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1 Introduction

In a typical American or Canadian spectrum license auction, hundreds of (heterogenous)

licenses are sold simultaneously. Each of these licences gives the spectrum usage right of

a geographical area to the winning firm. Some ‘local’ firms are interested in winning only

specific licenses in order to serve in local markets, while other ‘global’ firms are interested in

winning all licenses in order to serve nationwide.1 The global firms enjoy synergies if they

win all licenses. This gives them an incentive to bid over their stand alone valuations for

some licenses. As a result, there is a risk of accepting losses. This is known as the exposure

problem.

In a model simplifying the American and the recent Canadian spectrum license auctions,

we derive the optimal bidding strategies of local and global firms in a simultaneous ascending

auction. We mainly focus on the optimal bidding strategies when there is the possibility of

an exposure problem.

The multi-unit auction literature generally assumes that global bidders have either equal

valuations (Englmaier et. al (2009), Albano et. al. (2001), Kagel and Levin (2005), Katok

and Roth (2004), Rosenthal and Wang (1996), and Krishna and Rosenthal (1996)) or very

large synergies (Albano et al. (2006)). The spectrum licenses for different geographic areas

are not homogenous objects; hence, the equal valuation assumption does not fit for the

Canadian and the American spectrum license auction. Moreover, in a heterogeneous license

environment, bidders may not drop out of both auctions simultaneously. This enables us

to analyze bidding behavior in the remaining auction, and hence, the exposure problem in

detail.

We allow for moderate synergies, and our focus is on the exposure problem unlike Albano

et. al (2006).2 In our paper, global bidders will lower their bids because of the exposure

1In the recent Canadian Advanced Wireless Spectrum auction, firms such as Globalive and Rogers were
interested in all licenses whereas firms such as Bragg Communication and Manitoba Telecom Services (MTS)
were interested in East Coast and Manitoba licenses, respectively.

2They assume large synergies so no exposure problem exists in equilibrium. Our results coincide with
theirs when we also assume large synergies.
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problem; however, their optimal strategy still requires them to bid over their stand alone

valuation for at least one license. If they win this license by receiving a potential loss, then

they may need to stay in the other license auction to minimize their loss. Therefore, there

are cases in which the exposure problem may arise even when the bidder wins all licenses.

Kagel and Levin (2005) and Krishna and Rosenthal (1996) show that bidders bid more

aggressively as the number of bidders decreases in multi-unit auctions with synergies. Chow

and Yavas (2009) test this experimentally in a simultaneous second-price auction setting. We

also find the same result in our simultaneous ascending auction; the global bidders’ optimal

drop out price increases as the other bidders drop out.

Almost all proofs are included in the Appendix.

2 The Model

There are 2 licenses, license A and B for sale.3 There are one global bidder who demands

both licenses and mj = m − 1 local bidders who demand only license j = A,B.4 Both

local bidders and the global bidder have a private stand alone valuation for a single license,

vij, where i and j represent the bidder and the license, respectively. The valuations vij are

drawn from the continuous distribution function F (vij) with support on [0, 1] and probability

density function f(vij) which is positive everywhere with the only exception of f(0) ≥ 0 is

allowed. The type of bidders, global or local, is publicly known.

We consider a situation where the licenses are auctioned off simultaneously through an

ascending multi-unit auction. Prices start from zero for all licenses and increase simultane-

ously and continuously at the same rate. When only one bidder is left on a given license,

the clock stops for that license; hence, he wins the license at the price that the last bidder

drops. At the same time, if there are more than one bidder on the remaining license, its

price will continue to increase. If n bidders drop out at the same price and nobody is left in

the auction, then each one of them will win the license with probability 1
n
.

3We use two licenses like Albano et. al. (2001 and 2006), Brusco and Lopomo (2002), Chow and Yavas
(2009), and Menucicci (2003).

4Allowing different number of firms on different licenses will not change our qualitative results.
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The dropout is irreversible; once a bidder drops out of bidding for a given license, he

cannot bid for this license later.5 The number of active bidders and the drop-out prices are

publicly known. We also assume that there is no budget constraints for the bidders.

We assume that there are homogeneous positive synergies for the global bidder, and

denote this kind of synergy by ® > 0 and ® is public information (as in Albano et. al.

(2006)). Then, the global bidder, denoted by Firm 1’s total valuation, given that it wins

two licenses is, V1 = v1A + v1B + ®. His stand-alone valuation of license A or B is given by

v1A or v1B. Firm iA, i = 2, 3, ...m is only interested in license A; her private valuation is viA

and Firm iB is only interested in license B; her private valuation is viB.
6

We will derive a symmetric perfect Bayesian equilibrium with the help of lemmas that

follow. First, we describe the equilibrium strategy of the local bidder.

Lemma 1 : Each local bidder has a weakly dominant strategy to stay in the auction until

the price reaches his stand alone valuation.

This is a well-known result so we skip the proof.

Lemma 2 If the global bidder wins license B (or A) first, then it will stay in license A (or

B) auction until the price reaches v1A + ® (or v1B + ®)

The proof is as follows. Suppose the local bidder drops out of license B auction, and

hence, the global bidder wins license B at the price pB (in equilibrium, this price would

be pB = max{v2B, ..., v(m)B} by lemma 1). Then, as the price for license A increases, the

global bidder will compare the payoff from dropping out from license A auction at the clock

price p (which is v1B − pB) and the payoff from winning license A at price p (which is

v1A + v1B + ® − pB − p. The updated optimal drop out price (denote it as pA) is found by

equating these two equations: v1A+ v1B +®− pB − pA = v1B − pB ⇒ pA = v1A+®. If global

bidder wins license A first, the updated optimal drop out price can be found symmetrically.

5In the real-world auctions, there is activity rule. If the bidders do not have enough highest standing
bids, then the number of licenses they may bid is decreased (in the next rounds). Hence, when there are two
licenses, this translates into an irreversible drop-out.

6A local bidder who is interested in license j participates only on license j auction. We do not assume
that viA > viB since local firms are different; hence, their efficiency may differ.
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Lemma 3 : a) The global bidder stays in both license auctions at least until the price reaches

the minimum of his/her stand alone valuations.

b) If his average valuation is greater than 1, his optimal strategy is to stay in until the

price reaches his average valuation.7

The result comes from comparing the expected profits from dropping before the minimum

of the stand alone valuations and dropping out at the minimum stand alone valuation. If

the global bidder drops out before the minimum of its stand alone valuation, it loses the

possibility of winning both licenses and enjoying the synergy. We skip the proof of this

lemma.

When his average valuation, V1

2
= v1A+v1B+®

2
, exceeds 1; the global bidder will bid up to

his average valuation, V1

2
. This will shut out the local bidders since local bidders’ stand alone

valuation can be at most 1.8

How to calculate the optimal drop out price for the global bidder? Let us look at the case

in which v1A > v1B.
9 The global bidder must compare the payoffs for two cases at each price

p as the clock is running: Case 1 is the payoff from dropping out from license B auction at

price p and optimally continuing on license A auction. Case 2 is the payoff from winning

license B at price p and optimally continuing on license A auction.10 At the beginning of the

auction, that is p = 0, the second case payoff is higher so the global bidder will start staying

in the auction. We show that the difference between these two cases are monotonic in p ;

therefore, there is a unique price that makes the global bidder indifferent between these two

cases (assuming that the two local bidders are still active). This is the optimal drop out

price. Let p∗1 denote this price and we show that this price can be calculated at the beginning

of the auction. Note that according to Lemma 3, p∗1 ≥ v1B and the optimal [updated] drop

out price for license A -after winning license B at price p- is v1A + ® (by lemma 2).

7Note that this lemma is also valid for the general case when there are n global bidders.
8If ® is large enough, this condition will always be satisfied. In such a case, the global bidder always wins

both licenses in equilibrium.
9The other case can be calculated symmetrically.

10Remember that we assume v1A > v1B ; hence, the global bidder will drop out of license B first -assuming
that he has not won license A yet.
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We denote the expected profit of Firm 1 for Case 1 by EΠ1
1 and the expected profit for

Case 2 by EΠ2
1, respectively. The superscript represents which case Firm 1 plays and the

subscript represents the global bidder, Firm 1. In the following equations, pA denotes the

price of license A, if Firm 1 wins license A. We have pA = max{v2A, ..., v(m+1)A}. Payoffs are
as follows:

EΠ1
1 = Max{0,

∫ v1A

p

(v1A − pA)g(pA∣p)dpA} (1)

EΠ2
1 =

∫ Min{v1A+®,1}

p
(V1 − p− pA)g(pA∣p)dpA +

∫ 1

Min{v1A+®,1}
(v1B − p)g(pA∣p)dpA (2)

The explanation of equation 1 is as follows. After the global bidder, Firm 1, drops out of

the auction for license B at p, it becomes just like a local bidder, and hence, will continue to

stay in the auction for license A until v1A. If he wins, he will pay pA since the local bidder

with highest valuation of license A will drop out last (by lemma 1). In order to calculate

his expected profit, global bidder will be using G(pA∣p) (highest order statistic) which is the

distribution function of the local bidders’ highest valuation pA for license A given p. The

function G(pA∣p) = (F (pA∣p))m−1 = (
∫ pA
p f(v)dv
∫ 1
p f(v)dv

)m−1 and the corresponding density function

g(pA∣p) = (m− 1)(
∫ pA
p f(v)dv
∫ 1
p f(v)dv

)m−2( f(pA)∫ 1
p f(v)dv

).

The first term of EΠ2
1 is Firm 1’s expected profit of winning two licenses (assuming that

he wins license B at the price p). If the highest local bidder’s valuation pA is less than Firm

1’s (updated) willingness to pay, v1A + ®, then Firm 1 wins license A and pays pA. Since

pA < 1, we use the minimum function in the upper limit of the first integral. The second

term of EΠ2
1 is Firm 1’s expected profit of winning only license B which can happen only if

pA > v1A + ®. Note that the second term is non-positive by lemma 3 (which is the exposure

problem arising from winning only one license).

In Lemma 4 below, we characterize the global bidder’s optimal bids. It can be found

from EΠ1
1 = EΠ2

1.

Lemma 4 : Suppose that the average valuation of Firm 1 is less than 1 and no local bidders
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have dropped out yet.

Firm 1, assuming that he has valuations such that v1A > v1B,
11 will drop out of license

B auction at the unique optimal drop-out price p∗1 ∈ [0, 1] that satisfies EΠ1
1 = EΠ2

1.

a) If
∫Min{v1A+®,1}
v1A

G(pA∣p)dpA + (v1B − v1A) < 0, then p∗1 < v1A and Firm 1 will stay in

license A auction until v1A (after dropping out from license B auction).

b) If
∫Min{v1A+®,1}
v1A

G(pA∣p)dpA+(v1B−v1A) > 0, then p∗1 > v1A and Firm 1 will also drop

out of license A auction at p∗1.

Proof. See the Appendix.

We are ready to summarize our Perfect Bayesian equilibrium.

Proposition 5 (Perfect Bayesian Equilibrium)

a) Out-of-equilibrium-path beliefs: If the global bidder, Firm 1, drops out of license A

before license B then other firms’ beliefs will not change. Specifically, they will continue to

believe that Firm l will act like a local bidder from now on and its valuation for license B is

drawn from distribution F on [0, 1].

b) Lemma 1, 2, 3, 4 and out of equilibrium path beliefs constitute a Perfect Bayesian

Nash Equilibrium.

At the beginning of the game, each firm calculates its optimal drop-out price. For local

bidders, the optimal drop out prices are their valuations, respectively. In equilibrium, it

is optimal for the global bidder to stay in the auctions for both licenses up to his optimal

drop-out price calculated in lemma 4. When his average valuation exceeds 1, it will stay

until this average valuation (and will win both licenses for sure). When the price reaches

the minimum of these optimal drop put prices, that firm drops out of license auction. If,

for example, the highest local bidder for license B dropped out before Firm 1, Firm 1 would

continue to stay in the auction for license A until the price reaches v1A + ®. At this price,

it finds that the payoff from winning only license B is more than winning both licenses even

though it will enjoy synergy; hence, it drops out.

11If v1A < v1B , then the proposition has to be written symmetrically
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0 v1B pB p∗1 v1A + v1B + ®− pB

When pA is here,
global bidder wins both
but makes a loss

Exposure Problem II
v1A + ®

When pA is here,
global bidder wins B
and makes a loss

Exposure Problem I
1

Figure 1: EXPOSURE PROBLEM

If the licenses were identical (e.g. Albano et. al. (2001)), the global firm would drop out

of both licenses at the same time.

Let us give an example for the optimal drop out price by assuming that F (.) is a uniform

distribution, the optimal drop-out prices are given in corollary 6.

Corollary 6 : Assume that valuations are drawn from a uniform distribution with a support

[0, 1]. In addition, assume that v1A > v1B (other case is symmetrically found by exchanging

v1A with v1B).

p∗1 =

⎧
⎨
⎩

1
2{v1B + ®+ 1−(v21B + 1− 2v1B − ®2 + 2v1B®+ 2®− 4v1A®)

1
2 },

if 0 < v1A < 1− ® and 2(1− v1A)(v1A − v1B) > ®2;
1
3{v1A + v1B + ®+ 1− ((v1A + v1B + ®+ 1)2 − 3(v1A + ®)2 − 6v1B)

1
2 },

if 0 < v1A < 1− ® and 2(1− v1A)(v1A − v1B) ≤ ®2;
1
2{v1B + ®+ 1−{(v1B + ®+ 1)2 − 4(v1A + v1B + ®) + 2 + 2v21A}

1
2 },

if 1− ® ≤ v1A < 1 and 1 + v1A > 2(v1B + ®);
2(v1A+v1B+®)−1

3 ,

if 1− ® ≤ v1A < 1 and 1 + v1A ≤ 2(v1B + ®).

(3)

The optimal drop-out price is a function that takes a unique value defined in the corollary

above. For example, case 0 < v1A < 1 − ® and 2(1 − v1A)(v1A − v1B) > ®2 implies that

p∗1 < v1A.

2.1 Exposure Problem

Now we can discuss the exposure problem with the help of figure 1. In the first type of

exposure problem, the global bidder may win license B at a price above his stand alone

valuation (i.e., v1B < pB < p∗1) and loses the other license (i.e., pA > v1A + ®, since he will

continue to bid until v1A + ®). This is the type of exposure problem Chakraborty (2004)

focuses on.
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In the second type of exposure problem, the global bidder wins both licenses but makes

a loss. This is the case when he wins license B at v1B < pB < p∗1 and wins license A at

v1A+® > pA > v1A+®+v1B−pB. Note that if he wins license A at the price v1A+®+v1B−pB,

his payoff is zero. The global bidder stays in the auction for license A to minimize its loss

once the price passes v1A + ® + v1B − pB.

If objects were homogenous, second type of exposure problem would not be observed

since the bidder would drop out of both license auctions at the same time.

In the next section, we will show that bid-withdrawal eliminates the exposure problem.

3 Conclusion and Discussion

We showed the optimal bidding strategies of global bidders when there are moderate synergies

and the licenses are heterogeneous. We also analyzed exposure problem.

We used one global bidder like Kagel and Levin (2005). We were able to show exposure

problem can occur even when the global bidder wins all licenses. Extending this to n global

bidders would be very complicated since the optimal strategies of global bidders (optimal

drop out prices) should be determined jointly which in turn would depend on how many

local and how many global bidders are still in the auction.

4 Appendix

Proof of Lemma 4:

We will prove that there is a unique optimal drop out price by solving EΠ1
1 = EΠ2

1. We

have two cases.

Case I: In this case, we will assume
∫Min{v1A+®,1}
v1A

G(pA∣v1A)dpA+(v1B−v1A) < 0 implies

v1A ≥ p∗1 (which in turn implies EΠ1
1 > 0).

First, we show that there exists a unique solution that makes equations 1 and 2 equal,

and this is the optimal drop out price p∗1. We define a new function, J(p) = EΠ1
1 − EΠ2

1.

To prove uniqueness, we will show that this function is monotonically increasing and it is
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negative when p = v1B (by lemma 2 p cannot be less than v1B) and is positive when p = v1A.

Hence, there must be a unique root at the interval v1B < p < v1A.

J(p,m) =
∫ v1A
p

(v1A − pA)g(pA∣p)dpA − ∫Min{v1A+®,1}
p

(V1 − p− pA)g(pA∣p)dpA
− ∫ 1

Min{v1A+®,1}(v1B − p)g(pA∣p)dpA.
By using (v1B − p)

∫ 1

p
g(pA∣p)dpA = v1B − p, we can re-write it as

∫ v1A
p

(v1A − pA)g(pA∣p)dpA − ∫Min{v1A+®,1}
p

(v1A + ®− pA)g(pA∣p)dpA − (v1B − p)

By using integration by parts twice (and using dv = g(pA∣p)dpA), we have

= (v1A − pA)G(pA∣p) ∣v1Ap − ∫ v1A
p

G(pA∣p)d(v1A − pA)

− (v1A + ®− pA)G(pA∣p) ∣Min{v1A+®,1}
p +

∫Min{v1A+®,1}
p

G(pA∣p)d(v1A + ®− pA)− (v1B − p)

=
∫ v1A
p

G(pA∣p)dpA − ∫Min{v1A+®,1}
p

G(pA∣p)dpA − (v1B − p)

We take partial derivative of J(p,m) with respect to p, we have,

∂J(p,m)
∂p

= ∂
∂p
[− ∫Min{v1A+®,1}

v1A
G(pA∣p)] + 1 > 0

It is positive since the term ∂
∂p
[
∫Min{v1A+®,1}
v1A

G(pA∣p)] is negative. As the lower limit of

the integral increases, the value of the expression decreases (does not increase) if the term

inside is non-negative which is true since it is a cumulative distribution function. We must

also show that ∂G(pA∣p)
∂p

≤ 0 to prove this. While one can easily see that this is correct (as p

increases the cumulative distribution conditional on p decreases), we will give a formal proof

by using Leibniz’s rule when necessary.

⇔ ∂G(pA∣p)
∂p

=
∂[(

∫ pA
p f(v)dv
∫ 1
p f(v)dv

)m−1]

∂p

= −(m− 1)f(p)
(
∫ pA
p f(v)dv)m−2

(
∫ 1
p f(v)dv)m−1

+ (m− 1)f(p)
(
∫ pA
p f(v)dv)m−1

(
∫ 1
p f(v)dv)m

=
(m−1)f(p)(

∫ pA
p f(v)dv)m−2

(
∫ 1
p f(v)dv)m−1

[−1 +
∫ pA
p f(v)dv
∫ 1
p f(v)dv

]

=
(m−1)f(p)(

∫ pA
p f(v)dv)m−2

(
∫ 1
p f(v)dv)m−1

[−1 + F (pA∣p)] < 0 (≤ 0 only if pA = 1).

Thus, J(p,m) is monotonically increasing function of p, when v1B ≤ p < v1A.

If p = v1B, then J(v1B) =
∫ v1A
v1B

G(pA∣®)dpA − ∫Min{v1A+®,1}
v1B

G(pA∣v1B)dpA
= − ∫Min{v1A+®,1}

v1A
G(pA∣v1B)dpA < 0.

If p = v1A, J(v1A) = 0−∫Min{v1A+®,1}
v1A

G(pA∣p)dpA− (v1B−v1A) > 0, then our assumption
∫Min{v1A+®,1}
v1A

G(pA∣p)dpA + (v1B − v1A) < 0 implies that J(p = v1A) > 0.

Hence, there is a unique root in the interval v1B < p < v1A.
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Next, we show that as the number of active firms in license A auction decreases, the

optimal drop out price will increase. We will use the implicit function theorem for this:

⇔ dp∗1
dm

= −
∂J(p∗1,m)

∂m
∂J(p∗1,m)

∂p∗1

< 0.

We have already shown that
∂J(p∗1,m)

∂p∗1
> 0.

Since J(p,m) =
∫ v1A
p

G(pA∣p)dpA − ∫Min{v1A+®,1}
p

G(pA∣p)dpA − (v1B − p).

We take partial derivative of J(p,m) with respect to m, that is,

∂J(p,m)
∂m

=
∫ v1A
p

∂G(pA∣p)
∂m

dpA − ∫Min{v1A+®,1}
p

∂G(pA∣p)
∂m

dpA

= − ∫Min{v1A+®,1}
v1A

∂G(pA∣p)
∂m

dpA = − ∫Min{v1A+®,1}
v1A

ln(F (pA∣p))G(pA∣p)dpA > 0.

Since ∂G(pA∣p)
∂m

= ln(F (pA∣p))G(pA∣p) < 0. Hence, we show that ∂G(pA∣p)
∂m

> 0 holds.

By the implicit function theorem, we show that the optimal drop out price increases as

the number of local firms, m, decreases.

Since ∂J(p,m)
∂p

> 0 and ∂J(p,m)
∂m

> 0, we have,
dp∗1
dm

= −
∂F (p∗1,m)

∂m
∂F (p∗1,m)

∂p∗1

< 0

Case II: In this case, we will assume that
∫Min{v1A+®,1}
v1A

G(pA∣p)dpA + (v1B − v1A) > 0

which implies v1A ≤ p∗1. And this condition in turn implies that EΠ1
1 = 0.

Now let J(p,m) = EΠ1
1 − EΠ2

1

J(p,m) = 0− ∫Min{v1A+®,1}
p

(V1 − p− pA)g(pA∣p)dpA − ∫ 1

Min{v1A+®,1}(v1B − p)g(pA∣p)dpA
= − ∫Min{v1A+®,1}

p
G(pA∣p)dpA − (v1B − p).

When p ≥ v1A, we take partial derivative of J(p,m) with respect to p, we have,

∂J(p,m)
∂p

= − ∂
∂p
[
∫Min{v1A+®,1}
p

G(pA∣p)dpA] + 1 > 0, since ∂G(pA∣p)
∂p

< 0.

Thus, J(p,m) is monotonically increasing function of p, when v1A ≤ p ≤ Min{v1A+®, 1}.
Our assumption

∫Min{v1A+®,1}
v1A

G(pA∣p)dpA+(v1B − v1A) < 0 implies that J(p = v1A) < 0.

If p = Min{v1A + ®, 1}, then J(Min{v1A + ®, 1}) = 0 − 0 − (v1B −Min{v1A + ®, 1}) > 0.

Thus, there is a unique solution, p∗1, in the interval (v1A, v1A + ®).

Next, we show that when the number of active firms in license A auction decreases, this

optimal drop out price will increase.

We take partial derivative of J(p,m) with respect to m, we have,

∂J(p,m)
∂m

= − ∫Min{v1A+®,1}
p

ln(F (pA∣p))G(pA∣p)dpA > 0.

Since ∂J(p,m)
∂p

> 0 and ∂J(p,m)
∂m

> 0, we have,
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dp∗1
dm

= −
∂J(p∗1,m)

∂m
∂J(p∗1,m)

∂p∗1

< 0
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