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Abstract

In this paper we show that in a pure exchange economy there exists no strategy-
proof, Pareto optimal social choice allocation function which ensuring positive con-
sumptions to all consumers. We further show that if there exists three consumers,
then the allocation given by strategy-proof, Paret optimal, and non-dictatorial so-
cial choice function depends only on one consumer’s preference who always receives
zero consumption. That is, we prove Zhou (1991)’s conjecture in a three-consumer
economy and show that a strategy-proof and Pareto optimal social choice allocation
function in such an economy should be Satterthwaite and Sonnenschein (1981) type.
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1 Introduction

2 The model

We consider an economies with N consumers indexed by N = {1, . . . , N} where N ≥ 2

and L goods indexed by L = {1, . . . , L} where L ≥ 2. The concumption set for each

consumer is RL
+. A consumption bundle for consumer i ∈ N is a vector xi = (xi

1, . . . , xi
L) ∈

RL
+. The total endowment of good for the economy is Ω ∈ RL

++. An allocation is a vector
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x = (x1, . . . , xN) ∈ RLN
+ . The set of feasible allocation for the economy with N consumers

and L goods is thus

X =

{
x ∈ RLN

+

∣∣∣∣∣
∑
i∈N

xi ≤ Ω

}

A preference R is a complete, reflexive, and transitive binary relation on RL
+. The

corresponding strict preference PR and indifference IR are defined in the usual way. For

any x and x′ in RL
+, xPRx′ implies that xRx′and not x′Rx, and xIRx′ implies that xRx′

and x′Rx. Given a preference R and a consumption bundle x ∈ RL
+, the upper contour

set of R at x is UC(R, x) = {x′ ∈ RL
+|x′Rx} and the lower contour set of R at x is

LC(R, x) = {x′ ∈ RL
+|xRx′}. Further we let I(x; R) = {x′ ∈ RL

+|x′Rx and x′Rx} denote

the indifference set of R at x and P (x; R) = {x′ ∈ RL
+|x′Rx and not xRx′} denote the

strictly prefered set of R at x. A preference R is continuous if UC(R, x) and LC(R, x)

are both closed for any x ∈ RL
+. A preference R is strictly convex on RL

++ if UC(R, x) is

strictly convex for any x ∈ RL
++. A preference R is strictly monotonic on RL

++ if for any x

and x′ in RL
++, x > x′ implies xPRx′. A preference R is homothetic if for any x and x′ in

RL
+ and any t > 0, xRx′ implies (tx)R(tx′). A preference R is smooth if for any x ∈ RL

++

there exists a unique vector p ∈ SL−1 such that p is the normal of a supporting hyperplane

to UC(R, x) at x. We call such an vector p as gradient vector of the preference R at x

We let R denote the set of preferences R that is continuous on RL
+, strictly convex

and strictly monotonic on RL
++, smooth, and homothetic.

A preference profile is an N -tuple R = (R1, . . . , RN) ∈ RN . The subprofile obtained

by removing Ri from R is R−i = (R1, . . . , Ri−1, Ri+1, . . . , RN). It is sometimes convenient

to write the profile (R1, . . . , Ri−1, R̄i, Ri+1, . . . , RN) as (R̄i,R−i).

A social choice function f : RN → X assigns a feasible allocation to each preference

profile in RN . The set RN is the domain of the social choice function. For a preference

profile R ∈ RN , the outcome chosen can be written as f(R) = (f 1(R), . . . , fN(R)) where

f i(R) is the consumption bundle allocated to consumer i by f .

Definition 1. A social choice function f is strategy-proof if f i(R)Rif i(R̄i,R−i) for

any i ∈ N, any R ∈ RN , and any R̄i ∈ R.

A feasible allocation is Pareto optimal if there is no other feasible allocation that would

benefit someone without worsening anyone else. That is x ∈ X is Pareto optimal for the

preference profile R if there exists no x̄ ∈ X such that x̄iRixi for any i ∈ N and x̄jPRj xj

for some j ∈ N. We say a social choice function is Pareto optimal when it always assigns

Pareto optimal allocations.

Definition 2. A social choice function f is Pareto optimal if f(R) is Pareto optimal for

any R ∈ RN .
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We say a social choice function guarantee positive consumption if any consumer’s

consumption is always non-zero. Note that the posiitive consumption guarantee is just

a little weaker condition than the minumum consumption guarantee in Serizawa and

Weymark (2003).

Definition 3. A social choice function f is positive consumption guarantee if f i(R) �= 0

for any i ∈ N and any R ∈ RN .

Definition 4. A social choice function f is dictatorial if there exists i ∈ N such that

f i(R) = Ω for any R ∈ RN .

Following Satterthwaite and Sonnenschein (1981), we define SS mechanism, which

includes the dictatorial sochial choice functions as special cases, as follows.

Definition 5. A social choice function f is an SS mechanism if following conditions are

satisfied.

(i) There exists i ∈ N such that f i(R) = 0 for any R ∈ RN .

(ii) For each R ∈ RN , there exists some j ∈ N such that f j(R) = Ω.

(iii) For any j �= i, f j(Ri, R̄−i) = f j(Ri, R̄−i) for any R−i and R̄−i in RN−1, where i

is a consumer satisfying (i)

Theorem 1. If a social choice function f : RN → X is strategy-proof and Pareto

optimal, then it violates positive consumption guarantee.

Theorem 2. Suppose that N = 3. If a social choice function f : RN → X is strategy-

proof and Pareto optimal, then it is an SS mechanism.

3 Preliminary result I

In the following two sections we show two results which would be useful to investigate

the property of social choice functions. In fact this paper’s theorems can be proved

by combining these two results. The first in this section is a slight generalization of a

result proved by Hashimoto (2008) and sophisticated by Momi (2010). They proved that

in an two-consumer economy where the preferences are represented by Cobb-Douglas

utility functions, if a social choice function is strategy-proof and Pareto optimal, then

any change of one consumer’s preference should not affect the other’s utility level. Next

proposition insists that if one consumer’s preference is changed while the other consumers

have the same preference R̃, then the sum of the new consumptions of the others should

be indifferent to the sum of the old ones with respect to the preference R̃ under a strategy-

proof and Pareto-optimal social choice function.
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Proposition 1. Suppose that f : RN → X is a strategy-proof and Pareto optimal social

choice function. For any i ∈ N, any Ri, R̄i ∈ R and any R̃−i = (R̃, . . . , R̃) ∈ RN−1,

(
∑

j �=i f
j(Ri, R̃−i))IR̃(

∑
j �=i f

j(R̄i, R̃−i)).

For simple exposition we let Ũ : RL
+ → R be a differentiable utility function represent-

ing the preference R̃. We let t → Rt be a continuous map mapping a parameter t ∈ (0, 1)

to a preference Rt ∈ R. For such a map, We let f(t) = f(Rt, R̃
−i) denote the allocation

given by f when consumer i’s preference is Rt and others’ is R̃. All we have to prove is

that Ũ(
∑

j �=i f
j(t)) = Ũ(

∑
j �=i f

j(t)) or equivalently that Ũ(Ω − f i(t)) = Ũ(Ω − f i(t)).

Note that R is connected, hence that for any Ri ∈ R and R̄i ∈ R, we can pick a contin-

uous mapping t �→ Rt such that Rt′ = Ri and Rt′′ = R̄i at some parameter values t′ and

t′′ in (0, 1).

Lemma 1. When t �→ Rt ∈ R is a continuous map defined on (0, 1) ⊂ R and R̃−i =

(R̃, . . . , R̃). If f is a strategy-proof and Pareto efficient social choice function, then

f i(t) = f i(Rt; R̃
−1) is a continuous function of t.

Proof. We suppose t → t̄ ∈ (0, 1). Since X is compact, f(t) converges as t → t̄. We let

f(t) → x̄ = (x̄1, . . . , x̄N ). All we have to show is that x̄i = f i(t̄).

We let U i(·; t) : RL
+ → R be a utility function representing the preferenec Rt of

consumer i. Since f is strategy-proof, U i(f i(t); t) ≥ U i(f i(t̄); t) holds for any t. Especially

at the limit of t → t̄, U i(x̄i; t̄) ≥ U i(f i(t̄); t̄) holds. If this equation holds with strict

inequality, then the consumer would announce Rt̃ where t̃ is sufficiently close to t̄ when

his true preference is Rt̄ because f i(t̃) is close to x̄i, and hence U i(f i(t̃); t̄) is close to

U i(x̄i; t̄). This violate the stratefy-proofness of f . Therefore the equation should hold

with equality: U i(x̄i; t̄) = U i(f i(t̄); t̄).

We next show that x̄ should be a Pareto optimal allocation in the economy where one

consumer’s preference is Rt̄ and others’ are R̃. Suppose that x̄ is not Pareto optimal.

Then in the economy with preferences Rt̄ and R̃, which are both strictly convex, there

exists x̂ = (x̂1, . . . , x̂N ) ∈ X such that U i(x̂i; t̄) > U i(x̄i; t̄) and Ũ j(x̂j) > Ũ j(x̄j) for any

j �= i. When t̃ is sufficiently close to t̄, f(t̃) is sufficiently close to x̄ and Rt̃ is sufficiently

close to Rt̄. Therefore U i(x̂i; t̃) > U i(f i(t̃); t̃) and Ũ(x̂j) > Ũ(f j(t̃)) hold. This violates

the Pareto optimality of f . Thus x̄ is a Pareto optimal allocation.

It is easy to observe that in the Edgeworth Box with consumer i’s preferences Rt and

others’ R̃ ∈ R, which are both homothetic, the set of Pareto optimal allocations intersects

consumer i’s one indifference surface only once. Therefore If U i(x̄i; t̄) = U i(f i(t̄); t̄) and

x̄ and f(t̄) are both Pareto optimal allocations, then x̄i = f i(t̄) holds.

Lemma 2. Ũ(Ω − f i(t̃)) = Ũ(Ω − f i(t̂)) for any t̃, t̂ ∈ (0, 1).
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Proof. We suppose that there exists t′ and t′′ such that Ũ(Ω− f i(t′)) �= Ũ(Ω− f i(t′′)).

Without loss of generality we assume t′ < t′′.

We first consider the case where Ũ(Ω−f i(t′)) > Ũ(Ω−f i(t′′)). Note that Ũ(Ω−f i(t))

is a continuous function of t by Lemma 1 proved above.1 Then there exist t̄ ∈ (t′, t′′) and

a sequence {εn} which converges to 0 from the right hand side, εn > 0 and εn → 0 as

n → ∞, such that

lim
n→∞

Ũ(Ω − f i(t̄ + εn)) − Ũ(Ω − f i(t̄))

εn
< 0.2

Since the utility function Ũ is differentiable, the equation becomes

L∑
l=1

∂Ũ (Ω − f i(t̄))

∂xl
lim

n→∞
−f i

l (t̄ + εn) + f i
l (t̄)

εn
< 0.

Since f is Pareto optimal, (∂Ũ(Ω−f i(t))
∂x1

, . . . , ∂Ũ2(Ω−f i(t))
∂xL

) is parallel to (∂U i(f i(t);t)
∂x1

, . . . , ∂U i(f i(t);t)
∂xL

).

Therefore we have

L∑
l=1

∂U i(f i(t̄); t̄)

∂xl
lim

n→∞
f i

l (t̄ + εn) − f i
l (t̄)

εn
> 0,

hence,

lim
n→∞

U i(f i(t̄ + εn); t̄) − U i(f i(t̄); t̄)

εn
> 0,

This implies U i(f i(t̄ + εn); t̄) > U i(f i(t̄); t̄) with sufficiently large n because εn > 0.

This violates the strategy-proofness of f because consumer i whould announce t̄+εn when

his true parameter is t̄.

Next, we consider the case where Ũ(Ω − f i(t′)) < Ũ(Ω − f i(t′′)). Then there exist

t̄ ∈ (t′, t′′) and a sequence {εn} which converges to 0 from the left hand side, εn < 0 and

εn → 0 as n → ∞ such that

lim
n→∞

Ũ(Ω − f i(t̄ + εn)) − Ũ(Ω − f i(t̄))

εn

> 0.

By the same discussion, we have

lim
n→∞

U i(f i(t̄ + εn); t̄) − U i(f i(t̄); t̄)

εn
< 0.

This implies U i(f i(t̄ + εn); t̄) > U i(f i(t̄); t̄) with sufficiently large n because εn < 0. This

again violates the strategy-proofness of f .

1Note that this might not be a differentiable function at this stage
2To the contrary, suppose that limn→∞

Ũ(Ω−fi(t̄+εn))−Ũ(Ω−fi(t̄))
εn

> 0 for any t̄ ∈ (t′, t′′) and any
sequence {εn} converging 0 from right hand side. It clearly contradicts to that Ũ(Ω−f i(·)) is a continuous
function and Ũ(Ω − f i(t̃)) > Ũ(Ω − f i(t)).
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4 Preliminary result II

In this section we show an application of Maskin monotonic transformation. Consider a

preference R ∈ R and a consumption bundle x ∈ RL
+. A preference R̄ is called Maskin

monotonic transformation of R at x if x̄ ∈ UC(R̄, x) and x̄ �= x implies x̄PRx. If an

individual receives the commodity bundle x at the profile R, strategy-proofness implies

that this consumer receives the same commodity bundle when his preference is subject to

a Maskin monotonic transformation at x.

Lemma 3. Suppose that f : RN → X is a strategy proof social choice function. For

any R ∈ RN and any i ∈ N, if R̄i ∈ R is a Maskin monotonic transformation of Ri at

f i(R), then f i(R̄i;R−1) = f i(R).

In addition to the preference R and the consumption bundle x, consider another

preference R̃ and another consumption bundle x̃. If these are as in Figure 1, it would be

possible to image a preference which is a Maskin monotonic transformation of R at x and

also a Maskin monotonic transformation of R̃ at x̃. Next proposition shows when such a

transformation is possible. For x ∈ RL
+ \ 0, we let [x] denote the ray in the consumption

set RL
+ starting from the origin and passing through x. Keep in mind two preliminary

facts about homothetic preferences we deal with.

Lemma 4. For R, R̃ ∈ R, if UC(x; R) = UC(x; R̃) at a consumption bundle x ∈ RL
++,

then R and R̃ are the same preference.

Lemma 5. If R̃ ∈ R is a Maskin monotonic transformation of R ∈ R at x ∈ RL
++, then

R̃ is a Maskin Monotonic transformation of R at any non-zero consumption x′ ∈ [x].

Proposition 2. For any R, R̃ ∈ R and any x, x̃ ∈ RL
++, if x ∈ P (I(x; R)

⋂
[x̃]; R̃) and

x̃ ∈ P (I(x̃; R̃)
⋂

[x];R), then there exists a preference R̄ ∈ R that is a Maskin monotonic

transformation of R at x and of R̃ at x̃.

Proof. Figure 2 (i) describes an example of R, R̃, x and x̃ satisfying the condition in

the proposition. We first consider a special case where x̃ ∈ P (x; R) and x ∈ P (x̃; R̃), and

observe that there exist a preference R̄ which is a Maskin transformation of R at x and

R̃ at x̃. Figure 2 (ii) draws this situation. It is easy to image a desired Maskin monotonic

transformation. A rigorous discussion follows.

Suppose x̃ ∈ P (x; R) and x ∈ P (x̃; R̃). We pick a closed subset Y ⊂ RL
+ such that (i)

Y ⊂ UC(x; R)
⋂

UC(x̃; R̃), (ii)for any x ∈ Y , x + RL
+ ⊂ Y , (iii) the boundary of Y , ∂Y ,

is smooth, (iv) x ∈ ∂Y , and UC(x; R) and Y have the same hyperplane at x, and (v)

x̃ ∈ ∂Y , and UC(x̃; R̃) and Y have the same hyperplane at x̃. To obtain such a set Y .

For example, let Bε(y) be a closed ball with center y and radius ε. Fix sufficiently small
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ε and let Y be a sum of Bε(y) over y’s such that Bε(y) ⊂ UC(x; R)
⋂

UC(x̃; R̃). That is,

Y = {x ∈ RL
+|x ∈ Bε(y) for some y such that Bε(y) ⊂ UC(x; R)

⋂
UC(x̃; R̃)}. If the ε

is sufficiently small, Y is a desirable set satisfying (i)–(v). We let R̄ ∈ R be a preference

such that Y is an upper contour set of R̄ at x. As in Lemma 4, R̄ is thus determined

uniquely. It is clear that R̄ is a Maskin monotonic transformation of R at x and R̃ at x̃

because UC(x; R̄) = UC(x̃; R̄) = Y ⊂ UC(x; R)
⋂

UC(x̃; R̃) from the construction.

We next consider a general case. Suppose R, R̃ ∈ R and x, x̃ ∈ RL
+ satisfy the

condition in the proposition. We pick x̂ ∈ [x̃] such that x̂ ∈ P (x; R) and x ∈ P (x̂; R̃).

From the above discussion there exist a preference R̄ ∈ R that is a maskin monotonic

transformation of R at x and R̃ at x̂. Then, as in Lemma 5, R̄ is also a Maskin monotonic

transformation of R̃ at x̃ because x̃ and x̂ is on the same ray.

5 Proof of Theorem 1

Suppose f is a strategy-proof and Pareto optinal social choice fuinction which guarantees

positive consumptions. When all consumers have an identical preference, all consumers

should receive a posiitive portion of Ω: f i(R) = λiΩ with some 0 < λi < 1 for R =

(R, . . . , R). Pick two different preference R and R̃ and consider the allocations given by

f at R = (R, . . . , R) and R̃ = (R̃, . . . , R̃).

We let A(x; R) be the set of consumption bundle x′ such that Ω − x′ is indifferent to

Ω − x with respect to R

A(x; R) = {x′ ∈ RL
+|(Ω − x′)IR(Ω − x)}

and let A+(x; R) = {x′ ∈ RL
+|(Ω − x)PR(Ω − x′)}, which is the upper right part of the

consumption set partitioned by A(x; R) and let A−(x; R) = {x′ ∈ RL
+|(Ω−x′)PR(Ω−x)},

which is the lower left part.

Without loss of generality we assume f 1(R) ≥ f 1(R̃). We pick x̄1 ∈ A(f 1(R̃); R̃) in the

neighborhood of f 1(R̃) so that x̄1 is in A(f 1(R); R)− and x̄1 is not parallel to Ω. Next, let

x′ be the intersection of A(f 1(R); R) and the segment [x̄1, Ω] and pick x̂1 ∈ A(f 1(R); R)

in the neighborhood of x′ so that x̂1 ∈ A−(x′; R̃). See the Edgeworth Box in Figure 3,

where the consumption of consumer 1 is mesured from the lower left vertex and sum of

consumptions of the other consumers is measured from the upper right vertex.

As we observed in Proposition 1, consumption of consumer 1 is on A(f 1(R); R) (resp.

A(f 1(R̃); R̃)) when other consumers’ preference is R (resp. R̃) and the preference of

consumer 1 is changed. There exist preferences R̄ and R̂ such that f 1(R̄,R−1) = x̄1 and

f 1(R̂, R̃−1) = x̂1.

We let Ř be a preference which is a Maskin monotonic transformation of R at Ω− x̂1

and of R̃ at Ω−x̄. Observe that our choice of x̄1 and x̂1 ensures the condition in Proposition

2 and supports the existence of such a Maskin monotonic transformation.
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We observe that the consumption allocated to consumer 1 should not be changed when

the preferences of consumers other than consumer 1 are changed to Ř from the profile

(R̄,R−1) or the profile (R̂, R̃−1)

Since f is Pareto optimal and positive consumption guarantee, at the profile (R̄,R−1),

consumer 1 receives x̄1 and each of the other consumers i = 2, . . . , N , receives a positive

portion of Ω − x̄1: λ̄i(Ω − x̄1), i = 2, . . . , N , where 0 < λ̄i < 1 and
∑N

i=2 λ̄i = 1. Note

that since we have chosen x̄1 not parallel to Ω, x̄1 and Ω − x̄1 are independent vectors.

Now, let us change the consumer 2’s preference to Ř from R. Write the new profile as

(R̄, Ř,R−2) where consumer 1’s profile is R̄, consumer 2’s Ř and others’ R.

Since Ř is a Maskin monotonic transformation of R at Ω− x̄1, it is so at consumer 2’s

consumption. Therefore consumer 2’s consumption shopuld not be changed and her gradi-

ent vector at the consumption should not be changed. Because of the Pareto optimarity,

all consumers’ gradient vectors at their consumptions should be the same. Hence, all

consumers have the same gradient vector at the both profiles (R̄,R−1) and (R̄, Ř,R−2).

Since the preferences are homothetic, the equality of the gradient vectors implies that

each consumer’s consumptions at the both profiles should be parallel. That is, at the new

profile, consumer 1’s consumptions is parallel to x̄1 and the other consumer’s consump-

tions are parallel to Ω − x̄1. Because of the pareto optimarity, the consumptions at the

new profile should sum up to the total endowment Ω. Then consumer 1’s consumption

should be still x̄1.

Next we further change consumer 3’s preference to Ř from R. Discussions are the same.

Because R̃ is a Maskin monotonic transformation of R at her consumption, consumer

3’s consumptions at the new profile (R̄, Ř, Ř,R−3), where consumer 1’s preference is R̄,

consumer 2’s and 3’s Ř and others’ R, and at the old one (R̄, Ř,R−2) are the same and

the gradient vectors at the consumption are the same. Then, all consumers have the same

gradient vector at their consumptions at the profiles (R̄, Ř, Ř,R−3) and (R̄, Ř,R−2), and

their consumptions are parallel at the both profiles. Thus consumption of consumer 1 is

parallel to x̄1 and others are parallel to Ω − x̄1. Then consumer 1’s consumption at the

profile (R̄, Ř, Ř,R−3) should be still x̄1.

By applying the discussions repeatedly untill we change the preferences of all con-

sumers but consumer 1 to Ř, we finally obtain that f 1(R̄, Ř−1) = x̄1. Discussions are the

same for the profile (R̂, R̃−1) and we obtain f 1(R̂, Ř−1) = x̂1.

Remember our choice of x̂1 and x̄1. From the definition, x′ is strictly prefered to x̄

with respect to any prefrence and x̂1 can be chosen arbitrarily close to x′. Therefore x̂1

could have been choosen to be prefered to x̄1 under the consumer 1’s preference R̄. This

violates the strategy-proofness of f . This ends the proof of Theorem 1.
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6 Proof of Theorem 2

We first prove a lemma.

Lemma 6 Let N = 3 and f be a strategy-proof and Pareto optimal social choice

function. Let R = (R, R, R) and R̄ = (R̄, R̄, R̄) be preference profiles where all agents

have the same preferences R and R̄ respectively. If one consumer is given the total

endowment Ω by f at R and another consumer is given Ω at R̄, then there exists no

preference R̃ such that the other consumer is given Ω at R̃ = (R̃, R̃, R̃).

Proof Without loss of generality we assume f(R) = (Ω, 0, 0) and f(R̄) = (0, Ω, 0) and

prove f(R̃) �= (0, 0, Ω). To the contrary, we suppose f(R̃) = (0, 0, Ω).

f(R) = (Ω, 0, 0) implies f(R̄, R, R) = (Ω, 0, 0) because of the strategy-proofness of f .

This, again by the strategy-proofness of f , implies f 2(R̄, R̄, R) = 0. On the other hand,

f(R̄) = (0, Ω, 0) implies f 3(R̄, R̄, R) = 0. Therefore we obtain f(R̄, R̄, R) = (Ω, 0, 0),

hence f(R̃, R̄, R) = (Ω, 0, 0).

By the same discussions, f(R̃) = (0, 0, Ω) implies f(R̃, R̃, R̄) = (0, 0, Ω), which implies

f 2(R̃, R̄, R̄) = 0. f(R̄) = (0, Ω, 0) implies f 1(R̃, R̄, R̄) = 0. Therefroe f(R̃, R̄, R̄) =

(0, 0, Ω), hence f(R̃, R̄, R) = (0, 0, Ω). This is a contradiction.

Part 1. In this part, we prove that if f is a strategy-proof and Pareto optimal so-

cial choice function, then one consumer is given the total endowment Ω at each profile

(R, R, R) where all consumers have the same preference.

(1) We pick a preference R such that at least two consumers receive non-zero consump-

tions at the profile (R, R, R).3 In this step, we show that there exists another preference R̃

such that at least two consumers receives non-zero consumptions at the profile (R̃, R̃, R̃).

We suppose that there exists no R̃ different from R such that at least two consumers

receives non-zero consumption at R̃ = (R̃, R̃, R̃). In other words, we suppose that some

consumer receives Ω at each R̃ = (R̃, R̃, R̃), R̃ �= R.

Because of Lemma 6, all consumers 1,2 and 3 cannot be the receiver of the total

endowment at some profiles where all consumers have same preferences. Without loss

of generality, we assume consumer 1 or 2 receives the total endowment at each profiles

R̃ = (R̃, R̃, R̃), R̃ �= R and consumer 1 receives the total endowment at least one such

profile. We consider the following two cases separately: (i) f 3(R, R, R) = 0 and (ii)

f 3(R, R, R) �= {0, Ω}. Note that f 3(R, R, R) �= Ω because of Lemma 6.

(i) We conider the case f 3(R, R, R) = 0. Let R′ be a preference such that f(R′, R′, R′) =

(Ω, 0, 0). Then f(R′′, R′, R′) = (Ω, 0, 0) for any R′′, and hence f 2(R′′, R′′, R) = 0 because

3If there exists no such preference, then one consumer receives the total endowment at each profile
where all consumers have the same preference as we desired in this part.
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of the strategy-proofness of f . On the other hand, if R′′ �= R, then f 3(R′′, R′′, R′′) = 0 by

assumption, and hence f 3(R′′, R′′, R′) = 0 because of the strategy-proofness of f . There-

fore, if R′′ �= R, then f(R′′, R′′, R′) = (Ω, 0, 0). Then, f(R̄, R′′, R′) = (Ω, 0, 0) for any R̄

and any R′′ �= R, and hence f 3(R̄, R′′, R) = 0 because of the strategy-proofness of f . Re-

member that at the profile (R, R, R) consumer 3 receives zero consumption, and consumers

1 and 2 receive non-zero consumptions. This implies that f(·, ·, R) is a strategy-proof,

Pareto optimal, and non-dictatorial social choice function in the two-consumer economy

with the consumers 1 and 2. This is a contradiction.

(ii) We consider the case f 3(R, R, R) �= {0, Ω}. As in the above case, we let R′ be

a preference such that f(R′, R′, R′) = (Ω, 0, 0) and obtain f(R̄, R′′, R′) = (Ω, 0, 0) for

any R̄ and any R′′ �= R. Note that this implies f 2(R̄, R, R′) = 0 for any R̄ because

of the strategy-proofness of f . f 3(R, R, R) �= {0, Ω} implies f 3(R, R, R′) �= {0, Ω}, and

this implies f 1(R, R, R′) �= {0, Ω} because consumer 2 receives zero-consumption at the

profile, and hence f 1(R̄, R, R′) =�= {0, Ω} for any R̄. Therefore at the profile (R̄, R, R′)

for any R̄, consumer 2 receives zero-consumption and consumers 1 and 3 receive non-zero

consumptions. Hence, f 3(R̄, R, R̂) �= 0 for any R̄ and any R̂

Now suppose there exists R̂ different from R′ such that f(R̂, R̂, R̂) = (0, Ω, 0), then

by the symmetric discussion, we have f(R′′, R̄, R̂) = (0, Ω, 0) for any R̄ and any R′′ �= R.

Especially, f(R′′, R, R̂) = (0, Ω, 0) for any R′′ �= R. This contradicts to the conclusion in

the above paragraph.

From the discusssions in the above paragraphs, we have f(R′, R′, R′) = (Ω, 0, 0) for

any R′ �= R and f 2(R̄, R, R′) = 0, f 1(R̄, R, R′) �= {0, Ω} and f 3(R̄, R, R′) �= {0, Ω} for any

R̄ . This implies that f(·, R, ·) defined on the profile set R× (R \ R) is a strategy-proof,

Pareto optimal, and non-dictatorial social choice function in the two-consumer economy

with the consumers 1 and 3. This is a contradiction.

(2) Since there exists three consumers, there exist at least one consumer who receives

non-zero consumption at the both profile R = (R, R, R) and R̃ = (R̃, R̃, R̃). Without loss

of generality we let consumer 1 is such a consumr: f 1(R) �= {0, Ω} and f 1(R̃) �= {0, Ω}.
Without loss of generality we assume f 1(R) ≥ f 1(R̃).

We change the preference of consumer 1 as we did in the proof of Theorem 1. We pick

x̄1 ∈ A(f 1(R̃); R̃) in a neighborhood of f 1(R̃) so that x̄1 is in A(f 1(R); R)− and x̄1 is not

parallel to Ω. Next, let x′ be the intersection of A(f 1(R); R) and the segment [x̄1, Ω] and

pick x̂1 ∈ A(f 1(R); R) in a neighborhood of x′ so that x̂1 ∈ A−(x′; R̃). As observed in

Proposition 1, there exists a preference R̄ such that f 1(R̄;R−1) = x̄1 and a preference R̂

such that f 1(R̂; R̃−1) = x̂1. (Remember Figure 2.)

(3) Since f 1(R̄, R̃, R̃) = x̄1 �= {0, Ω}, consumer 2 or consumer 3 receives non-zero

consumption at the profile. In this step, we prove that even if one consumer receives zero
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consumption at the profile, there exists a profile near the old one such that all consumers

receive non-zero consumptions.

We first consider new profiles (R′, R̃, R̃) where consumer 1’s preference R′ is a Maskin

monotonic transformation of R̄ at x̄ and is close to R̄. If consumer 2 and 3 receive non-

zero consumptions at such a profile, we achieve the desired result. Further observe that,

since R′ is a Maskin monotonic transformation of R̄ at x̄1, f 1(R′, R̃, R̃) = x̄1, f 2(R′, R̃, R̃)

and f 3(R′, R̃, R̃) are both parallel to Ω − x̄1 which is not parallel to x̄1.

Next we suppose that there exist no such Maskin monotonic transformation R′ in the

neighborhood of R̄. Without loss of generality, we let R′ and R′′ be preferences such that

(i) R′ and R′′ are Maskin monotonic transformations of R̄ at x̄ in the neighborhood of R̄,

(ii) R′′ is a Maskin monotonic transformation of R′ at x̄, and (iii) f 3(R′, R̃, R̃) = 0 and

f 3(R′′, R̃, R̃) = 0. Note that then f 1(R′, R̃, R̃) = f 1(R′′, R̃, R̃) = x̄1 and f 2(R′, R̃, R̃) =

f 2(R′′, R̃, R̃) = Ω − x̄1 hold.

We let t �→ Rt be a continuous map such that Rt̄ = R̃ and consider the profiles

(R′, Rt, R̃) and (R′′, Rt, R̃). Suppose there exists no t in the neighborhood of t̄ such that

f 3(R′, Rt, R̃) �= 0 or f 3(R′′, Rt, R̃) �= 0. Then, as shown in Proposition 1, f 1(R′, Rt, R̃)

(resp. f 1(R′′, Rt, R̃)) is indifferent to x̄1 with respect to the preference R′ (resp. R′′)

for t in the neighborhood of t̄ because the total endowment Ω should be allcated to

the two consumers 1 and 2. In other words, f 2(R′, Rt, R̃) (resp. f 2(R′′, Rt, R̃)) is on

A(Ω − x̄1; R′) (resp. A(Ω − x̄1; R′′)) for t in the neighborhood of t̄. This, however,

implies that f 1(R′′, Rt, R̃) is prefered to f 1(R′, Rt, R̃) because R′′ is a Maskin monotonic

transformation of R′. This contradicts to the strategy-proofness of f . Therefore there

should exists t̂ in any neighborhood of t̄ such that f 3(R′, Rt̂, R̃) �= 0 or f 3(R′′, Rt̂, R̃) �= 0.

Consider the case f 3(R′, Rt̂, R̃) �= 0 for t̂ sufficiently close to t̄. We can prove that

f 2(R′, Rt, R̃) → f 2(R′, R̃, R̃) as t → t̄. Therefore f 2(R′, Rt̂, R̃) is close to f 2(R′, R̃, R̃) =

Ω−x̄1 and the gradient vectors at the consumptions are also close to each other. The close-

ness of the gradient vectors implies that f 1(R′, Rt̂, R̃) is on the ray close to [x̄1] because

of the homoceticity of R′. Further, the closeness of Rt̂ and R̃ implies that f 3(R′, Rt̂, R̃)

is on the ray close to [f 2(R′, Rt̂, R̃)] hence is on the ray close to [Ω − x̄1]. These implies

that f 1(R′, Rt̂, R̃) is close to x̄1 because f 1(R′, Rt̂, R̃) + f 2(R′, Rt̂, R̃) + f 3(R′, Rt̂, R̃) = Ω,

where f 1(R′, Rt̂, R̃) is on the ray close to [x̄1], f 2(R′, Rt̂, R̃) and f 3(R′, Rt̂, R̃) are on the

rays close to [Ω − x̄1] and f 2(R′, Rt̂, R̃) is close to Ω − x̄1. The discussion is the same for

the case f 3(R′′, Rt̂, R̃) �= 0.

The conclusion of this step follows. There exist preferences R̄1, R̃2 and R̃3 respec-

tively in the neighborhoods of R̄, R̃, and R̃ such that all consumers are given non-zero

consumptions at the profile (R̄1, R̃2, R̃3) and f 1(R̄1, R̃2, R̃3) is close to f 1(R̄, R̃, R̃) = x̄1

and is parallel to neither f 2(R̄1, R̃2, R̃3) nor f 2(R̄1, R̃2, R̃3).

(4) The discussion is the same for the profile (R̂, R, R). There exist preferences R̂1,
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R2 and R3 respectively in the neighborhoods of R̂, R, and R such that all consumers

are given non-zero consumptions at the profile (R̂1, R2, R3) and f 1(R̂1, R2, R3) is close to

f 1(R̂, R, R) = x̂1 and is parallel to neither f 2(R̂1, R2, R3) nor f 2(R̂1, R2, R3).

(5) Let Ř2 be a Maskin monotonic transformation of R̃2 at f 2(R̄1, R̃2, R̃3) and of R2 at

f 2(R̂1, R2, R3). Note that there exists a Maskin monotonic transformation of R̃ at Ω− x̄1

and of R at Ω − x̂1 as we observed in the proof of Theorem 1. (See Figure 3.) Then

there exists a desired transformation Ř2 for the preferences R̃2 and R2 close to R̃ and R

respectively and the consumptions f 2(R̄1, R̃2, R̃3) and f 2(R̂1, R2, R3) close to Ω− x̄1 and

Ω − x̂1.

By the discussion similar to that in the proof of Theorem 1 this transformation does

not change consumptions of any consumers.

Next, let Ř3 be a Maskin monotonic transformation of R3 at f 3(R̄1, Ř2, R3) and of

R̃3 at f 3(R̂1, Ř2, R̃3). The existence of this transformation is also supported by that fact

that R̃3 and R3 are close to R̃ and R respectively and the consumptions f 3(R̄1, R̃2, R̃3)

and f 3(R̂1, R2, R3) are respectively on the rays close to [Ω− x̄1] and [Ω− x̂1]. Again this

transformation does not change consumptions of any consumers.

Thus we have that f 1(R̄1, Ř2, Ř3) is close to x̄1 and f 1(R̂1, Ř2, Ř3) is close to x̂1. This

contradicts to the strategy-proofness of f because x̂ is chosen to be prefered to x̄ with

respect to the prefrence R̄ in step (2), and R̄1 is choosen to be sufficiently close R̄ in step

(3). This ends the proof of Part 1.

Part 2. We have proved that one consumer receives all endowments at each preference

profile R = (R, R, R) where all consumers have the same preference. Because of Lemma 6,

there exists a consumer who receives zero consumption at any such profile R = (R, R, R).

In this part, we prove that the allocation given by f should depend only on the preference

of the consumer.

Without loss of generality we assume consumer 3 be the consumer receiving zero

consumptions at such profiles : f 3(R, R, R) = 0 for any R = (R, R, R).

Pick any preference R. We know f(R, R, R) is (Ω, 0, 0) or (0, Ω, 0). We prove that if

f(R, R, R) = (Ω, 0, 0), then f(R̃, R̄, R) = (Ω, 0, 0) for any R̄, R̃ ∈ R, and symmetrically

if f(R, R, R) = (0, Ω, 0), then f(R̃, R̄, R) = (0, Ω, 0) for any R̄, R̃ ∈ R.

We assume f(R, R, R) = (Ω, 0, 0). Then f(R̄, R, R) = (Ω, 0, 0). Hence f 2(R̄, R̄, R) =

0.

f 3(R̄, R̄, R̄) = 0 implies f 3(R̄, R̄, R) = 0. Thus we have f(R̄, R̄, R) = (Ω, 0, 0). This

implies f(R̃, R̄, R) = (Ω, 0, 0). The discussion is symmetric for the case f(R, R, R) =

(0, Ω, 0). This ends the proof of Theprem 2.
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Abstract

In this note we show that in a pure exchange economy with two consumers and
a finite number of goods, there exists no strategy-proof, Pareto-efficient and non-
dictatorial social choice allocation function on any local Cobb-Douglas preference
domain. This is a slight extension of a result proved by Hashimoto (2008).
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1 Introduction

2 The model

We consider pure exchange economies with I agents indexed by i = 1, . . . , I (I ≥ 2) and

L goods indexed by l = 1, . . . , L (L ≥ 2).

Each agent i has initial endowment of goods ωi = (ωi1, . . . , ωiL) ∈ RL
+ where ωil is

his endowment of l-th good. The total endowments of goods is ω = (ω1, . . . , ωL) =∑I
i=1 ωi ∈ RL

++. A consumption bundle of agent i is xi = (xi1, . . . , xiL) ∈ RL
+ where xil is

his consumption of l-th good. The set of allocations is X = {(x1, . . . , xI) ∈ RLI
+ |∑N

i=1 xi =

ω}.
Each agent i has a preference represented by a Cobb-Douglas utility function Ui on

the consumption space RL
+:

Ui(x; ai) = xai1
1 · · ·xaiL

L

∗Address: Department of Economics, Doshisha University, Kamigyo-ku, Kyoto 602-8580 Japan;
Phone: +81-75-251-3647; E-mail: tmomi@mail.doshisha.ac.jp
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where ai = (ai1, . . . , aiL) ∈ RL
++ is the parameter defining the utility function. Clearly

ai can be identified with the utility function; and hence with the preference represented

by the utility function. If ai equals to āi up to normalization (ai = tāi with positive

t ∈ R+), the preference defined by ai equals to one by āi. We write ai ∼ āi when ai

and āi induce the same preference. A preference profile is a list of preferences of agents

a = (a1, . . . , aI) ∈ RLI
++. To deal with the case where we are interested in restricted set

of the preferences, we let Ai ⊂ RL
++ denote the set of ai we are concerned and write

A = A1 × · · · × AI

A social choice function f : A → X is a map from a preference proofile to an allocation.

Let fi(a) = (fi1(a), . . . , fiL(a)) denote the consumption bundle of agent i given by f at

a.

Definition 1. An allocation x ∈ X is Pareto efficient for a if there exists no x̄ ∈ X

such that Ui(x̄i; ai) ≥ Ui(xi; ai) for all i = 1, . . . , I and U(x̄j ; aj) > U(xj ; aj) for some

j = 1, . . . , I. A social choice function f : A → X is Pareto-efficient if f(a) is a Pareto-

efficient allocation for any a ∈ A.

For a = (a1, . . . , aI) ∈ A, we write a−i to denote the preferences of agents other than

agent i and write f(a′
i, a−i) to denote the allocation given by f at (a1, . . . , ai−1, a

′
i, ai+1, . . . , aI).

Definition 2. A social choice function f : A → X is strategy-proof if Ui(fi(a); ai) ≥
Ui(fi(a

′
i, a−i); ai) for any i = 1, . . . , I, any a ∈ A and a′

i ∈ Ai.

Definition 3. A social choice function f is dictatorial if there exists some agent i such

that f i(a) = ω for any a ∈ A.

3 Economy with two agents

In this section we consider the case where there exists two agents (I = 2). We let A1 and

A2 be any open set of RL
++. Thus a social choice function f is defined for a = (a1, a2) ∈

A = A1 × A2. The result proved by Hashimoto (2008) imposed restrictions that A1 and

A2 include parameters a1 and a2 respectively so that they induces the same preference

and the preference is symmetric with respect to L − 1 goods, that is, (1, a12

a11
, . . . , a1L

a11
) =

(1, a22

a21
, . . . , a2L

a21
) = (1, t, · · · , t).

Proposition 1. There exists no social choice function f : A1×A2 → X that is strategy-

proof, Pareto-efficient and non-dictatorial.

The proof is essentially the same as the proof by Hashimoto (2008). We first show

that f(·, aj) : Ai → X is a continuous function of ai. Note that this does not generally

imply that f : A1 × A2 → X is a continuous function

2



Lemma 1. If f : A → X is a strategy-proof and Pareto-efficient social choice function,

then f(·, aj) : Ai → X is a continuous function for any aj ∈ Aj , i, j = 1, 2, (i �= j).

Proof. We arbitrarily fix a2 ∈ A2 and show that the function f(·, a2) : A1 → X is

continuous.

We suppose a1 → ā1 ∈ A1. Since X is compact, f(a1, a2) converges as a1 → ā1. We

let f(a1, a2) → x̄. All we have to show is that x̄ = f(ā1, a2).

Since f is strategy-proof, U1(f1(a1, a2); a1) ≥ U1(f1(ā1, a2); a1) for any a1. Especially

at the limit of a1 → ā, U1(x̄1; ā1) ≥ U1(f1(ā1, a2); ā1). If this equation holds with strict

inequality, then the consumer would announce ã1 which is sufficiently close to ā1 when his

true preference is ā1 because f1(ã1, a2) is close to x̄1, and hence U1(f1(ã1, a2); ā1) is close

to U1(x̄1; ā1). This violate the stratefy-proofness of f . Therefore the equation should hold

with equality: U1(x̄1; ā1) = U1(f1(ā1, a2); ā1).

We next show that x̄ should be a Pareto-efficient allocation with respect to prefer-

ences ā1 and a2. Suppose that x̄ is not Pareto-efficient. Then in the economy with Cobb-

Douglas preferences there exists x′ = (x′
1, x

′
2) ∈ X such that U1(x

′
1; ā1) > U1(x̄1; ā1) and

U2(x
′
2; a2) > U2(x̄2; a2). When ã1 is sufficiently close to ā1, f(ã1, a2) is sufficiently close

to x̄ and U1(f1(ã1, a2); ã1) is sufficiently close to U1(f1(ã1, a2); ā1). Therefore U1(x
′
1; ã1) >

U1(f1(ã1, a2); ã1) and U2(x
′
2; a2) > U2(f2(ã1, a2); a2) hold. This violates the Pareto-efficiency

of f .

It is easy to observe that in the Edgeworth Box with two agents of Cobb-Douglas

preferences the set of Pareto-efficient allocation intersects each consumer’s one indifference

surface only once. Therefore If U(x̄1; ā1) = U(f(ā1, a2); ā1) and x̄ and f(ā1, a2) are both

Pareto-efficient allocation, then x̄ = f(ā1, a2) holds.

Lemma 2. Uj(fj(ai, aj); aj) = Uj(fj(a
′
i, aj); aj) for any i, j = 1, 2, (i �= j) and any

ai, a
′
i ∈ Ai and aj ∈ Aj .

Proof. We set i = 1 and j = 2 and prove the lemma for a1 = (a11, a12 . . . , a1L) and

a′
1 = (a′

11, a12, . . . , a1L). That is, we prove that the utility of the consumer 2 is not changed

when a11 is changed. The discussion is symmetric for other components a12, . . . , a1L.

Since these changes of each component sums up to any changes of the parameter a1, this

is sufficient as the proof of the lemma.

Since (a12, . . . , a1L) and a2 are fixed in the following discussisons, we simply write

f1(a11) and f2(a11) to denote the consumptions given by f at (a1, a2).

We suppose that there exists a′
11 and a′′

11 such that U2(f2(a
′
11); a2) �= U2(f2(a

′′
11); a2).

Without loss of generality we assume a′
11 < a′′

11.

We first consider the case where U2(f2(a
′
11); a2) > U2(f2(a

′′
11); a2). Note that U2(f2(a11); a2)

is a continuous function of a11 by Lemma 1 proved above. Then there exist ā11 ∈ (a′
11, a

′′
11)

3



and a sequence {εn} which converges to 0 from the right hand side, εn > 0 and εn → 0 as

n → ∞, such that

lim
n→∞

U2(f2(ā11 + εn); a2) − U2(f2(ā11); a2)

εn

< 0.1

Since the utility function U2(·; a2) is differentiable, the equation becomes

L∑
l=1

∂U2(f2(ā11); a2)

∂x2l
lim

n→∞
f2l(ā11 + εn) − f2l(ā11)

εn
< 0.

Since f is Pareto-efficient, f2(a11) = ω−f(a11) holds for any a11 and (∂U2(f2(a11);a2)
∂x21

, . . . , ∂U2(f2(a11);a2)
∂x2L

)

is parallel to (∂U1(f1(a11);a1)
∂x11

, . . . , ∂U1(f1(a11);a1)
∂x1L

). Therefore we have

L∑
l=1

∂U1(f1(ā11); ā1)

∂x1l

lim
n→∞

f1l(ā11 + εn) − f1l(ā11)

εn

> 0,

hence,

lim
n→∞

U1(f1(ā11 + εn); ā1) − U1(f1(ā11); ā1)

εn
> 0,

where ā1 = (ā11, a12 . . . , a1L). This implies U1(f1(ā11 + εn); ā1) > U1(f1(ā11); ā1) with

sufficiently large n because εn > 0. This violates the strategy-proofness of f because

consumer 1 whould announce (ā11 + εn, a12, . . . , a1L) when his true parameter is ā1.

Next, we consider the case where U2(f2(a
′
11); a2) < U2(f2(a

′′
11); a2). Then there exist

ā11 ∈ (a′
11, a

′′
11) and a sequence {εn} which converges to 0 from the left hand side, εn < 0

and εn → 0 as n → ∞ such that

lim
n→∞

U2(f2(ā11 + εn); a2) − U2(f2(ā11); a2)

εn
> 0.

By the same discussion, we have

lim
n→∞

U1(f1(ā11 + εn); ā1) − U1(f1(ā11); ā1)

εn
< 0.

This implies U1(f1(ā11 + εn); ā1) > U1(f1(ā11); ā1) with sufficiently large n because εn < 0.

This again violates the strategy-proofness of f .

Proof of Proposition 1. We select a1 ∈ A1 and a2 ∈ A2 such that f(a1, a2) is in the

interior of X. Such a pair (a1, a2) exists because f is non-dictatorial.

Choose any ā1 which is sufficiently close to a1. In the Edgeworth Box, consider a ray

starting from the vertex of consumer 2 ((x1, x2) = (ω, 0)) and passsing through f(a1, a2).

1On the contrary, suppose that limn→∞
U2(f2(ā11+εn);a2)−U2(f2(ā11);a2)

εn
> 0 for any ā11 ∈ (a′

11, a
′′
11)

and any sequence {εn} converging 0 from right hand side. It clearly contradicts to that U2(f(·); a2) is a
continuous function and U2(f2(a′

11); a2) > U2(f2(a′′
11); a2).
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Also consider the indifference set of consumer 1 with preference ā1 at f1(ā1, a2): {x1 ∈
RL

+|U1(x1; ā1) = U1(f1(ā1, a2); ā1)}. Let x̄ = (x̄1, x̄2) ∈ X denote the intersection of

this ray and this indifference set in the Edgeworth Box. It is easy to observe that the

intersection is determined uniquely. It is also easy to observe that x̄2 = tf2(a1, a2) with

some 0 < t < 1. The reason is that if t > 0, then consumer 1 whould announce a1 when

his true parameter is ā1.

We select parameter ā2 so that the vector (∂U2(x̄2;ā2)
∂x21

, . . . , ∂U2(x̄2;ā2)
∂x2L

) is parallel to

(∂U1(x̄1;ā1)
∂x11

, . . . , ∂U1(x̄1;ā1)
∂x1L

). Because of Lemma 2, f(ā1, ā2) should be on the consuner 1’s

indifference set {x1 ∈ RL
+|U1(x1; ā1) = U1(f1(ā1, a2); ā1)}. Since the indifference set inter-

sects the set of pareto-efficient allocations with preferences ā1 and ā2 only once, we have

f(ā1, ā2) = x̄.

Finally consider f(a1, ā2). Observe that f2(a1, ā2) is indifferent to x̄2 with respect to

the utility ā2 because of Lemma 2 and that f2(a1, a2) is prefered to x̄2 with respect to

any preference. Thus U2(f2(a1, a2); ā2) > U2(f2(a1, ā2); ā2), which violates the strategy-

proofness of f .

f(ā1, a2)

x̄ = f(ā1, ā2)
f(a1, a2)

O2

O1
a2

ā1

a1

ā2

a1

f(a1, ā2)
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