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1. Introduction

It is somewhat surprising that the problem of extension of a continuous monotonic
function defined on a subset A of the Euclidean space Rn into the entire space with
preservation of its properties has received scant attention. In this paper we tackle
this problem for both cases of increasing and strictly increasing functions. The cases
of decreasing and strictly decreasing functions can be readily reduced to the cases of
increasing and strictly increasing functions. For the either case we find a property
that is necessary and sufficient for the given function to be extendible with preserving
the continuity and (strictly) increasing properties. The result concerning the case of
(nonstrictly) increasing functions can be generalized into normally ordered uniform
spaces.

Nachbin [5] studied the problem of extension of a continuous and (nonstrictly)
increasing (isotone in his terms) functions defined on closed subsets of an arbitrary
normally ordered topological space. He found a property (called further Nachbin
property) that is necessary and sufficient for the existence of a continuous and
increasing extension. Since both Nachbin property and the property found here for
the (nonstrictly) increasing case are necessary and sufficient for the extendibility they
are equivalent. Notice that a direct proof of their equivalence does not seem so simple.

Let us introduce some notation and concepts. For two vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn) in Rn we write x 6 y if xi 6 yi for all i = 1, . . . , n. x ≤ y
if x 6 y and x 6= y, and x < y if xi < yi for all i = 1, . . . , n. We also write
x > y, x ≥ y, x > y if y 6 x, y ≤ x, y < x, respectively. Denote by e the vector
in Rn all of whose components are 1, and ek (k = 1, . . . , n) the vector in Rn whose
k-th component is 1 and all the other components are 0. A real function f defined
on a subset D in Rn is said to be increasing if for any two points x, y ∈ D such that
x 6 y, f(x) 6 f(y). And f is said to be strictly increasing if for any two points
x, y ∈ D such that x ≤ y, f(x) < f(y). A function f ′ : D′ → R is an extension of
function f if D ⊂ D′ and f ′(x) = f(x) for all x ∈ D.

We consider here the following two problems: Given a continuous, (strictly)
increasing function f : D → R, where D is a closed set in Rn, does there exist a
continuous (strictly) increasing extension F of function f into the entire space Rn?
Here, for either case we give necessary and sufficient conditions for the existence of
such extensions.

1



Since, there exists an order preserving homeomorphism between R and (0, 1) there
is no loss of generality in assuming that the range of function f, f(D), is contained in
(0, 1).

For a function f : D → R, where D is an arbitrary set in Rn, we set

m(x) = inf
r>0

sup{f(z) : z ∈ D, z 6 x+re} and M(x) = sup
r>0

inf{f(z) : z ∈ D, z > x−re},

with the agreement that m(x) = inf{f(x) : x ∈ D} and M(x) = sup{f(x) : x ∈ D},
if {z ∈ D, z 6 x+ re} = ∅ and {z ∈ D, z > x− re} = ∅ for some r > 0, respectively.

2. Extension of increasing functions

Theorem 1. Let D ⊂ Rn be a nonempty, closed set and f : D → R a continuous,
increasing function. Then there exists a continuous, increasing function F : Rn → R
such that F (x) = f(x) for x ∈ D if and only if function f satisfies the inequality

m(x) 6M(x) for all x ∈ Rn. (1)

Proof: If there exists a continuous, increasing extension F of function f, then obviously
m(x) 6 F (x + re) and M(x) > F (x − re) for all x ∈ Rn and all r > 0. Since, F is
continuous it follows thatm(x) 6 F (x) 6M(x) and hencem(x) 6M(x) for all x ∈ Rn.

We prove now that if the assumption m(x) 6 M(x) is satisfied, then there exists
an extension F as stated in the theorem.

Claim: m(·) is upper semicontinuous and M(·) is lower semicontinuous. Hence,
the correspondence x 7→ [m(x),M(x)], x ∈ R2 is lower hemicontinuous.

Proof: Fix x0 ∈ Rn. Let ε > 0. By the definition of m(·) there exists a positive
number r such that

sup{f(z) : z ∈ D, z 6 x0 + 2re} < m(x0) + ε.

Since for each x ∈ Br(x0) the inequality z 6 x + re implies z 6 x0 + re we have
m(x) < m(x0) + ε for each x ∈ Br(x0). That is m(·) is upper semicontinuous. Lower
semicontinuity of M(·) is proved similarly.
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We extend first f into D∪K1, where K1 = [−1, 1]n. By Michael’s selection theorem
there exists a continuous function g′ : K1 → R such that m(x) 6 g′(x) 6 M(x) for all
x ∈ K1. By the property (1), g′(x) = f(x) for x ∈ D ∩K1. Set

g(x) = max{g′(z) : z ∈ K1, z 6 x} for x ∈ K1.

It is an easy matter to show that g is continuous and increasing. Moreover, since
M(·) is increasing we have

m(x) 6 g(x) 6M(x) for x ∈ K1.

Indeed, we claim that the function f1 : D ∪ K1 → R defined as f(x) for
x ∈ D \ K1, and as g(x) for x ∈ K1 is continuous and increasing. Obviously, f1 is
continuous on D \ K1. Let x0 ∈ K1 and {xk} be a sequence in D \ K1 converging
to x0. Since D is assumed to be closed, x0 ∈ D. Therefore g′(x0) = f(x0). By the
definition of function g, g(x0) = f(x0). Since, f is continuous on D it follows that
f1(xk) = g(xk) → g(x0) = f1(x0). Show that f1 is increasing. Take x ∈ K1 and
y ∈ D, y 6 x. Then, f1(y) = f(y) 6 m(x) 6 f1(x). Take x ∈ K1 and y ∈ D, y > x.
Then, f1(y) = M(y) > M(x) > f1(x). Since, f1|K1 and f1|D are increasing it follows
that f1 is increasing. So we constructed a continuous and increasing extension f1 of
function f into D1 = D ∪K1.

Now we show that f1 has the property

mf1(x) 6Mf1(x) for all x ∈ Rn. (2)

For any point x in Rn denote by x̂ the point in K1 that is the closest to x. We
consider four cases:

Case 1: x ∈ Rn\[(K1+Rn
+)∪(K1−Rn

+)]. Clearly mf1(x) = mf (x) and Mf1(x) = Mf (x),
and hence mf1(x) 6Mf1(x).

Case 2: x ∈ (K1 + Rn
+) \K1. By monotonicity and continuity of function f1 we have

mf1(x) = max{f1(x̂),mf (x)}. This and the inequalities f1(x̂) 6 Mf (x̂) 6 Mf (x) and
mf (x) 6Mf (x) and the equality Mf (x) = Mf1(x) imply mf1(x) 6Mf1(x).

Case 3: x ∈ (K1 −Rn
+) \K1. Again by monotonicity and continuity of function f 1 we

have Mf (x) = min{f1(x̂),Mf (x)}. This and the inequalities f1(x̂) > mf (x̂) > mf (x)
and Mf (x) > mf (x), and the equality mf (x) = mf1(x) imply mf1(x) 6Mf1(x).

Case 4: x ∈ K1. We have Mf (x) 6 f1(x) 6 mf (x) and hence Mf (x) = f1(x) = m(x).
Obviously Mf1(x) >Mf (x) and mf1(x) 6 mf (x). Therefore mf1(x) 6Mf1(x).
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Since, f1 : D1 → R, where D1 ⊂ Rn is a closed set, is continuous and possesses
the property (2) by the above argument we can extend f1 into D2 = D ∪ K2, where
K2 = [−2, 2]n. Proceeding in this manner we will obtain a continuous and increasing
extension F of function f into the whole space Rn. �

Corollary 1. Let D ⊂ Rn be a nonempty, compact set and f : D → R a
continuous, increasing function. Then there exists a continuous, increasing function
F : Rn → R such that F (x) = f(x) for x ∈ D.

Proof: It is easy to see that when D is nonempty and compact, functions M and m
can be defined as

m(x) = max{f(z) : z ∈ D ∩L(x)} and M(x) = min{f(z) : z ∈ D ∩U(x)} for x ∈ Rn,
(3)

where U(x) = x+Rn
− and L(x) = x+Rn

+.
By the monotonicity of f, obviously m(x) 6M(x) for all x ∈ Rn. Theorem 1 applies. �

3. Extension of strictly increasing functions

We shall consider Rn with the square-norm ||x|| = max{|xi|, i = 1, . . . , n}. For a
nonempty set E ⊂ Rn and a point x ∈ Rn the distance dist (x,E) between them is
defined as dist (x,E) = inf{||x − y|| : y ∈ E}. For a set E ⊂ Rn, E̊ will denote its
interior.
Throughout this section K, possibly equipped with indexes, will denote a cube in Rn

with the edges parallel to coordinate axes. A face of the cube K = [ai, bi]
n in Rn

is called a lower (upper) face if it contains the smallest (greatest) vertex
a = (a1, . . . , an) (b = (b1, . . . , bn)). The word ’extension’ will mean ’continuous
strictly increasing extension’.
Further for t ∈ R the interval (t, t) will mean the singleton {t}.

Proof of the following statement is straightforward.

Claim 1. The supremum and infimum of a family of equicontinuous functions
defined on a set E ⊂ Rn is continuous.

Claim 2. Let K ⊂ Rn be a cube as before and F1, F2 : K → R continuous, monotone
functions such that F1(x) < F2(x) for all x ∈ K, and f : ∂K → R continuous, strictly
increasing function such that

f(x) ∈ (F1(x), F2(x)) for x ∈ ∂K.
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Then there exists a continuous, strictly increasing extension F of function f into K
such that

F (x) ∈ (F1(x), F2(x)) for all x ∈ K.

Proof: Define m̄, M̄ : K → R as

m̄(x) = max{f(z) : z ∈ ∂K, z 6 x} and M̄(x) = min{f(z) : z ∈ ∂K, z > x}.

Note that functions m̄, and M̄ are monotone and

m̄|∂K = M̄ |∂K = f.

Moreover, m̄ is upper semicontinuous and M̄ is lower semicontinuous, m̄ continuous
on (∂K)∪ K̊ and M̄ continuous on (∂K)∪ K̊, where ∂K is the union of the lower faces
of K and ∂K is the union of upper faces of K. Set

m′(x) = max{m̄(x), F1(x)}, and M ′(x) = min{M̄(x), F2(x)}.

Functions m′, and M ′ are monotone,

F1(x) 6 m′(x) < F2(x), F1(x) < M ′(x) 6 F2(x) for all x ∈ K. (4)

Moreover

m′(x) < M ′(x) for x ∈ K̊ and m′(x) = M ′(x) = f(x) for x ∈ ∂K. (5)

Set
F (x) = Λ(x)M ′(x) + (1− Λ(x))m′(x) for x ∈ K, (6)

where Λ : K → R is defined as

Λ(x) =

{
1 for x ∈ ∂K,

dist (x,∂K)

dist (x,∂K)+dist (x,∂K)
otherwise.

It follows that F is continuous, F |∂K = f. Since Λ is strictly increasing on K̊,
functions m′,M ′ are monotone it follows that F (x) is strictly increasing on K̊. This,
continuity of F and strict monotony of F |∂K imply that F is strictly increasing.
From the relations (4) and (6), F (x) ∈ (F1(x), F2(x)) for all x ∈ K̊. From the
relations (5) and (6) we have F (x) = f(x) ∈ (F1(x), F2(x)) for x ∈ ∂K. Thus
F (x) ∈ (F1(x), F2(x)) for all x ∈ K. �

Claim 3: Let K be a cube in Rn and G1, G2 : K → R increasing functions such
that

G1(x) < G2(x) for all x ∈ K.
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Moreover, let G1 be upper semicontinuous, G2 lower semicontinuous, and f : C → R,
where C is a closed subset (possibly empty) of K, be a continuous function. Then there
exist continuous increasing functions F1, F2 : K → R such that

G1(x) 6 F1(x) < F2(x) 6 G2(x) for all x ∈ K (7)

and
F1(x) < f(x) < F2(x) for all x ∈ C. (8)

Basic Lemma. Let K = Πn[ai.bi]
n be a cube in Rn, C ⊂ K the union of a

family (possibly empty) of faces of K, and f : C → R a continuous, strictly increasing
function. Let F1, F2 : K → R be continuous, increasing functions such that F1(x) <
F2(x) for all x ∈ K and F1(x) < f(x) < F2(x) for all x ∈ C. Then there exists a
continuous, strictly increasing extension F of function f into K such that

f(x) ∈ (F1(x), F2(x)) for all x ∈ K.

Proof. Assume without loss of generality K = [0, 1]n. Arrange all the faces of
K into a sequence K1, K2, . . . , Ks so that each face comes before all faces of larger
dimensions and faces of the same dimension are arranged arbitrarily with respect to
each other. If a /∈ C, where K1 = {a}, then we set f(a) to be any number in the
interval (F ′1(a), F ′2(a)), where F ′1(a) = F1(a) if @z ∈ C such that a > z, and

F ′1(a) = max{max{f(b) : b ∈ C, b 6 a}, F1(a)} otherwise,

and F ′2(a) = F2(a) if @z ∈ C such that z > a, and

F ′2(x) = min{min{f(b) : b ∈ C, b > a}, F2(a)} otherwise.

Now assume function f is extended into all faces Kj for j < i. We denote this
extension as f. For two faces K ′, K ′′ ∈ F of the same dimension we say K ′ is below
K ′′ if there exists a nonnegative vector x such that K ′ + x = K ′′ and denote this as
K ′ ≺ K ′′. In this case we also say K ′′ is above K ′ and write K ′′ � K ′. Denote by F
the set of all faces of K, Ki = C ∪ (∪16j<iK

j), i = 1, . . . , s, and Fb(Ki) = {K ′ ∈
F : K ′ ⊂ Ki and K ′ ≺ Ki} and Fa(Ki) = {K ′ ∈ F : K ′ ⊂ Ki and K ′ � Ki}. For
each K ′ ∈ Fb(Ki) (K ′ ∈ Fa(Ki)) we denote by e(K ′) the nonnegative vector such that
Ki − e(K ′) = K ′ (Ki + e(K ′) = K ′). Define functions F ′1, F

′
2 : Ki → R as

F ′1(x) = max{max{f(x− e(K ′)) : K ′ ∈ Fb(Ki)}, F1(x)}

and
F ′2(x) = min{min{f(x+ e(K ′)) : K ′ ∈ Fa(Ki)}, F2(x)},

Functions F ′1 and F ′2 are continuous, increasing and F ′1(x) < F ′2(x) for all x ∈ Ki,
and F ′1(x) < f(x) < F ′2(x) for all x ∈ ∂Ki. By Claim 2 there exists an extension of

6



function f |∂Ki into Ki. So we have extended function f into Ki+1 = Ki ∪ Ki. This
extension is continuous and strictly increasing.
The above inductive procedure extends function f into Ks = K. �

Theorem 2. Let D ⊂ Rn be a nonempty, closed set and f : D → R a continuous,
strictly increasing function. Then there exists a continuous, strictly increasing function
F : Rn → R such that F (x) = f(x) for x ∈ D if and only if function f satisfies the
following condition:

m(x) 6M(x) for all x ∈ D and m(x) < M(x) for all x /∈ D. (9)

Corollary 2. Let D ⊂ Rn be a nonempty, compact set, and f : D → R a continuous,
strictly increasing function. Then there exists a continuous, strictly increasing function
F : Rn → R such that F (x) = f(x) for x ∈ D.

Proof: As it was noted in the proof of Corollary 1, functions m and M can
be equivalently defined by formulas (3). It is clear from formulas (3) that
m(x) = M(x) for x ∈ D and m(x) < M(x) for x /∈ D. Theorem 2 applies.
�

Formulas (3) may hold for some unbounded closed domains as well. However this
alone is not sufficient for the assumption (9) of Theorem 2 to hold. If in addition the
sets D ∩ L(x) and D ∩ U(x) have the compact sets of 6 −maximal and 6 −minimal
elements, respectively, then the assumption (9) holds. Examples of the domains with
this property are subsets of Zn where Z = {0,±1,±2, . . .}.

Corollary 3. Let f : D → R, where D ⊂ Zn, be a strictly increasing function.
Then there exists a continuous strictly increasing function F : Rn → R such that
F (x) = f(x) for all x ∈ D. In particular, for every strictly increasing function
f : D → R there exists a strictly increasing extension of function f into Zn.

4. Applications to the Extension of Preferences

In this section we consider the question of extension of monotonic and strictly
monotonic preorders given on closed subsets of Rn

+ into Rn
+.

Let S be a subset in real line R. A gap of S is a maximal nondegenerate interval in
R \ S that has upper and lower bounds in S.
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Proposition 1. Let D ⊂ Rn
+ be a nonempty closed set and < a rational continuous

monotone preference on D. Then < is extendable into Rn
+ if and only if the following

condition is satisfied:

for each x, y ∈ D such that x � y, dist ({z ∈ D : y < z}, x+Rn
+) > 0. (10)

Proof: We assume without loss of generality that 0 ∈ D and assume < be extendable
into Rn

+. Let <̇ be such an extension and F a continuous representation of <̇ such
that F (0) = 0. Now let x, y ∈ D be such that x � y. Then F (x) > F (y) > F (0). By
the continuity and monotony of F there exists α ∈ (0, 1) such that F (αx) = F (y). By
the monotony of F for each z > αx, F (z) > F (αx) > F (y). Hence for each z > αx
we have z � y, which implies (10).

Assume condition (10) is satisfied. Let f ′ : D → R be an arbitrary continuous
representation of < which exists by the Debreu-Eulenberg theorem [1]. By the Debreu
Gap lemma there exists a continuous strictly increasing transformation h : f ′(D)→ R
such that h(f ′(D)) has only open gaps. Thus f = h ◦ f ′ is a continuous representation
of < such that f(D) has only open gaps, if any. Now we claim that f satisfies the
assumption (1) of Theorem 1. Assume on the contrary M(x) < m(x) for some x ∈ Rn

+.
Obviously there exists a point x0 ∈ D such that m(x) = f(x0). Since M(x) < f(x0)
there exists a sequence yk ∈ D such that ||yk|| → ∞ and

dist (yk, x+Rn
+)→ 0 (11)

f(yk) strictly increasing converges to M(x). Since f(D) may have only open gaps
there should exist y ∈ D such that f(x) > f(y) > M(x). From here x � y and
y < yk for k = 1, 2, . . . By assumption (10), dist ({z ∈ D : y < z}, x + Rn

+) > 0 which
contradicts to (11).
Now by Theorem 1 there exists an extension F of function f into Rn

+. The preference
relation <̇ represented by function F is an extension of < . �

Proposition 2. Let D ⊂ Rn
+ be a nonempty closed set and < a rational continuous

strictly monotone preference on D. Then < is extendable into Rn
+ if and only if the

following condition is satisfied: for each x ∈ D there exists a positive number δ such
that

{x ∈ D : x < z} ∩ {z ∈ Rn
+ : z > x− δe}, (12)

is bounded.

Proof: Assume < be extendable into Rn
+. Let <̇ be such an extension and F its

continuous representation. F is strictly increasing. Let x ∈ D. Then F (x + ei) >
F (x), i = 1, . . . , n. By the continuity of F there exists δ > 0 such that

F (z) > F (x) if z > x+ ei − δe
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for some i = 1, . . . , n. This implies that set (12) is bounded.

Let f : D → R be an arbitrary continuous representation of < which exists by the
Debreu-Eulenberg theorem [1]. f is strictly increasing. We show that f satisfies the
assumptions (9) in Theorem 2. Take x ∈ D. Then m(x) = f(x) and assumptions (12)
imply that M(x) > f(x). So m(x) 6M(x).
Take x ∈ Rn

+ \ D. Then D−(x) = {z ∈ D : z 6 x} is (possibly empty) compact. If
D−(x) = ∅ then m(x) = −∞. If D+(x) = {z ∈ D : z > x} = ∅ then M(x) = ∞. If
D+(x) 6= ∅ then (12) implies that M(x) ∈ R. Thus m(x) < M(x).
If D−(x) 6= ∅ then there exists x̄ ∈ D−(x) such that f(x̄) = m(x). Now assumption
(12) implies M(x) > f(x̄). Thus M(x) > m(x) in this case.
By Theorem 2 there exists an extension F of function f into Rn

+. The preference
relation represented by function F is the required one. �

5. Applications to the G-P theory of temptation and self-
control

Let Z be a compact, connected, metric space of alternatives and K be the set of
nenempty closed subsets of Z. The individual is characterized by a rational preference
relation < on K.
Gul-Pesendorfer [2] models a decision-maker who must deal with temptations. This
means that adding an alternative x to a choice problem A ∈ K may make the
individual strictly worse off. If A � A ∪ {x} following Gul-Pesendorfer [2] we say that
x is more tempting than y ∈ A. This will be denoted as xty. If adding an alternative
makes the individual better off, i.e., A∪ {x} � A, then x will be chosen from A∪ {x},
and hence x is a better choice than y ∈ A. This will be denoted as xcy.

Definition. A function U : K → R is a TSU utility if there exist functions v, w :
X → R and u : w(X) × v(X) → R increasing in its first variable and decreasing in
its second variable, such that U(K) = u(maxx∈Aw(x),maxx∈Av(x)). We write U =
(u,w, v). A preference relation < on K is called a TS preference if there exists a TSU
such that representsi it.

Axiom A. The binary relations �c and �t are acyclic.

Temptation self-control preference and utility

Theorem A. (i) Assume that the set of alternatives Z is a compact, connected,
metric space. If preference relation < is a TS preference then it satisfies Axiom A.
If preference relation < satifies Axiom A, is continuous, and locally nonsatiated at
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each set A ∈ K that is not a satiation point of <, then it is a TS preference.
(ii) Assume Z is a compact metric space. Then part (i) holds with Z replaced with
L(Z), the set of all lotteries over Z.

Proof: (i) Proof of the first statement is simple and follows the lines of the proof
of its finite version in G-P. We prove the second statement. So, assume that binary
relations �c and �t are acyclic and that preference relation < is continuous, and
locally nonsatiated at each set A ∈ K that is not a satiation point of < . We show
first that binary relations �c and �t have continuous utility representations. Show
this for binary relation �c . Let x �c y. Then there exists A ∈ K such that y ∈ A and
A ∪ {x} � A. By the continuity of < there exists δ > 0 such that for each A′ with
h(A′, A) < δ for each x′ ∈ Bδ(x)

A′ ∪ {x} � A′. (13)

It follows that for each x′ ∈ Bδ(x) and y′ ∈ Bδ(y), x′ �c y′. That is �c is continuous.
Similar proof goes through for �t .

By the Corollary x in Bosi and Herden [3] there exist rational and continuous
extensions �̇c and �̇t of �c and �t, respectively. Now by Debreu theorem [1] there
exist continuous functions w and v representing �̇c and �̇t, respectively.

Now as w and v are continuous functions on the compact connected metric space Z
their images are finite closed intervals, i.e., w(Z) = Iw and v(Z) = Iv are finite closed
intervals.

Claim 1. A ∼ {x} ∪ {y}, if x, y ∈ A are such that w(x) = maxw(A) and v(y) =
max v(A).

Proof. Let B = {x}∪{y} for x, y as in Claim 1. If B = A there is nothing to prove.
Assume B 6= A. By the definition of w and v it follows that

z �c x and z �t y for each z ∈ A \B. (14)

Let F = {z1, . . . , zn} be an arbitrary finite set in A \ B. By (14) we have B ∼ B ∪
{z1}. By the same token B ∪ {z1} ∼ B ∪ {z1, z2}. Continuing in this way we get
B ∪ {z1, . . . , zn−1} ∼ B ∪ {z1, . . . , zn}. Thus

B ∼ B ∪ F for an arbitrary finite set F ⊂ A \B. (15)

Now let G = {z1, z2, . . .} be an arbitrary countable dense set in A\B. By (15) we have

B ∼ B ∪Gn where Gn = {z1, . . . , zn}. (16)
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Obviously B ∪Gn → A. By the continuity of < in the Hausdorff metric h this implies
B ∼ A.

Claim 2. A < B if maxw(A) ≥ maxw(B) and max v(A) ≤ max v(B).

Proof. Let x ∈ arg maxw(A) and y ∈ arg max v(B). By the assumptions w(x) ≥
w(y) and v(x) ≤ v(y). The first inequality implies that y �c x and the second inequality
implies that x �t y. Hence A < A ∪ {y} and B ∪ {x} < B By Claim 1 we have
A ∪ {y} ∼ B ∪ {x} ∼ {x} ∪ {y}. Therefore

A < A ∪ {y} ∼ B ∪ {x} < B.

�

Let g : K → Iw × (−Iv) be defined as g(A) = (maxw(A),−max v(A)) and let
D = g(K) ⊂ Iw × (−Iv) be the image of mapping g. Function g is continuous by the
uniform continuity of w and v on a compact metric space Z, and by the definition of
the Hausdorff metric h. By the Blaschke’s compactness theorem [6] (K, h) is a compact
metric space. Since < is a continuous preference relation on (K, h) by the Debreu
Theorem [1] there exists a continuous utility function U : K → R representing < . By
Claim 2 maxw(A) = maxw(B) and max v(A) = max v(B) imply that U(A) = U(B).
Therefore, we can define function f : D → R by

f(maxw(A),−max v(A)) = U(A). (17)

By Claim 2 function f is increasing. Compactness of (K, h) and continuity
of U and g imply that f is continuous. By Corollary 1 of Theorem 1
there exists a continuous increasing extension F of function f into R2. Define
u : Iw × Iv → R by u(a, b) = F (a,−b), and note that U(A) = f(a,−b) = u(a, b) for
(a, b) = (maxw(A),−max v(A)). Hence (u, v, w) is a TSU representation. �

A Strict Representation

Let C, T : K → K two choice functions. that is C(A) ⊂ A, and T (A) ⊂ A
C(A) and T (A) are interpreted as the set of chosen alternatives and as the set of most
tempting alternatives for each menu A ∈ K, respectively.

A choice function F : K → K satisfies Houthakker’s axiom if x ∈ F (A) ∩ B
and y ∈ A ∩ F (B) imply x ∈ F (B). It is well known that a choice function F
satisfies Houthakker’s axiom if and only if there exists a utility function on the set of
alternatives Z such that F maximizes this funtion.
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Property 1. Preference relation < is continuous and choice functions C, T are
continuous and satisfy Houthakker’s Axiom.

Property 2. T (A ∪ B) ∩ B 6= ∅ implies A ∪ B < B. If also C(A ∪ B) ∩ B = ∅
then A ∪B � B.

Property 3. C(A ∪B) ∩A 6= ∅ implies A < A ∪B. If also T (A ∪B) ∩A = ∅ then
A � A ∪B.

Axiom B. There exist choice functions C, T such that (<, C, T ) satisfy properties
1-3.

Definition. Preference < has a strict TSU representation if there exist continuous
functions v : Z → R, w : Z → R, u : w(Z)× v(Z)→ R with u is strictly increasing in
its first variable and strictly decreasing in its second variable and such that function

U(A) = u(max
x∈A

w(x),max
y∈A

v)y))

represents < .

Theorem B. A continuous preference relation < on (K, h) satisfies Axiom B if
and only if < has a strict TSU representation.

Proof. Let (u, v, w) be a strict TSU representation for < . Then it is easy to see
that < is continuous and choice functions C, T : K → K defined as

C(A) = {x ∈ A : w(x) ≥ w(y), ∀y ∈ A}

T (A) = {x ∈ A : v(x) ≥ v(y), ∀y ∈ A}

are upper hemicontinuous. Show this for C. Indeed, let Ak → A in h metric and
xk ∈ C(Ak) (k ∈ N). Since Z is compact there exists a subsequence xk(l) (l ∈ N)
converging to some point x. Obviously x ∈ A. Wlg assume xk → x. We have
w(xk) ≥ w(y), ∀y ∈ Ak, k ∈ N. Since w is uniformly continuous on Z by the
definition of the Hausdorff metric h, it follows that w(x) ≥ w(y), ∀y ∈ A. That is
x ∈ C(A). So, C is closed and hence uhc.

Strict increasing and decreasing properties of function u imply the other statements
in properties 1-3. (That is H’s Axiom and properties 2,3.) Assume now that properties
1-3 are satisfied for relation < . Show that there exists a continuous function
w : Z → R To this end we set x<̇y for x, y ∈ Z if there exists A ∈ K such that
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x, y ∈ A and x ∈ C(A). By the Arrow theorem the Houthakker’s Axiom implies that
<̇ is a rational preference on Z rationalizing C. We show that <̇ is continuous on Z.

Let xk<̇yk (k ∈ N) and xk → x and yk → y. Then {xk, yk}
h→ {x, y}, xk ∈ C({xk, yk})

and upper hemicontinuity of C imply that x ∈ C({x, y}). That is x<̇y. By the Debreu
theorem [1] there exists a continuous utility function w : Z → R representing <̇. We
show in the similar way that there exists a continuous function v : Z → R representing
<̈, where <̈ is a rational preference rationalising the choice function T.

Claim 3. (i) If x, y are such that w(x) = maxw(A) and v(y) = max v(A) then
A ∼ {x} ∪ {y}.
(ii) If maxw(A) ≥ maxw(B) and max v(A) ≤ max v(B) then A < B. If one of these
inequalities is strict then A � B.

Proof. (i) Let B = {x, y}. By properties 2 and 3 B < A∪B = A < B and therefore
A ∼ B.
(ii) Property 2 implies that A ∪ B < B, and Property 3 implies that A < A ∪ B.
Therefore A < B. The strict version follows from the second parts of properties 2 and
3.
Since < is rational and (K, h) is second countable there exists a continuous utility
function U : K → K representing < . Set

D = {(a, b) ∈ w(Z)× v(Z) : (a, b) = (maxw(A),max v(A)) for some A ∈ K},

and define f : D → R by
f(a, b) = U(A)

for A such that (maxw(A),−max v(A)) = (a, b). By Claim 3 (ii) f is well defined and
strictly increasing. Continuity of functions w and v imply that f is continuous. By
Corollary 2 of Theorem 2 there exists a continuous strictly increasing extension F of
function f into R2. Set u(a,−b) = F (a, b) and note that U(A) = F (a, b) = u(a,−b)
for set A ∈ K such that (maxw(A),max v(A)) = (a,−b). Hence (u, v, w) is a strict
TSU representation of < . �
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