalently, c), the correspondences between mental states and alternatives, may

have more impact on the choice of alternatives than the commitment ranking.

Note that there does not exist a (transitive) salience ranking %∗ that implements the con-

ditions above, since the correspondences between alternatives and states themselves consist a

cycle.

8.1.3 Allais Paradox

A typical form of Allais Paradox is as follows: the DM prefers a degenerated lottery α′ yielding

$1m with certainty to a lottery β′ yielding $5m, $1m, and 0 with probability .1, .89, and .01,

respectively, whereas she prefers a lottery β′′ yielding $5m with probability .1 to a lottery α′′

yielding $1m with probabiilty .11. Note that replacing a .89 chance of obtaining $1m by 0 in

the former pair derives the latter.

To abstract the idea, let α, β, γ δ ∈ ∆(Z), and define α′ = λα+(1−λ)γ, β′ = λβ+(1−λ)γ,

α′′ = λα + (1 − λ)δ, and β′′ = λβ + (1 − λ)δ for some λ ∈ [0, 1]. Assume that c({α′, β′}) =

(α′, β′), c({α′′, β′′}) = (β′′, α′′), and M2 = {µ ∈ ∆(S2) : µ(s1) ≤ 1−ε, µ(s2) ≤ ε′} for sufficiently

small ε and ε′ with ε ≤ ε′.

Suppose that α′ Â β′, which implies that α and β are chosen from x = {α′, β′} with prob-

abilities 1− ε and ε, respectively. Assuming that the commitment ranking is a von Neumann-
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Morgenstern utility function (which is the case with an ASC representation), we have α′′ Â β′′.

However, the ASC representation implies that β′′ and α′′ are chosen from y = {α′′, β′′} with

probabilities 1− ε′ and ε′, respectively, which explains Allais paradox.

The intuition is that α′ is chosen from x with higher probability since it is preferred to β′,

while β′′ is chosen from y with higher probability since it is more salient than α′′. For example,

the $5m prize of β′′ may capture the DM’s eye in the second pair, which results in the choice

of β′′ over α′′, in a way somewhat different from the way she chooses from the first pair.

8.1.4 Summary

We have shown that various choice anomalies, typically, choice reversal results can be explained

by an ASC representation. The crucial aspect here is that the probability that an alternative

is chosen is determined not only by the commitment ranking of the alternative but also by M,

the set of state-generating functions.

Since the unions of supports of all state-generating functions in Mn can be interpreted as

consideration sets as we mentioned, the implications of these results are similar to those of

Masatlioglu, Nakajima, and Ozbay (2010), who employ consideration sets to explain anomalies.

Unlike their study, however, our model accommodate stochastic choice in addition to determin-

istic choice (note that the examples above all permit stochastic choice), which derives a richer

implication.

8.2 Self vs. Nature

In this paper, we model the DM who chooses a state-generating function, i.e., probability mea-

sure over mental states, so that her expected utility is maximized. Ergin and Sarver (2010)

consider a similar model (yet in a different context), whereby a probability measure over future

preferences is chosen to maximize expected utility. On the other hand, Gilboa and Schmeidler

(1989) modeled an ambiguity averse DM, who chooses a probability measure over the (exoge-

nous) states of nature so that her expected utility is minimized, and Epstein, Marinacci, and

Seo (2007) extended this approach to a subjective state space, which describes unforeseen con-

tingencies. Similar arguments are also made by Olszewski (2007) and Ahn (2007), who identify

an increase of ambiguity with an expansion of a set of alternatives.

The difference between these two approaches is summarized as whether self or nature chooses

an alternative from a menu at the ex post stage: suppose that ex post choice (or preference,

depending on the interpretation) depends only on internal (or psychological) states within the

DM, such as cravings, absent-mindedness, and proneness to heuristics and biases. Being under

the influence of such internal states, her ex post self chooses an alternative from a menu. In
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this case, it is reasonable to assume that the DM can choose a probability measure over states

to maximize her expected utility, since she has control of her future self (at least, to a certain

extent).

On the other hand, suppose that the ex post preference depends only on external states

such as weather, natural disasters, and booms and slumps, which can be interpreted that

nature chooses an alternative from a menu ex post. In this case, she may be pessimistic about

the realizations of states since these states are out of reach of the DM’s control, and she is only

concerned about the worst-case scenario, i.e., the minimum of the expected utility.

Accordingly, if we reverse the implication of AIM and eventually obtain the counterpart of an

ASC representation, in which a state-generating function is chosen so that the expected utility is

minimized (the derivation of such a representation is straightforward), the state space whereby

is interpreted as external, i.e., nature chooses an alternative, which has a different implication

from ours, where (ex post) self chooses an alternative. The last argument illustrates that the

distinction between these two interpretations is subtle, yet very crucial.14

9 Concluding Remarks

In this paper, we have discussed the implications of stochastic choice in terms of preference over

menus. We have shown that our ASC representation includes many subclasses related to the

existing studies, and provided an interpersonal comparison result.

A natural interpretation of stochastic choice is bounded rationality, i.e., the DM makes a

suboptimal choice because some psychological effects urge her to deviated from utility maxi-

mization. Selten (1975) noted that “[t]here cannot be any mistakes if the players are absolutely

rational. Nevertheless, a satisfactory interpretation of equilibrium points ... seems to require

that the possibility of mistakes is not completely excluded. This can be achieved by a point of

view which looks at complete rationality as a limiting case of incomplete rationality.” He also

argues that the probability measure over alternatives when the DM possibly makes a mistake

is determined by “some unspecified psychological mechanism.”

One of our contributions is to provide a decision theoretic foundation to unravel the “un-

specified psychological mechanism:” we derive subjective stochastic choice from a preference

over menus, rather than exogenously assuming a probability measure over alternatives as is

often the case with the existing studies. Thus, we believe that our approach casts a new light

on stochastic choice behavior.

14Nehring’s (1999) argument on the use of convex or concave capacity in comparing a version of his represen-
tation with an Choquet expectation and Choquet expected utility (Schmeidler 1989) parallels ours.
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Appendix

Proof of Lemma 1

Statement b implying a is straightforward. We show that the converse implication by induction.

First, fix an arbitrary singleton menu x1 = {β1}. Define S1 = {s1} and φ : A1 × S1 → ∆(Z)

such that φ(x, s1) = β for all x = {β} ∈ A1. The state-wise mixture of φx and φy with λ and

1− λ, respectively, clearly equals φλx+(1−λ)y.

Next, suppose that for an arbitrary integer M , there exist SM and φ : AM × SM → ∆(Z)

that satisfy statement b. Let a menu xM = {β1, · · · , βM} be such that φ(xM , si) = βi for i =

1, · · ·, M . Then, Assumption 1b implies that there exists a mixture-invariant addition βM+1

to xM . We define xM+1 = xM ∪ {βM+1}, SM+1 = {s1, · · · , sM+1}, and φ(xM+1, si) = βi for i =

1, · · ·, M + 1. Conditions a, b, and c of Definition 1 assure that φ and SM+1 are well-defined.

Condition d implies that for all x, y ∈ AM+1 the state-wise mixture of φx and φy with λ and

1− λ, respectively, equals φλx+(1−λ)y. Q.E.D.

Proof of Theorem 1

The sufficiency part is straightforward. We only show the necessity part.

First, note that there exists an affine function u, i.e., u(λβ +(1−λ)γ) = λu(β)+(1−λ)u(γ)

for all λ ∈ [0, 1], β, γ ∈ ∆(Z), that represents the commitment ranking %.

Lemma 2 There exists an affine function u that represents %, i.e., for all β, β′ ∈ ∆(Z), u(β)

≥ u(β′) whenever {β} % {β′}. Further, u is unique up to a positive affine transformation.

Proof The conclusion is straightforward from weak order, continuity, and singleton indepen-

dence. Note that independence for lotteries follows from singleton independence, and Archime-

dian continuity clearly follows from our continuity axiom. Q.E.D.

The next lemma indicates that there exists a functional J that represents %.

Lemma 3 Let u be a affine function derived from Lemma 2. Then, there exists a functional

J : A → < such that (i) for all x, y ∈ A, x % y if and only if J(x) ≥ J(y), and (ii) for all β ∈
∆(x) and x = {β}, J(x) = u(β).

Proof For singleton menus, J is uniquely defined by (ii). To define J for other menus, fix

β and β̄ such that β < β < β̄. (Assumption 1 guarantees that such β and β̄ exist.) Then,
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it follows from continuity that for all x ∈ AM , there exists a unique λ ∈ [0, 1] such that x ∼
λβ + (1− λ)β̄. Thus, by defining J(x) = J(λβ + (1− λ)β̄), J also satisfies (i). Q.E.D.

Next, we construct a set of mental states and a choice function. In the meantime, we fix

the cardinality of menus M and the function u such that u(β) > 1 and u(β′) < −1 for some β,

β′ ∈ ∆(Z).

Lemma 1 implies that a perfectly correlated mixture coefficient derives the set of mental

states SM and a choice function φ. It follows from the construction of φ and SM that there

exists a bijection from AM , the set of menus of cardinality M , to the set of all functions in the

form of φx(·) = φ(x, ·) for some x ∈ AM , and the corresponding preference order %′ such that

x % y if and only if φx %′ φy.

Now, we denote by B a linear space of all functions a : SM → <, endowed with state-wise

scholar multiplication and addition. Since SM is finite, B is equivalent to the linear subspace of

simple functions, which we denote by B0 ⊆ B. We also define K = u(Z) and denote by B0(K)

⊆ B the set of simple functions whose range is K. For ξ ∈ <, we denote by ξ∗ ∈ B a constant

function such that ξ∗(s) = ξ for all s ∈ SM .

In the following, we define ũ : A → KSM by ũ(x) = u ◦ φx. It follows from Assumption

1a that the set of such functions ũ is equivalent to B0(K). The following lemma characterizes

a functional on B0 that is derived from the axioms. Note that unlike Gilboa and Schmeidler

(1989), the functional is sublinear instead of superlinear.

Lemma 4 There exists a functional I : B0 → < such that

(i) for all x ∈ AM , I(ũ ◦ x) = J(φx),

(ii) I is monotonic, i.e., a ≥ b implies I(a) ≥ I(b) for all a, b ∈ B0

(iii) I is sublinear (subadditive and homogeneous of degree 1), and

(iv) I is C-independent, i.e., I(a + ξ∗) = I(a) + I(ξ∗) for all a ∈ B0 and ξ ∈ <.

proof First, we define I on B0(K) by (i). The monotonicity of I (ii) follows from the mono-

tonicity axiom. We indicate that I satisfies (iii)-(iv). Note that (i) implies that I(1∗) = 1.

As for superlinearity, we first show I(λa) = λI(a) for all 1 ≥ λ > 0 and a, λa ∈ B0(K). Let

b = λa, y ∈ A be such that a = ũ ◦ y, and β ∈ ∆(Z) be such that J({β}) = ũ ◦ {β} = 0. Then,

by defining x = λy + (1− λ)β, I(ũ ◦ x) = I(λa + (1− λ)ũ ◦ {β}) = I(λa) = I(b). Thus, I(b) =

J(x). Now, define β′ such that {β′} ∼ y. Then, by the S-independence axiom, λβ′ + (1− λ)β

∼ λy + (1 − λ)β = x. Thus, J(x) = J(λβ′ + (1 − λ)β) = λJ(β′) + (1 − λ)J(β) = λJ(β′) =

λI(ũ ◦ y) = λI(a), where the second equality follows from Lemma 3. Accordingly, we obtain

I(b) = I(λa) = λI(a).
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Now, define I(a) = 1
λ
I(λa) for all λ > 0 and λa ∈ B0(K). Then, by the positive homogeneity

on B0(K), I(a) is homogeneous of degree 1 for all a ∈ B.

Next, we show that I is C-independent. By positive homogeneity that we have shown, it

suffices to show that I(1
2
a + 1

2
ξ∗) = 1

2
I(a) + 1

2
I(ξ∗) for all ξ ∈ <. For ξ ∈ <, we define x such

that a = ũ ◦ x, β′ ∈ ∆(Z) such that {β′} ∼ x, and β ∈ ∆(Z) such that ũ ◦ {β} = ξ∗. Then,

by the S-independence axiom, 1
2
x + 1

2
{β} ∼ 1

2
{β′}x + 1

2
{β}, which implies that I(1

2
a + 1

2
ξ∗) =

I(1
2
ũ ◦ {β′}+ 1

2
ũ ◦ {β}) = J(1

2
{β′}+ 1

2
{β}) = 1

2
J({β′}) + 1

2
J({β}) = 1

2
I(a) + 1

2
I(ξ∗).

Finally, we show that I is subadditive. By homogeneity, it suffices to show that I(1
2
a + 1

2
b)

≤ 1
2
I(a)+ 1

2
I(b) for a, b ∈ B0(K). Let x, y ∈ AM be such that a = ũ◦x and b = ũ◦y. Suppose

that I(a) = I(b), i.e., x ∼ y. Then, it follows from AMI that x % 1
2
x + 1

2
y, which implies that

I(a) = 1
2
I(a) + 1

2
I(b) ≥ I(1

2
a + 1

2
b). Next, suppose that I(a) > I(b). Define ξ = I(a) − I(b)

and c = b + ξ∗. Note that I(c) = I(b + ξ∗) = I(b) + ξ = I(a) (the second equality follows from

C-independence (iv)). Then, we obtain

I(
1

2
a +

1

2
b) +

1

2
ξ = I(

1

2
a +

1

2
c) ≤ 1

2
I(a) +

1

2
I(c) =

1

2
I(a) +

1

2
I(b) +

1

2
ξ,

which complete the proof. Note that the first and third equalities follow from C-independence

and the second follows from the argument for I(a) = I(b). Q.E.D.

The following lemma is the counterpart of Lemma 6.5 by Gilboa and Schmeidler (1989).

Lemma 5 Let I be a monotonic, sublinear, and C-independent functional on B with I(1∗)

= 1. Then, there exists a closed and convex set MM of finitely additive probability measures

over SM such that I(b) = max{∫ bdµ|µ ∈MM} for all b ∈ B. Furthermore, MM is unique.

Proof Fix b ∈ B such that I(b) > 0. We will first show that there exists a (finitely-additive)

probability measure µb such that I(b) =
∫

bdµb and I(a) ≥ ∫
adµb for all a ∈ B. Define

D1 = conv({a ∈ B|a > 1∗} ∪ {a ∈ B|a ≥ b/I(b)})

(where conv(A) denotes the convex hull of the set A) and

D2 = {a ∈ B|I(a) < 1}.

Since both D1 and D2 are convex, it follows from a separating hyperplane theorem (e.g., Alipran-

tis and Border 2006) that there exists a linear functional Fb and λ ∈ < such that

Fb(d1) ≥ λ ≥ Fb(d2) (6)
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for all d1 ∈ D1 and d2 ∈ D2. Since we clearly have λ > 0 (otherwise Fb must be identically

zero), we set λ = 1 without loss of generality.

Then, (6) implies that Fb(1
∗) ≥ 1. In addition, since 1∗ is a limit point of D2, the inverse

inequality also holds, which concludes Fb(1
∗) = 1. Further, Fb is nonnegative since for all E ⊆

Sx, E 6= φ and the indicator function 1E of E, 1∗− 1E ∈ D2 and Fb(1E) + Fb(1
∗− 1E) = Fb(1

∗)

= 1.

Accordingly, since Fb is a linear functional, a Riesz representation theorem (Aliprantis and

Border 2006) implies that there exists a probability measure µb such that Fb(a) =
∫

adµb for

all a ∈ B. We will show that Fb(a) ≤ I(a) for all a ∈ B and Fb(a) = I(a) for a = b. First,

assume that I(a) > 0. Since a/I(a)− (1/n)∗ ∈ D2 for all n ∈ N and Fb(a) is continuous with

respect to a, we have Fb(a) ≤ I(a) from (6). A similar implication for I(a) ≤ 0 follows from

C-independence (set ξ ∈ < so that I(a + ξ∗) > 0). Second, we focus on a special case a = b.

Note that b/I(b) ∈ D1, which follows from (6) that Fb(b) ≥ I(b). Since the previous argument

indicates that the inverse inequality also holds, Fb(b) = I(b).

Now, define MM by the closure of conv{µb|b ∈ B, I(b) > 0}. Clearly, I(a) ≥ max{∫ adµ|µ ∈
Mx}. Since the arguments in the previous paragraphs hold for all b ∈ B, substituting a for b

and adapting the definitions of D1 and D2 implies for I(a) > 0 that there exists a probability

measure µa ∈ MM such that
∫

a′dµa ≥ I(a′) for all a′ ∈ B and the equality holds for a′ = a.

By applying C-independence, a similar argument also holds for I(a) ≤ 0.

Now, we show the uniqueness result. Since u is unique up to a positive affine transformation

as Lemma 2 indicates, assume u = u′ without loss of generality. Condition (v) of Definition

4 (restricted to AM and SM) is clearly satisfied by the construction of φ and SM . Suppose

that there exist closed and convex sets MM and M′
M that satisfy the statement in Lemma 5,

i.e., J(φx) = maxµ∈MM

∫
s∈SM

u(φx(s))dµ(s) and J ′(φx) = maxµ∈M′
M

∫
s∈SM

u(φx(s))dµ(s) both

represents %. Now, choose µ̃ ∈ M\M′. Then, a separating hyperplane theorem indicates that

there exists a ∈ B such that
∫

adµ > maxµ∈M′
M

∫
s∈SM

adµ(s). Without loss of generality, we

assume that a ∈ B0(K). Then, there exists y ∈ A such that J(φy) > J ′(φy), which contradicts

the assumption that J and J ′ both represent %. Q.E.D.

Now, we conclude the proof of Theorem 1. Lemmas 2 to 5 imply that for all finite M and

x ∈ AM , there exists an essentially unique ASC representation. We can define S = {s1, s2, · · ·}
and M = ∪∞i=nMn, by renumbering the elements of each SM so that ρxM ,xN

(βM
i , βN

i ) = 1 and

φ(xM , si) = βM
i for all M , N = 1, 2, · · ·, 1 ≤ i ≤ min{M, N}. Hence, we obtain an ASC

representation for all x ∈ A. Q.E.D.
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Proof of Theorem 2

The basic idea of the proof is an adaptation of Pires (2002). In the following, we denote by B

the set of functions a : Sn → <. We define B0 and B0(K) in a manner similar to the ones in

the proof of Theorem 1.

We first show that Axiom 7 implies M∗
n,k ⊆Mn. Suppose, to the contrary, that there exists

a state-generating function µ′ ∈ ∆(Sn) such that µ′ ∈ M∗
n,k and µ′ 6∈ Mn. It follows from

a separating hyperplane theorem that there exists a ∈ B such that maxµ∈Mn

∫
adµ <

∫
adµ′.

Without loss of generality, we assume a ∈ B0(K). (Note that B = B0 since Sn is finite.) Thus,

there exists φ : A× Sn → ∆(Z) such that u ◦ φ(x, ·) = a and

max
µ∈Mn

∫

Sn

u(φ(x, s))dµ <
∫

Sn

u ◦ φ(x, s)dµ′ =
∫

Sn+k

u ◦ φ(x, s)dµ′. (7)

Suppose that x ∼ {β̄}, which implies that the left-hand-side of (7) is equal to u(β̄). Multiplying

both sides by λ and adding (1− λ)u(β̄) to them, we obtain

u(β̄) < λ
∫

Sn

u ◦ φ(x, s)dµ′ + (1− λ)u(β̄) ≤ max
µ∈Mn+k

∫

Sn+k

u ◦ φβ̄
n+k(x, s)dµ′, (8)

where φβ̄
n+k : A×Sn+k → ∆(Z) is such that φβ̄

n+k(x, si) = φ(x, si) for i = 1, · · ·, n and φβ̄
n+k(x, si)

= β̄ for i = n + 1, · · ·, n + k. However, (8) violates Axiom 7, contradiction.

Next, to prove part (ii), it suffices to show the converse direction for all µ ∈Mn+k such that

µ(Sn) > 0 for all n. Suppose, to the contrary, that there exists a state-generating function µ′′

∈ ∆(Sn) such that µ′′ ∈ Mn and µ′′ 6∈ M∗
n,k. Then, by a separating hyperplane theorem, there

exists a ∈ B such that maxµ∈M∗
n,k

∫
Sn

adµ <
∫
Sn

adµ′′. Without loss of generality, we assume a

∈ B0(K). Then, there exists φ : A× Sn → ∆(Z) such that

max
µ∈M∗

n,k

∫

Sn

u ◦ φ(x, s)dµ <
∫

Sn

u ◦ φ(x, s)dµ′′. (9)

Suppose that x ∼ {β̄}, which implies that

u(β̄) = max
µ∈Mn

∫

Sn

u ◦ φ(x, s)dµ ≥
∫

Sn

u ◦ φ(x, s)dµ′′.

Then, (9) implies that

u(β̄) > max
µ∈M∗

n,k

∫

Sn

u ◦ φ(x, s)dµ = max
µ∈Mn

∫

Sn

u ◦ φ(x, s)

µ(Sn)
dµ. (10)

(Note that we assume µ(Sn) > 0 for all µ ∈ Mn+k.)

The last inequality implies that u(β̄) >
∫
Sn

u◦φ′(x,s)
µ(Sn)

dµ for all µ ∈ Mn. Accordingly,

u(β̄) > µ(Sn)
∫

Sn

u ◦ φ′(x, s)

µ(Sn)
dµ + (1− µ(Sn))u(β̄),

31



which is equivalent to

u(β̄) > max
µ∈Mn

[
µ(Sn)

∫

Sn

u ◦ φ(x, s)

µ(Sn)
dµ + (1− µ(Sn))u(β̄)

]
= max

µ′∈Mn+k

∫

Sn+k

u ◦ φβ̄
n+k(x, s)dµ′,

where φβ̄ is defined above. The last inequality contradicts Axiom 7. Q.E.D.

Proof of Theorem 3

The sufficiency part (Mn = ∆(Sn) implies monotonicity) is straightforward. We show the

necessity part.

First, we prove the following lemma.

Lemma 6 Suppose that % has an ASC representation and satisfies monotonicity. If x ∈ A
is such that {β} ⊆ x for some β ∈ ∆(Z) and β Â β′ for all β′ ∈ x, then there exists µ ∈ M|x|

such that µ(s) = 1 for s ∈ S|x| with φ(x, s) = β.

Proof Label s̄ ∈ S|x| such that φ(x, s̄) = β. Suppose, to the contrary, that for all µ ∈
M|x|, µ(s̄) < 1. Since % has an ASC representation, there exists µ′ ∈ M|x| such that V (x)

=
∫
S|x| u(φ(x, s))dµ′ and µ′(s̄) < 1. Then, V (x) < u(β) since β Â β′ for all β′ ∈ x, which

contradicts monotonicity. Q.E.D.

Since Lemma 6 applies for all such β and x, there exists µ ∈Mn such that µ(s) = 1 for all n

and s ∈ Sn. Moreover, sinceMn is closed and convex,Mn ⊇ conv{µ ∈ ∆(Sn)|µ(s) = 1 for some

s ∈ Sn} = ∆(Sn). It is straightforward that Mn ⊆ ∆(Sn), which concludes the proof. Q.E.D.

Proof of Theorem 4

The sufficiency part (M1 ⊇ M2 implies that %2 exhibits a preference for commitment more

than %1) is straightforward.

We show that %2 prefers commitment more than %1 implies M1 ⊇ M2. Suppose not, i.e.,

there exists µ′ ∈ M2 such that µ′ 6∈ M1. Since M1 is convex, a separating hyperplane theorem

implies that there exists n ∈ N and a : Sn → < such that maxµ∈M1

∫
adµ <

∫
adµ′. Without

loss of generality, we assume that there exists x̃ ∈ A such that a = u ◦ φ(x̃, ·) for the choice

function φ described in the representation. Then, we have

max
µ∈M1

∫

S|x|
u(φ(x̃, s))dµ(s) <

∫

S|x|
u(φ(x̃, s))dµ′(s) ≤ max

µ∈M2

∫

S|x|
u(φ(x̃, s))dµ(s).
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Choosing β ∈∆(Z) such that maxµ∈M1

∫
S|x| u(φ(x̃, s))dµ(s) < u(β) < maxµ∈M2

∫
S|x| u(φ(x̃, s))dµ(s)

leads to contradiction. Q.E.D.

Proof of Theorem 5

Note that Axiom 3’ implies both S-independence and AMI. First, Axiom 3’ implies indepen-

dence for singleton menus. Thus, as in the proof or Theorem 1, there exists a von Neumann-

Morgernstern utility function u that represents the commitment ranking. Further, Assumption

1b implies that for all M = 1, 2, · · ·, x, y ∈ AM , and β̃ ∈ ∆(Z), there exists z ∈ AM such that

β = β̃ for all β ∈ z, which implies S-independence together with Axiom 3’. The implication of

AMI is straightforward.

Thus, from the proof of Theorem 1, there exists a bijection from AM to the set of all

choice functions φx : S|x| → x for x ∈ AM . Hence, the independence axiom on % implies the

independence axiom on the corresponding preference %′ over choice functions (with respect to

state-wise convex combination), the conclusion follows from Anscombe and Aumann (1963).

Q.E.D.

Proof of Theorem 6

The sufficiency part is straightforward.

Conversely, it follows from Theorem 4 that % has a pure stochastic choice representation in

which Mn = {µn} for some µn ∈ ∆(Sn), n = 1, 2, · · ·. Axiom 8 implies that µn(si) ≥ µn(sj)

for all i, j, n ∈ N . Q.E.D.

Proof of Theorem 7

The sufficiency part is straightforward.

Conversely, suppose that there exist n ∈ N and µ ∈ ∆(Sn) such that µ(si) > 0 for i 6=
1. Now, let β ∈ ∆(Z) and x = {β1, · · · , βn} such that β1 Â∗ · · · Â∗ βn, βi is of the highest

commitment ranking in x, and βi Â β Â β1. Then, by the definition of an ASC representation,

we have x Â {β}, yet β Â β1, contradiction. Q.E.D.
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