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Abstract

Bossert and Suzumura (2009) showed that the assignment of a quasi-transitive

Arrovian collective choice rule F (not necessary re�exive and complete)

to the corresponding set of decisive coalitions VF de�nes a surjective map

� : CRQT ! F � 2T , where CRQT is the set of all quasi-transitive Arrovian

collective choice rules and F the set of all �lters in T . One major objective

in the present paper is to determine the inverse image of the set of all ul-

tra�lters UF � F under � to be ��1 (UF) = CRQT;SP , that is, the subset of

CRQT consisting of those satisfying the so-called strong preference property,

which is also precisely the set of all Arrovian collective choice rules lying

within CRQT that admit dictators. Another major objective is to show that

in the presence of in�nitely many alternatives the set of Arrovian collective

choice rules which fall into Arrow�s impossibility theorem is �negligible� in

the totality of quasi-transitive Arrovian collective choice rules, i.e., CRQT;SP

is nowhere dense in CRQT , where relevant spaces are equipped with suitable

topologies.



1 Introduction

Arrow�s seminal work on social welfare functions spawned a celebrated theo-

rem, known in the literature as Arrow�s impossibility theorem (Arrow, 1963),

which states that the set of seemingly innocuous criteria imposed on social

welfare functions (universal domain, unanimity, independence of irrelevant

alternatives, and no dictatorship) is inconsistent provided that there are at

least three alternatives and that society consists of �nitely many individuals.

Alternatively stated, in a �nite society with at least three alternatives, if a so-

cial welfare function satis�es universal domain, unanimity, and independence

of irrelevant alternatives conditions, then there must exist a dictator. On the

other hand, Fishburn (1970) demonstrated that the same set of Arrow�s con-

ditions becomes consistent when society admits in�nitely many individuals,

which in turn entails the possibility of the existence of a social welfare func-

tion satisfying universal domain, unanimity, and independence of irrelevant

alternatives, but yet free from dictatorship.

Kirman and Sondermann (1972) considered as a model of large society a

measure space of agents in which each individual is negligible, and hence a

dictator is inherently nonexistent. However, they argued that dictatorship

in a di¤erent but meaningful sense still persists even in society with a con-

tinuum of agents, namely there may be an in�nitesimal group of individuals

who can dictate an Arrovian social welfare function. Moreover, Kirman and

Sondermann (1972) demonstrated that the original set of individuals T can

1



be topologically completed by the set of ultra�lters UF equipped with the

Stone topology, in which the original �visible�dictators, if any, are embedded

as the subset of �xed (trivial) ultra�lters, whereas the remaining free ultra-

�lters represent invisible dictators who are to be thought of as �idealized�

dictators in the sense that they can be approximated by visible dictators.

Armstrong (1980) introduced the notion of coalition algebra T , an al-

gebra of subsets of T that is to be interpreted as a collection of admissible

coalitions of individuals such as observable coalitions, and also introduced an

ideal N of negligible coalitions consisting of a coalition that cannot at least

in one situation dictate the Arrovian social welfare function under consider-

ation. Note that �lters and ultra�lters can be de�ned as objects associated

with T instead of T and also that when T = 2T , the power set of T ,

and N = f?g , Armstrong�s formalism reduces to that of Kirman and Son-

dermann (1972). Furthermore, Armstrong (1980) constructed an injective

function � from UF to the set of all Arrovian social welfare functions, which

can be viewed as a �section�of a function � in the sense that ��� = id holds

where � assigns each Arrovian social welfare function to the corresponding

ultra�lter of decisive coalitions. Armstrong (1985), moreover, identi�ed the

image of � to be the set of Arrovian social welfare functions satisfying the

so-called relational monotonicity.

Hansson (1976) took full advantage of mathematical structures of deci-

sive coalitions (�lters and ultra�lters) and obtained a series of results that we

focus on in the present paper. To be more speci�c, Hansson (1976) proved
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among other things that each Arrovian social welfare function F gives rise

to an ultra�lter, which is an ultra�lter of decisive coalitions associated with

F , and conversely, given an ultra�lter V there is an Arrovian social welfare

function FV whose associated ultra�lter of decisive coalitions is precisely the

one given at the outset. Noting that some of the properties of ultra�lters are

debatable when viewed as properties of decisive coalitions, Hansson weakened

transitivity of social preferences to quasi-transitivity and yet obtained anal-

ogous results concerning the relationship between quasi-transitive Arrovian

social welfare functions and �lters instead of ultra�lters. Another notewor-

thy result is that when the cardinal number � of the set of individuals T

is in�nite and there are �nitely many alternatives, the cardinal number of

the set of Arrovian social welfare functions whose associated ultra�lters are

free (i.e., invisible dictators) is 22
�
and is equal to the cardinal number of

the set of all Arrovian social welfare functions. This indicates that the set of

non-dictatorial Arrovian social welfare functions becomes quite large in the

presence of a relatively small number of alternatives.

Bossert and Suzumura (2009) sharpened the earlier results of Hansson

(1976) by demonstrating that those results remain valid in the absence of re-

�exivity and completeness. To be more speci�c, they proved in the terminol-

ogy here adopted that the assignment of a quasi-transitive Arrovian collective

choice rule F (not necessary re�exive and complete) to the corresponding set

of decisive coalitions VF de�nes a surjective map � : CRQT ! F � 2T where

CRQT is the set of all quasi-transitive Arrovian collective choice rules and F
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the set of all �lters in T .

Our �rst goal in the present paper is to determine the inverse image of

the set of all ultra�lters UF � F under � , which turns out to be ��1 (UF) =

CRQT;SP � CRQT : the subset of CRQT consisting of those satisfying the

so-called strong preference property, i.e., those F 2 CRQT which transform

strict individual preferences into strict social preferences. Note that CRQT;SP

is precisely the set of Arrovian collective choice rules lying within CRQT that

admit dictators.

Motivated by the work of Armstrong (1985) which identi�ed the image of

a �section�of the restriction �0 of � to CRT;C � CRQT;SP , where CRT;C is the

set of all complete transitive Arrovian social choice rules which are nothing

but the so-called Arrovian social welfare functions, our second goal is to �nd

some useful properties of two sections �; �a : F ! CRQT of � , where � is a

natural extension of the one constructed by Kirman and Sondermann (1972),

Hansson (1976), Armstrong (1980) and others, and �a the one considered by

Bossert and Suzumura (2009). We scrutinize the internal structure of CRQT

since CRQT plays the role of a background space in our later discussions.

We endow F with a T0 -topology in a manner analogous to that in which

we equip UF with the Stone topology, and we endow CRQT with a compact

Hausdor¤ topology in a natural manner.

Our �nal goal is to show that in the presence of in�nitely many alterna-

tives the set of Arrovian collective choice rules that fall into Arrow�s impossi-

bility theorem is in some sense �negligible�in the totality of quasi-transitive
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Arrovian collective choice rules, i.e., CRQT;SP is nowhere dense in CRQT . We

also show that in the presence of in�nitely many alternatives the set of the

so-called Arrovian social welfare functions CRT;C is negligible in the totality

of quasi-transitive Arrovian collective choice rules that give rise to ultra�lters

of decisive coalitions, i.e., CRT;C is nowhere dense in CRQT;SP .

We also discuss social choice problems in conjunction with �large society�

and put some of the known results in our perspective.

Section 2 introduces notations and de�nitions, and Section 3 discusses,

with the newly added notions of coalition algebras and ideals of negligible

coalitions , properties of decisive coalitions, and the validity of some of the

related results known in the literature to date including the so-called Field

Expansion Lemma. Section 4 investigates properties of � which assigns each

F 2 CRQT to a unique �lter V 2 F . We are particularly concerned with de-

termining the inverse image ��1 (UF) � CRQT along with restating Arrow�s

classical impossibility theorem in our framework. In Section 5, inspired by

the work of Armstrong (1985) which identi�es the set of precisely dictato-

rial Arrovian social welfare functions to be the image set of the restriction

�0 : UF! CRQT;SP , we identify the image set of �a0 : UF! CRQT;SP and

explicitly construct a bijection e� between them. Section 6 contains our main
assertions that when there are in�nitely many alternatives, CRQT;SP becomes

nowhere dense in CRQT , and CRT;C becomes nowhere dense in CRQT;SP .

Section 5 discusses society (T; T ;N ) with and without atoms.
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2 Notations and De�nitions

Throughout the paper we adhere to the following standard logic notations:

1. 8 abbreviates �for all�

2. 9 abbreviates �there exist�

3. ^ abbreviates �and�

4. _ abbreviates �or�

5. : abbreviates �not�

6. ) abbreviates �imply�

7. , abbreviates �if and only if�

We often omit these notations for brevity whenever meaning is clear from

context.

We denote the set of all social alternatives by A . A binary relation % on

A is said to be a preference relation. We denote the set of all preference

relations on A by P .

The asymmetric factor � and symmetric factor � of % are de�ned

by the following identities:

Asymmetric Factor x � y � x % y ^ :y % x

Symmetric Factor x � y � x % y ^ y % x
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The following properties of % will be relevant in the sequel:

Transitivity x % y ^ y % z ) x % z

Completeness x % y _ y % x

Asymmetricity x % y ) :y % x

Quasi-transitivity x � y ^ y � z ) x � z

Quasi-asymmetricity x � y ) :y � x

Negative Quasi-transitivity :x � y ^ :y � z ) :x � z

A transitive and complete preference relation % on A is said to be an

ordering (complete or total preorder).

Remark 1 Our de�nition of completeness clearly subsumes re�exivity while

some authors use an alternative de�nition of completeness, that is , x 6= y )

x % y _ y % x . In the discussions of the works of those authors who use

the latter de�nition we say �re�exive and complete� to refer to �complete�

in our sense.

Remark 2 It is important to note that the de�nition of quasi-transitivity

adopted here is di¤erent from the one considered by Sen (1969), Schick

(1969), and Hansson (1976) in that our de�nition, as in Bossert and Suzu-

mura (2009), assumes neither re�exivity nor completeness.

We denote the set of all orderings by PT;C .
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Lemma 3 If %2 P is transitive, then it is quasi-transitive.

Proof. Suppose x � y ^ y � z . We claim x � z . By transitivity, x % z.

Suppose z % x . Then since x % y we obtain by transitivity that z % y .

Since this contradicts to y � z , we deduce :z % x , and hence x � z .

Lemma 4 If %2 P is transitive and complete, i.e. %2 PT;C , then it is

negative quasi-transitive.

Proof. Suppose :x � y ^ :y � z . Since % is complete, we obtain y %

x^z % y , which implies by transitivity that z % x . Thus :x � z as desired.

Remark 5 The preceding two lemmata show that both quasi-transitivity and

negative quasi-transitivity are weaker than completeness and transitivity to-

gether.

Lemma 6 If %2 P is negative quasi-transitive, then it is quasi-transitive.

Proof. Suppose x � y^y � z . By negative quasi-transitivity, y � z implies

that y � x or x � z . Since � is asymmetric, x � y implies :y � x . Hence

x � z .

Lemma 7 If % is asymmetric, then x % y , x � y .

Proof. Suppose x % y . Then by asymmetry :y % x and thus x % y^:y %

x, x � y while the other implication holds trivially.
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Lemma 8 If %2 P is complete, then it is quasi-asymmetric.

Proof. Let %2 P be complete. Then x � y , :y % x . Now suppose x � y

. We must show :y � x . By way of contradiction, suppose y � x . Then

:x % y , which leads to a contradiction.

Since a preference relation %2 P is nothing but a subset of A� A , we

can consider its characteristic function

R : A�A!f0; 1g

de�ned by

x % y , R (x; y) = 1

:x % y , R (x; y) = 0 .

Note that R obviously possesses the following properties:

Property 1 x � y , (R (x; y) = 1 ^R (y; x) = 0)

In order to minimize notational complexity we introduce the following

shorthand notation:

R (x; y) = 1+ abbreviates R (x; y) = 1 ^R (y; x) = 0

Property 2 x � y , (R (x; y) = R (y; x) = 1)
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Property 3 (x % y _ y % x), (R (x; y) +R (y; x) � 1)

Property 4 [(x % y ^ y % z)) x % z]

, [(R (x; y) = 1 ^R (y; z) = 1)) R (x; z) = 1]

Property 5 [(x � y ^ y � z)) x � z]

,
��
R (x; y) = 1+ ^R (y; z) = 1+

�
) R (x; z) = 1+

�

We have seen that to each preference relation % a certain f0; 1g-valued

function R , namely its characteristic function, can be associated. On the

other hand, it is obvious that to each f0; 1g-valued function R we can asso-

ciate a preference relation % de�ned by

x % y , R (x; y) � 0 .

In our remaining discussion we do not distinguish between preference rela-

tions % on A and their associated characteristic functions R and use the

same symbol P to refer to the totality of % and of R .

It is a simple exercise to con�rm that the following two properties of R

R (x; y) +R (y; x) � 1 and

(R (x; y) = 1 ^R (y; z) = 1) ) R (x; z) = 1
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completely characterize orderings on A . In fact, the preference relation %

associated with a f0; 1g-valued function R satisfying the above two properties

can easily be seen to be an ordering.

In order to distinguish aggregated preference relations of society from

those of individuals we call the former social preference relations and

the latter individual preference relations. Likewise we call aggregated

orderings of society social orderings and orderings of individuals individ-

ual orderings or orderings for short. In the sequel we assume that all the

individual preference relations are orderings while social preference relations

may or may not be social orderings.

De�nition 9 A Boolean algebra is a non-empty set T with three operations

[ , \ , and �

satisfying the following axioms: For U; V; : : : 2 T

1. U [ V = V [ U; U \ V = V \ U;

2. U [ (V [W ) = (U [ V ) [W; U \ (V \W ) = (U \ V ) \W;

3. (U \ V ) [ V = V (U [ V ) \ V = V;

4. U\(V [W ) = (U \ V )[(U \W ) U[(V \W ) = (U [ V )\(U [W ) ;

5. (U \ �U) [ V = V (U [ �U) \ V = V .
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The element U \ �U , which does not depend on the choice of U 2 T

, is said to be the zero element of T and is denoted by f . The element

U [ �U , which does not depend on the choice of U 2 T , is said to be the

unit element of T and is denoted by g . Note that when T is a Boolean

algebra of subsets of T , �U is the complement of U , ? the zero element of

T , and T the unit element of T .

De�nition 10 A non-empty subset N of a Boolean algebra T is said to be

an ideal provided

1. if V; V 0 2 N , then V [ V 0 2 N ;

2. if V 0 2 N and V � V 0 , then V 2 N , where V � V 0 if and only if

V \ V 0 = V if and only if V [ V 0 = V 0 .

De�nition 11 In the sequel T denotes a set of individuals, which may be

�nite or in�nite, and we consider a triple (T; T ;N ) where T is a Boolean

algebra of subsets of T and N an ideal in T . Following Armstrong (1980)

we call T a coalition algebra and each element V 2 T a coalition. N is

to be thought of as an ideal of negligible coalitions in T .

Remark 12 If T = 2T (the set of all subsets of a �nite set T ) and N = f?g

, the above de�nition reduces to the one considered by Arrow (1963) and if

T is a �-algebra of subsets of T and N the set of all � -null sets, where �

is a countably additive �nite measure on T , it reduces to the one considered

by Kirman and Sondermann (1980).
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De�nition 13 A preference pro�le is a function bR : T ! PT;C . We

require bR (x; y) : T!f0; 1g to be T -measurable for each pair (x; y) 2 A�A .

Let � be the set of all preference pro�les, i.e., � =
nbRo and let � � � .

De�nition 14 A collective choice rule is a function F : �! P .

Remark 15 A similar but slightly di¤erent construction identifying % with

its indicator function (characteristic function) was adopted by Torres (2005)

under the assumption that what we refer to as collective choice rules always

generate social orderings.

We introduce the following axioms on collective choice rules that are

prevalent in the literature. These axioms are also known as Arrow�s condi-

tions.

In what follows, whenever a property P (t) holds for almost all t 2 V 2 T ,

i.e. ft 2 V : :P (t)g 2 N , we simply write P (V ) for brevity unless confusion

may result.

Unristricted Domain, UD

� = �

Independence of Irrelevant Alternatives, IIA

bR (T ) (x; y) = bR0 (T ) (x; y)) F
� bR� (x; y) = F � bR0� (x; y)
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Unanimity, U

8 (x; y) 8 bR h bR (T ) (x; y) = 1+ ) F
� bR� (x; y) = 1+i

Remark 16 Some authors use the following alternative form of condition

IIA:

Independence of Irrelevant Alternatives, IIA�

8z; w 2 fx; yg8><>:
hbR (t) (z; w) = 1, bR0 (t) (z; w) = 1i for almost all t 2 T

)
h
F
� bR� (z; w) = 1, F

� bR0� (z; w) = 1i
9>=>; :

The following lemma shows that our version of independence of irrelevant

alternatives condition follows from the above alternative version. It is a

simple exercise to verify that IIA�and IIA are indeed equivalent.

Lemma 17 IIA�implies IIA.

Proof. Suppose bR (T ) (x; y) = bR0 (T ) (x; y) . Then either
bR (t) (x; y) = bR0 (t) (x; y)

= 1 or 0
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for almost all t 2 T . Considering the truth values of , we obtain

bR (t) (x; y) = 1, bR0 (t) (x; y) = 1 for almost all t 2 T
and as a consequence of IIA�we obtain

F
� bR� (x; y) = 1, F

� bR0� (x; y) = 1 ,
which is equivalent to

F
� bR� (x; y) = 0, F

� bR0� (x; y) = 0 .
Consequently,

F
� bR� (x; y) = F � bR0� (x; y)

as desired.

3 Properties of Decisive Coalitions

For the rest of this paper, we assume that A contains at least two elements

so that there exists at least one pair of distinct alternatives x; y 2 A .

De�nition 18 For distinct x; y 2 A , a coalition V 2 T is said to be (x; y)-

decisive if

8 bR h bR (V ) (x; y) = 1+ ) F
� bR� (x; y) = 1+i .
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De�nition 19 A coalition V 2 T is said to be decisive if it is (x; y)-decisive

for all distinct x; y 2 A .

Lemma 20 Every coalition V 2 T which contains a (x; y)-decisive coalition

V 0 2 T is itself (x; y)-decisive.

Proof. It follows from De�nition 18.

Proposition 21 Suppose F satis�es UD . Then if V is decisive, V cannot

be negligible.

Proof. Assume the contrary to the conclusion, suppose V 2 N while V is

decisive. This would mean that for all distinct x; y

8 bR h bR (V ) (x; y) = 1+ ) F
� bR� (x; y) = 1+i .

Note that bR (V ) (x; y) = 1+ ,
n
t 2 V : bR (V ) (x; y) 6= 1+o 2 N so that

with V 2 N , bR (V ) (x; y) = 1+ follows trivially. Consequently, for all

distinct x and y , 8 bR F
� bR� (x; y) = 1+ . Recalling that � 6= ? , choose

any pro�le bR 2 � (let bR = ? if T = ? ) and let x , y be any pair of

distinct alternatives. We then have F
� bR� (x; y) = F

� bR� (y; x) = 1+ ,

which means that F
� bR� (x; y) = 1 ^ F � bR� (y; x) = 0 and F � bR� (y; x) =

1 ^ F
� bR� (x; y) = 0 . This leads to a contradiction.

Corollary 22 If F satis�es UD and U, T cannot be negligible.
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Lemma 23 Suppose jAj � 3 and that F is quasi-transitive and satis�esUD,

U, and IIA. Then a coalition V 2 T is (x; y)-decisive if and only if

8 bR nh bR (V ) (x; y) = 1+ ^ bR (V c) (y; x) = 1+i) F
� bR� (x; y) = 1+o .

Proof. Since �only if�direction of the assertion trivially holds, it su¢ ces to

prove the assertion only for �if�direction. To this end, suppose bR (V ) (x; y) =
1+ , where x; y are distinct. Let z =2 fx; yg and modify bR without altering
the preferences over x and y to get bR0 such that

bR0 (V ) (x; z) = bR0 (V ) (z; y) = 1+ and
bR0 (V c) (y; z) = bR0 (V c) (x; z) = 1+ .

This can be carried out since jAj � 3 and F satis�es UD. Then by as-

sumption, F
� bR0� (z; y) = 1+ and by U, F

� bR0� (x; z) = 1+ . Now by

quasi-transitivity, we obtain F
� bR0� (x; y) = 1+ and by IIA, we deduce

F
� bR� (x; y) = F � bR0� (x; y) = 1+

as desired.

Armstrong (1980, p.65) introduced the notion of N - competitive social

welfare functions. In our context a similar notion can be de�ned as follows:

De�nition 24 A collective choice rule F is said to be N - competitive pro-
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vided that 8N 2 N 9x 6= y 9 bR h bR (N) (x; y) = 1+ ^ F � bR� (x; y) 6= 1+i or
alternatively stated, no null set N is decisive.

Proposition 21 asserts that with our de�nition of decisiveness every col-

lective choice rule F isN - competitive provided that jAj � 2 and F satis�es

UD.

Lemma 25 Suppose jAj � 3 and that F is quasi-transitive and satis�esUD,

U, and IIA. Then a coalition V 2 T is (x; y)-decisive if and only if

9 bR h bR (V ) (x; y) = 1+ ^ bR (V c) (y; x) = 1+ ^ F � bR� (x; y) = 1+i .
Proof. Suppose that bR satis�es bR (V ) (x; y) = 1+ ^ bR (V c) (y; x) = 1+ ^

F
� bR� (x; y) = 1+ and let bR0 be an arbitrary preference pro�le such thatbR0 (V ) (x; y) = 1+ ^ bR0 (V c) (y; x) = 1+ . Note that we have bR (T ) (x; y) =bR0 (T ) (x; y) and bR (T ) (y; x) = bR0 (T ) (y; x) . Then by IIA we obtain

F
� bR0� (x; y) = F

� bR� (x; y) = 1 and F
� bR0� (y; x) = F

� bR� (y; x) = 0 ,

and hence F
� bR0� (x; y) = 1+ . Now we can appeal to Lemma 23 to establish

our claim for �only if � implication. On the other hand, suppose that V is

(x; y)-decisive. Choose bR such that bR (V ) (x; y) = 1+ ^ bR (V c) (y; x) = 1+ .
Then by UD and Lemma 23 we obtain F

� bR� (x; y) = 1+ . This proves �if
�implication of our claim.

Proposition 26 Suppose F satis�es UD. Then if V 2 T is (x; y)-decisive,

V c cannot be (y; x)-decisive.
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Proof. Suppose V is (x; y)-decisive. Assume the contrary to the conse-

quence, that V c is (y; x)-decisive. By UD we may choose bR such thatbR (V c) (y; x) = 1+ and bR (V ) (x; y) = 1+ . By assumption on V c we de-

duce that F
� bR� (y; x) = 1+ . On the other hand, by assumption on V we

deduce that F
� bR� (x; y) = 1+ , which leads to a contradiction.

Corollary 27 Suppose F satis�es UD. Then if V 2 T is decisive , V c

cannot be decisive.

Lemma 28 Suppose jAj � 3 and that F is quasi-transitive and satis�esUD,

U, and IIA. Then if V 2 T is (x; y)-decisive, V is (x;w)-decisive for each

w =2 fx; yg .

Proof. ByUD, we may choose bR such that bR (V ) (x; y) = bR (V ) (y; w) = 1+
and bR (V c) (y; w) = bR (V c) (w; x) = 1+ . By assumption on V we have

F
� bR� (x; y) = 1+ , and by U we obtain F

� bR� (y; w) = 1+ . Then by quasi-
transitivity F

� bR� (x;w) = 1+ . Furthermore, since bR (V ) (x;w) = 1+ andbR (V c) (w; x) = 1+ , by Lemma 25 V is (x;w)-decisive.
The following proposition is a version of Sen�s �eld expansion lemma (Sen,

1995, p.4), which is crucial to the rest of our arguments and was proved by

Bossert and Suzumura (2009, p.139) for the case that T is �nite, T = 2T

, and N = f?g while F is assumed be neither re�exive nor complete. We

present our version of proof even though it is merely a minor modi�cation of

the one appearing in Bossert and Suzumura (2009, p.139) since it is short and

demonstrates that Bossert and Suzumura�s basic arguments are still valid in
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the broader context of coalition algebras and that our formalism apparently

renders these by now standard arguments more transparent.

Proposition 29 (Field Expansion Lemma) Suppose jAj � 3 and that F

is quasi-transitive and satis�es UD, U, and IIA. Then if V 2 T is (x; y)-

decisive , V is decisive.

Proof. Suppose V is (x; y)-decisive. Then by Lemma 28 , V is (u; v)-

decisive for u = x and v 6= x as well. First, we claim that V is (u; v)-

decisive for an arbitrary u and v 6= x whenever u; v are distinct. To this end,

consider bR such that bR (V ) (u; x) = bR (V ) (x; v) = 1+ and bR (V c) (v; u) =bR (V c) (u; x) = 1+ . By assumption on V we have F � bR� (x; v) = 1+ , and by
U we obtain F

� bR� (u; x) = 1+ . Then by quasi-transitivity F � bR� (u; v) =
1+ . Furthermore, since bR (V ) (u; v) = 1+ and bR (V c) (v; u) = 1+ , by Lemma
25 V is (u; v)-decisive as desired. Second, we claim that V is (u; x)-decisive

for an arbitrary u whenever u; x are distinct. To this end, choose v =2 fu; xg

so that V is (u; v)-decisive by the earlier claim and consider bR such thatbR (V ) (u; v) = bR (V ) (v; x) = 1+ and bR (V c) (v; x) = bR (V c) (x; u) = 1+ .

Then the by now familiar argument shows that V is (u; x)-decisive and this

completes our proof.

4 Structures of Decisive Coalitions

The following de�nition of a �lter on algebras T is equivalent to the one

appearing in Sikorski (1969). Note that when T = 2T this de�nition reduces
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to the usual one as in Bourbaki (1966, p.57).

De�nition 30 Let T be a Boolean algebra. A �lter on T is a subset V � T

which has the following properties:

1. g 2 V .

2. f =2 V .

3. If V1; V2 2 V , then V1 \ V2 2 V .

4. If V1 2 V ; V2 2 T , and V1 � V2 , then V2 2 V .

Remark 31 There is no �lter on T = f?g . If N is a proper ideal of T

, V = f�V : V 2 Ng is a �lter on T . Our de�nition of a �lter V assumes

that it is nonempty. Some authors call such a �lter a proper �lter.

We supply proofs of the results in this section only for N = f?g since

the same line of arguments works as well for N 6= f?g by simply replacing T

with its quotient Boolean algebra T�N in which each element hV i is now an

equivalence class of V 2 T and in which the notion of decisiveness naturally

descends from T [see Armstrong (1980, p.60) for general discussions about

quotient Boolean algebras].

De�nition 32 A �lter V on an algebra T is said to be an ultra�lter if it

is a maximal element in the ordered set of all �lters on T .

De�nition 33 A corrective choice rule F is said to be Arrovian whenever

it satis�es UD, U, and IIA.
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De�nition 34 For an Arrovian corrective choice rule F , VF denotes the

set of all decisive coalitions associated with F . We obtain a map

� : CR! 2T

de�ned by F 7! VF .

De�nition 35 We denote the set of all �lters on T by F and the set of all

ultra�lters on T by UF .

De�nition 36 We denote the set of all Arrovian collective choice rules by

CR , the subset of all transitive and complete (hence re�exive) Arrovian

collective choice rules by CRT;C � CR , the set of all quasi-transitive and

complete Arrovian collective choice rules by CRQT;C � CR , and the set of

all quasi-transitive Arrovian collective choice rules by CRQT � CR .

As noted in Bossert and Suzumura (2009), Hansson (1976) proved in the

terminology adopted here that the restriction of � de�nes a surjective map

� : CRT;C � UF �2T

and

� : CRQT;C � F �2T ,

where T may be �nite or in�nite, T = 2T , and N = f?g .

22



Bossert and Suzumura (2009) proved the following theorem for the special

instance that T is �nite, T = 2T , and N = f?g , which sharpened the

earlier results obtained by Hansson (1976) in the sense that analogous results

remain valid in the absence of completeness of F (and hence in the absence

of re�exivity of F as well).

Theorem 37 Suppose jAj � 3 and F 2 CRQT . Then VF 2 F .

Proof. By Proposition 21 we know that ? =2 V and by de�nition it follows

that if V 2 V and V � V 0, then V 0 2 V . Suppose V; V 0 2 V . We

claim that V \ V 0 2 V . For distinct alternatives x , y , and z , considerbR such that bR (V n V 0) (y; z) = bR (V n V 0) (z; x) = 1+ , bR (V \ V 0) (z; x) =bR (V \ V 0) (x; y) = 1+ , and bR (V 0 n V ) (x; y) = bR (V 0 n V ) (y; z) = 1+ . Then
since bR (V ) (z; x) = 1+ , F

� bR� (z; x) = 1+ and since bR (V 0) (x; y) = 1+ ,

F
� bR� (x; y) = 1+ . Now by quasi-transitivity we deduce that F � bR� (z; y) =

1+ . Note that bR (V \ V 0) (z; y) = 1+ and bR ((V \ V 0)c) (y; z) = 1+ . Then
by Lemma 25 we conclude that V \ V 0 2 V .

Thus the restriction of � de�nes a map

� : CRQT ! F �2T

which was shown to be surjective by Bossert and Suzumura (2009) in a similar

situation. For each V 2F , we de�ne collective choice rules � (V) and �a (V)
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as follows:

� (V)
� bR� (x; y) = 1()

n
t : bR (t) (x; y) = 1o 2 V

�a (V)
� bR� (x; y) = 1()

n
t : bR (t) (x; y) = 1+o 2 V

We will show in the following sequence of lemmata that both � (V) and �a (V)

are Arrovian collective choice rules which are transitive and hence by Lemma

3 quasi-transitive. We thus obtain maps � : F! CRQT and �a : F! CRQT

.

Lemma 38 �a (V)
� bR� (x; y) = 1+ () n

t : bR (t) (x; y) = 1+o 2 V
Proof. Note that �a (V)

� bR� (y; x) = 1 ()
n
t : bR (t) (y; x) = 1+o 2 V .

Thus �a (V) is asymmetric, i.e., �a (V)
� bR� (x; y) = 1) �a (V)

� bR� (y; x) =
0 . This implies that �a (V)

� bR� (x; y) = 1 , �a (V)
� bR� (x; y) = 1+ and

the result follows.

Lemma 39 � (V)
� bR� (x; y) = 1+ (= nt : bR (t) (x; y) = 1+o 2 V

Proof. Suppose
n
t : bR (t) (y; x) = 0o =

n
t : bR (t) (y; x) = 1oc 2 V andn

t : bR (t) (x; y) = 1o 2 V , i.e.,
n
t : bR (t) (x; y) = 1+o 2 V . Then since

V is a �lter,
n
t : bR (t) (y; x) = 1o =2 V and hence � (V)� bR� (y; x) = 0 . Thus

� (V)
� bR� (x; y) = 1+ .

Lemma 40 � (V) and �a (V) satisfy UD, U, and IIA.
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Proof. We only need to verify U since the others follow trivially. SupposebR (T ) (x; y) = 1+ . Since T 2 V , we obtain
n
t : bR (t) (x; y) = 1+o = T 2

V , and hence by Lemma 38 and Lemma 39 �a (V)
� bR� (x; y) = 1+ and

� (V)
� bR� (x; y) = 1+ .

Lemma 41 � (V) and �a (V) are transitive and hence quasi-transitive.

Proof. Suppose
n
t : bR (t) (x; y) = 1o 2 V and nt : bR (t) (y; z) = 1o 2 V .

Since

n
t : bR (t) (x; y) = 1 ^ bR (t) (y; z) = 1o

=
n
t : bR (t) (x; y) = 1o \ nt : bR (t) (y; z) = 1o

2 V

and
n
t : bR (t) (x; y) = 1 ^ bR (t) (y; z) = 1o � n

t : bR (t) (x; z) = 1o , we ob-
tain

n
t : bR (t) (x; z) = 1o 2 V as desired. �a can be treated in a similar

manner keeping in mind that bR (t) is quasi-transitive.
We next demonstrate that �a is a section of � : CRQT ! F when it is

viewed as a bundle, i.e., �a has the property that � � �a = idF , where id

denotes the identity map on the space appearing in the subscript.

Proposition 42 Suppose jAj � 3 . Then � � �a = idF

Proof. Suppose V 2 V and bR (V ) (x; y) = 1+ . Then nt : bR (t) (x; y) = 1+o 2
V and consequently, �a (V)

� bR� (x; y) = 1+ . Thus V 2 V�a(V) = � � �a (V) .
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This proves V �� ��a (V) . Now let V 2 V�a(V) = � ��a (V) . By Lemma 25,

we can choose x 6= y and bR ,such that bR (V ) (x; y) = 1+ , bR (V c) (y; x) = 1+
and �a (V)

� bR� (x; y) = 1+ . Then V = nt : bR (t) (x; y) = 1+o and hence by
Lemma 39, V 2 V . This proves the other inclusion to complete the proof.

Corollary 43 Suppose jAj � 3 . Then the map �a : F! CRQT is injective,

and the map � : CRQT ! F is surjective.

Remark 44 The map �a is exactly the same as that constructed in Bossert

and Suzumura (2009) for showing that in our terminology � : CRQT ! F

is surjective. Our proof presented above is indeed verbatim to theirs. It is

interesting to note that � : F! CRQT may not be a section of � : CRQT ! F

. This is because a similar assertion in Lemma 38 may not hold in general

for � .

Our next goal is to determine the inverse image ��1 (UF) under the sur-

jective map � : CRQT ! F . When T = a �nite set, T = 2T , and N = f?g

, the set ��1 (UF) turns out to be exactly the set of quasi-transitive Arrovian

collective choice rules which are dictatorial, i.e., which admit a dictator.

We start with stating a lemma providing a necessary and su¢ cient con-

dition for a �lter to be an ultra�lter.

Lemma 45 Let V be a �lter on a Boolean algebra T . Then V is an ultra�lter

if and only if 8V 2 T V 2 V or �V 2 V .
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Proof. Let F be a �lter containing V and suppose there is V 2 F such that

V =2 V . Then by assumption �V 2 V � F and it follows that V \ �V =

f 2 F . But this is absurd and thus V is an ultra�lter. Next, suppose V

is an ultra�lter and there exists V 2 F such that V =2 V and �V =2 V .

De�ne F = fU 2 T : U [ V 2 Vg . A simple exercise shows that F is a �lter

properly containing V , which is absurd.

We introduce the following condition which requires that strict individual

preferences over distinct alternatives x; y result in a strict social preference

over x; y .

fx; yg-Strict Preference, fx; yg-SP Let x; y be distinct alternatives. Then

F is said to satisfy fx; yg-Strict Preference, or fx; yg-SP for short,

if
h bR (t) (x; y) = 1+ _ bR (t) (y; x) = 1+i for almost all t 2 T

)
h
F
� bR� (x; y) = 1+ _ F � bR� (y; x) = 1+i .

Strict Preference, SP F is said to satisfy Strict Preference, or SP for

short, if it satis�es fx; yg-SP for all distinct alternatives x and y .

De�nition 46 We denote the set of all quasi-transitive Arrovian collective

choice rules which satisfy SP by CRQT;SP � CR

Remark 47 Geanakoplos (2005) and Úbeda (2003) showed that when F is

transitive and complete, SP follows from UD, U, and IIA. Thus we obtain

the following inclusion:

CRT;C � CRQT;SP :
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The assertion in the next proposition is called Equivalent Subsets in Sen

(1986). We prove it under somewhat weaker hypotheses than usual.

Proposition 48 (Equivalent Subsets) Suppose jAj � 3 and F 2 CRQT .

Let V; V 0 2 T where V 2 VF and V 0 � V . Then if F satis�es fx; yg -SP

for some distinct x and y , either V 0 2 VF or V n V 0 2 VF .

Proof. Let x; y; z 2 A be distinct alternatives where F satis�es fy; zg -SP.

Consider bR such that bR (V 0) (x; y) = bR (V 0) (y; z) = 1+ , bR (V n V 0) (z; x) =bR (V n V 0) (x; y) = 1+ and bR (V c) (y; z) = bR (V c) (z; x) = 1+ . Since V is

decisive and bR (V ) (x; y) = 1+ , we deduce F
� bR� (x; y) = 1+ . By as-

sumption either F
� bR� (z; y) = 1+ or F

� bR� (y; z) = 1+ . First, suppose

F
� bR� (z; y) = 1+ . Then since

bR (V n V 0) (z; y) = 1+ and bR �(V n V 0)c� (y; z) = 1+ ,
by Lemma 25 V n V 0 is (z; y)-decisive. Second, suppose F

� bR� (y; z) = 1+ .
Then by quasi-transitivity, F

� bR� (x; z) = 1+ . Note that bR (V 0) (x; z) = 1+
and bR (V 0c) (z; x) = 1+ . Consequently, V 0 is (x; z)-decisive. Thus by virtue
of Proposition 29, either V 0 or V n V 0 is decisive.

Corollary 49 Suppose jAj � 3 and that F 2 CRQT . Then if F satis�es

fx; yg -SP for some distinct x and y , VF 2 UF .

Proof. Let V = T in Proposition 48 and apply Lemma 45.
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Proposition 50 Let V; V 0 2 T where V 2 VF and V 0 � V . Then if either

V 0 2 VF or V n V 0 2 VF , F satis�es SP.

Proof. Let x; y 2 A be distinct alternatives where for � -almost all t ,bR (t) (x; y) = 1+ or bR (t) (y; x) = 1+ . De�ne V 0 = nt 2 V : bR (t) (x; y) = 1+o
. Then if V 0 is decisive, F

� bR� (x; y) = 1+ and if V n V 0 is decisive,

F
� bR� (y; x) = 1+.

Corollary 51 Suppose jAj � 3 and F 2 CRQT . Let V; V 0 2 T where

V 2 VF and V 0 � V . Then F satis�es SP if and only if either V 0 2 VF or

V n V 0 2 VF .

Proof. Simply combine Proposition 48 and Proposition 50.

Corollary 52 Suppose jAj � 3 and F 2 CRQT . Then F satis�es SP if and

only if VF 2 UF .

Proof. Let V = T in Corollary 51 and apply Lemma 45.

We can summarize the results obtained thus far as the following theorem:

Theorem 53 Suppose jAj � 3 and that F 2 CRQT . Then the following are

equivalent.

(1) F satis�es fx; yg-SP for some distinct x and y .

(2) VF 2 UF .

(3) F satis�es SP.
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Proof. (1) ) (2) follows from Corollary 49 and (2) , (3) follows from

Corollary 50, while (3)) (1) follows from the de�nition of SP.

Remark 54 It is interesting to note that under the assumptions of the pro-

ceeding theorem, if strict individual preferences over a particular pair of

distinct alternatives x; y result in a strict social preference over those x; y ,

then strict individual preferences over any pair of distinct alternatives x; y

result in a strict social preference over those x; y .

Corollary 55 Suppose jAj � 3 . Then ��1 (UF) = CRQT;SP .

We next show that the restriction �0 : UF! CRQT indeed de�nes a

section of the restriction �0 : CRQT;SP ! UF . We already showed in Lemma

41 that �0 (V) is transitive for all V 2UF . We will show in the following

lemma that �0 (V) is complete for all V 2UF and combining this with the

inclusion CRT;C � CRQT;SP , we deduce that �0 (UF) � CRQT;SP .

Lemma 56 �0 (V) is complete for all V 2UF .

Proof. Let x 6= y . Then by Theorem 45, either
n
t : bR (t) (x; y) = 1o 2 V orn

t : bR (t) (x; y) = 0o =
n
t : bR (t) (x; y) = 1oc 2 V . Then sincen

t : bR (t) (x; y) = 0o �
n
t : bR (t) (y; x) = 1o 2 V , we conclude that

FV

� bR� (x; y) = 1 or FV � bR� (y; x) = 1 .
We next prove that a similar assertion in Lemma 38 holds for �0 .
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Lemma 57 For each V 2UF ,

�0 (V)
� bR� (x; y) = 1+ , n

t : bR (t) (x; y) = 1+o 2 V .
Proof. Negating �0 (V)

� bR� (y; x) = 1 ,
n
t : bR (t) (y; x) = 1o 2 V , we

obtain by Theorem 45 that �0 (V)
� bR� (y; x) = 0, n

t : bR (t) (y; x) = 0o 2 V
. Combining the last expression with

�0 (V)
� bR� (x; y) = 1, n

t : bR (t) (x; y) = 1o 2 V
yields

�0 (V)
� bR� (x; y) = 1+

,
n
t : bR (t) (x; y) = 1o 2 V^nt : bR (t) (y; x) = 0o 2 V

,
n
t : bR (t) (x; y) = 1o \ nt : bR (t) (y; x) = 0o 2 V

,
n
t : bR (t) (x; y) = 1+o .

With Lemma 57 and replacing �a by �0 , the proof of Proposition 42

works word by word to obtain the following proposition:

Proposition 58 �0 � �0 = idUF

Corollary 59 The map �0 : UF! CRQT;SP is injective, and the map �0 :

CRQT;SP ! UF is surjective.
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It is well-known that given an ultra�lter V 2UF , there exists a complete,

transitive Arrovian collective choice rule FV whose ultra�lter VFV of decisive

coalitions coincide with V . The above assertion simply reiterates this fact

in our terminology, and the essential arguments in our proof are all famil-

iar in the literature, such as Kirman and Sondermann (1972, Theorem 1,

p.269), Armstrong (1980, Proposition 3.1, p.62), and Torres (2005, Lemma

27, p.933).

De�nition 60 If a �lter V 2F arises as V = fV 2 T : V0 � V g for some

f 6= V0 2 T , V is said to be the principal �lter generated by V0 2 T and

is denoted by V (V0) .

De�nition 61 Given a F 2 CR , a feasible individual t 2 T , i.e., t 2 T

such that ftg 2 T , is said to be a dictator if ftg 2 VF . Note that when

T = 2T , the above de�nition reduces to the usual one.

Proposition 62 Suppose jAj � 3 and F 2 CRQT . Then a feasible individ-

ual t 2 T is a dictator if and only if VF = V (ftg) .

Proof. Suppose that t 2 T is a dictator for F satisfying the above conditions

and that V 2 VF . Let x 6= y . Then by Lemma 25, there exist bR such thatbR (V ) (x; y) = 1+ , bR (V c) (y; x) = 1+ , and F � bR� (x; y) = 1+ . If t =2 V then
t 2 V c and since ftg is not negligible, bR (t) (y; x) = 1+ . Then F � bR� (y; x) =
1+ must hold, which leads to a contradiction and thus we conclude that t 2 V

which shows that VF � V (ftg) . Now suppose V 2 V (ftg) , i.e. t 2 V , and
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bR (V ) (x; y) = 1+ . Then since ftg is not negligible, bR (t) (x; y) = 1+ and

hence F
� bR� (x; y) = 1+ . This shows that V 2 VF and thus V (ftg) � VF

as desired. Now suppose VF = V (ftg) . Then t clearly is a dictator.

Suppose that T is rich enough to make each individual t 2 T feasible and

that N = f?g . Then for each t 2 T , the principal �lter V (ftg) will be an

ultra�lter, i.e., V (ftg) 2 UF . Moreover, the assignment t 7! V (ftg) de�nes

an embedding i : T ! UF such that the image i (T ) is dense in UF with

respect to the Stone topology. This can be seen as follows: Let [V ] , V 2 T ,

be a basic neighborhood in the Stone topology, i.e., [V ] = fV 2 UF : V 2 Vg .

Choose a point t 2 V . Then V 2 V (ftg) since ftg � V . Thus V (ftg) 2 [V ]

and this establishes our earlier claim.

When T is a �nite set, every ultra�lter arises as V (ftg) for some t 2 T

and hence i (T ) = UF . When T is an in�nite set, however, UFni (T ) may be

nonempty. Recall from Corollary 55 that every ultra�lter V is an ultra�lter

of decisive coalitions of some F 2 CR . In light of the above discussions we

may call an ultra�lter in i (T ) a visible dictator (for some F 2 CR ) and

that in UFni (T ) an invisible dictator . Note that invisible dictators are

in some sense the limits of visible dictators as reasoned out by Kirman and

Sondermann (1972, p.272).

We can also describe the di¤erence between visible and invisible dictators

in terms of an intersection property of ultra�lters. We say an ultra�lter V

is �xed if \
V 2V

V 6= ? and is free otherwise. Indeed, if V is �xed, there will

be a t 2 T such that for all V 2 V , t 2 V , i.e., V 2 V (ftg) . Thus
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V � V (ftg) but since V is maximal by assumption, we obtain V = V (ftg) .

It follows that the �xed ultra�lters are precisely the visible dictators and the

free ultra�lters the invisible ones.

In the case where N 6= f?g , we can naturally extend the above notions

of visible and invisible dictators in the following manner: An ultra�lter V in

T�N is said to be a visible dictator if it equals the principal �lter generated

by the equivalence class of some ftg , t 2 T , that is , V = V (hftgi) for some

t 2 T , and an ultra�lter not in this form is said to be an invisible dictator.

Remark 63 Note that the above de�nition of visible and invisible dictators

generalizes the usual ones appearing in the literature, such as Kirman and

Sondermann (1972), to the case that negligible coalitions are incorporated.

If T is �nite , T = 2T , andN = f?g , then it follows from Lemma 45 that

every ultra�lter V 2UF is of the form V (ftg) for some t 2 T . The following

theorem is a version of the celebrated impossibility theorem by Arrow (1963).

Theorem 64 Suppose jAj � 3 . If T is �nite, T = 2T , and N = f?g ,

then CRQT;SP is exactly the set of F 2 CRQT such that Arrow�s impossibility

theorem holds.

Proof. Suppose F 2 CRQT admits a dictator. Then by Proposition 62,

VF = V (ftg) for some t 2 T , which is a member of UF . Then by Corollary

55 , F 2 CRQT;SP . On the other hand, if F 2 CRQT;SP , VF2UF , but as

noted above, VF = V (ftg) for some t 2 T . Thus t is a dictator.
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5 The Images of �a0 and �0 .

Armstrong (1980, 1985) considered the problem of identifying the image set

of �0 , which is contained in CRT;C and which corresponds bijectively to

UF under �0 and hence under �0 . This set is interesting because when UF

consists only of visible dictators, a collective choice rule F in such a set has

the property that if one alternative x is strictly socially preferred to another

alternative y in a situation bR , i.e., F
� bR� (x; y) = 1+ , then there is a

dictator t 2 T whose preference over x and y agrees with the society, i.e.,bR (t) (x; y) = 1+ . Armstrong called such collective choice rules precisely

dictatorial Arrovian social welfare functions. Armstrong (1985) introduced

the notion of monotonicity of collective choice rules F 2 CRT;C � CRQT;SP

: F is said to satisfy relational monotonicity provided that the asymmetric

factor of F as a relation on A enlarges when the asymmetric factor of bR (t)
for each t enlarges as a relation on A . He demonstrated that the set of pre-

cisely dictatorial Arrovian social welfare functions coincides with the subset

of CRT;C which consists of those F that satis�es relational monotonicity.

Corollary 52 and Lemma 41 together imply that �a (UF) � CRQT;SP

provided jAj � 3 . In this section we identify the image set of the restriction

�a0 : UF! CRQT;SP and �nd a relationship between this set and the image

set of �0.

Relational Monotonicity, RM F is said to satisfyRelational Monotonic-

ity, or RM for short, if for each pair of preference pro�les bR and bR0
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, F satis�es the condition that
h bR (t) (x; y) = 1+ ) bR0 (t) (x; y) = 1+i

for almost all t implies
h
F
� bR� (x; y) = 1+ ) F

� bR0� (x; y) = 1+i .
De�nition 65 We denote the set of all negative quasi-transitive and asym-

metric Arrovian collective choice rules which satisfy SP and RM by

CRNQT;SP;A;RM � CR . Note by virtue of Lemma 6 we have the inclusion

CRNQT;SP;A;RM � CRQT;SP . The next theorem shows that the image set of

�a0 coincides with CRNQT;SP;A;RM .

Lemma 66 If F = �a � � (F ) , F is asymmetric.

Proof. By de�nition we have

�a (V)
� bR� (x; y) = 1,

n
t : bR (t) (x; y) = 1+o 2 V

�a (V)
� bR� (y; x) = 1,

n
t : bR (t) (y; x) = 1+o 2 V .

Since
n
t : bR (t) (x; y) = 1+ ^ bR (t) (y; x) = 1+o = ? , the conclusion follows.

Lemma 67 If F = �a0 � �0 (F ) , F is negative quasi-transitive.

Proof. Suppose F
� bR� (x; y) 6= 1+ ^ F

� bR� (y; z) 6= 1+ . Since F is

asymmetric by Lemma 66 , Lemma 7 implies that F
� bR� (x; y) 6= 1 ^

F
� bR� (y; z) 6= 1 and hence nt : bR (t) (x; y) 6= 1+o 2 VF^nt : bR (t) (y; z) 6= 1+o 2

VF since VF 2 UF . Thus by Lemma 4
n
t : bR (t) (x; z) 6= 1+o 2 VF , which

implies F
� bR� (x; z) 6= 1 and hence F � bR� (x; z) 6= 1+ since F is asymmetric

and since Lemma 7 holds.
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Lemma 68 If F = �a0 � �0 (F ) , F satis�es RM .

Proof. Suppose F
� bR� (x; y) = 1+ and bR (t) (x; y) = 1+ ) bR0 (t) (x; y) = 1+

. Then
n
t : bR (t) (x; y) = 1+o 2 VF and

n
t : bR (t) (x; y) = 1+o � nt : bR0 (t) (x; y) = 1+o

and consequently
n
t : bR0 (t) (x; y) = 1+o 2 VF , which implies F � bR0� (x; y) =

1 and hence by Lemma 7 F
� bR0� (x; y) = 1+ . Thus F satis�es RM .

Given bR 2 � and a negative quasi-transitive F , we de�ne bR0 : T ! P by

bR0 (t) (x; y) = 1

, bR (t) (x; y) = 1
^

h bR (t) (y; x) = 1+ _ bR (t) (x; y) = 1+ _ F � bR� (x; y) 6= 1+i .
Lemma 69 bR0 (t) is complete for all t 2 T .
Proof. Suppose bR0 (t) (x; y) = 0 . Then bR (t) (x; y) = 0 or bR (t) (x; y) =
1 ^ bR (t) (y; x) = 1 ^ F � bR� (x; y) = 1+ . Note that bR (t) (x; y) = 0 impliesbR (t) (y; x) = 1+ , which in turn implies bR0 (t) (y; x) = 1 . On the other

hand, since the asymmetric component of F is asymmetric, F
� bR� (x; y) =

1+ implies F
� bR� (y; x) 6= 1+ . Thus bR (t) (x; y) = 1 ^ bR (t) (y; x) = 1 ^

F
� bR� (x; y) = 1+ implies bR0 (t) (y; x) = 1 as well.

Lemma 70 bR0 (t) is transitive for all t 2 T .
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Proof. Suppose bR0 (t) (x; y) = 1 ^ bR0 (t) (y; z) = 1 . Assume the contrary:bR0 (t) (x; z) = 0 . Note that bR0 (t) (x; z) = 0 implies bR (t) (x; z) = 0 orbR (t) (z; x) 6= 1+ ^ bR (t) (x; z) 6= 1+ ^ F
� bR� (x; z) = 1+ . If bR (t) (x; z) =

0 then by transitivity bR (t) (x; y) = 0 _ bR (t) (y; z) = 0 , which impliesbR0 (t) (x; y) = 0 _ bR0 (t) (y; z) = 0 , a contradiction. Now suppose the

second alternative holds. By negative quasi-transitivity of F , we obtain

F
� bR� (x; y) = 1+ _ F

� bR� (y; z) = 1+ . Note that bR0 (t) (x; y) = 1 im-

plies bR (t) (x; y) = 1 , which in turn implies bR (t) (y; x) 6= 1+ , and simi-

larly bR0 (t) (y; z) = 1 implies bR (t) (z; y) 6= 1+ . Moreover, by Lemma 4 ,bR (t) (x; z) 6= 1+ ^ bR (t) (z; y) 6= 1+ implies bR (t) (x; y) 6= 1+ , and similarlybR (t) (y; x) 6= 1+ ^ bR (t) (x; z) 6= 1+ implies bR (t) (y; z) 6= 1+ . We thus ob-
tain bR (t) (y; x) 6= 1+ ^ bR (t) (x; y) 6= 1+ ^ F � bR� (x; y) = 1+ , which impliesbR0 (t) (x; y) = 0 , or bR (t) (z; y) 6= 1+ ^ bR (t) (y; z) 6= 1+ ^ F � bR� (y; z) = 1+
, which implies bR0 (t) (y; z) = 0 . These contradict the initial premise.
Theorem 71 Suppose jAj � 3 and let F 2 CRQT;SP . Then F = �a0 ��0 (F )

if and only if F 2 CRNQT;SP;A;RM � CRQT;SP .

Proof. The above lemmata prove that if F = �a0 � �0 (F ) then

F 2 CRNQT;SP;A;RM . For the converse, suppose F 2 CRNQT;SP;A;RM and

F 6= �a0��0 (F ) . First, note that for every x 6= y and bR , �a0��0 (F )� bR� (x; y)
implies F

� bR� (x; y) = 1+ , which is on account of Lemma 7 equivalent

to F
� bR� (x; y) = 1 . Thus if F 6= �a0 � �0 (F ) , then there must exist

x 6= y and bR such that F
� bR� (x; y) = 1+ ^

n
t : bR (t) (x; y) = 1+o =2 VF
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and consequently
n
t : bR (t) (x; y) 6= 1+o 2 VF since VF 2 UF . Now supposen

t : bR (t) (y; x) = 1+o 2 VF . Then it would be true that F � bR� (y; x) = 1+
, which is impossible. Thus

n
t : bR (t) (y; x) 6= 1+o 2 VF and we obtain

V =
n
t : bR (t) (x; y) 6= 1+ ^ bR (t) (y; x) 6= 1+o 2 VF . Observe that bR0 satis-

�es

bR0 (t) (y; x) = 1+

, bR (t) (y; x) = 1+
_

h bR (t) (y; x) 6= 1+ ^ bR (t) (x; y) 6= 1+ ^ F � bR� (x; y) = 1+i .
Since F satis�es RM, F

� bR� (x; y) = 1+ implies F
� bR0� (x; y) = 1+ . On

the other hand, bR0 (V ) (y; x) = 1+ which implies F
� bR0� (y; x) = 1+ . We

thus reached a contradiction and hence we deduce that F = �a0 � �0 (F ) .

We next investigate the relationship between the image set of �0 and that

of �a0 . Note that there is a map � : PT;C! P given by %!%0 , where

x %0 y , x � y , and a map 	 : PNQT;A ! P given by %0!% , where

x % y , :y %0 x . By virtue of Lemma 4 and Lemma 8, for each %2 PT;C ,

� (%) is asymmetric and negative quasi-transitive, i.e., � : PT;C! PNQT;A

where PNQT;A consists of asymmetric and negative quasi-transitive preference

relations. The following lemma shows that for each %02 PNQT;A , 	(%0) is

transitive and complete and hence we have 	 : PNQT;A ! PT;C .

Lemma 72 For each %02 PNQT;A , 	(%0) 2 PT;C .
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Proof. Suppose :x % y . Then y %0 x and hence :x %0 y since %0 is

asymmetric. Now suppose x % y^y % z . Then :y %0 x^:z %0 y . Since %0

is asymmetric, :y �0 x^:z �0 y , which implies :z �0 x since %0 is negative

quasi-transitive. Thus :z %0 x and hence x % z . Therefore, % is transitive.

We claim that � : PT;C! PNQT;A is a bijection and 	 : PNQT;A ! PT;C

is the inverse of � .

Proposition 73 � : PT;C! PNQT;A is a bijection and ��1 = 	 .

Proof. We have x	 �� (%) y , :y� (%)x, :y � x, x % y on one hand

and x� � 	(%0) y , x	(%0) y ^ :y	(%0)x , :y	(%0)x , x %0 y on the

other hand.

Note that % and � (%) have the same asymmetric component. Since SP

and RM depend only on asymmetric components, � induces a bijection

e� : CRT;C;RM ! CRNQT;SP;A;RM

by F 7�! � � F . It is a simple matter to verify that �0 and �a0 are related

by e� � �0 = �a0:
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6 Topological Structures of CRQT and Den-

sity Theorems

We construct a topology on F in an analogous manner to that used to con-

struct the Stone topology on UF . In the sequel (V ) denotes the set of all

�lters containing V 2 T and [V ] the set of all ultra�lters containing V 2 T

. De�ne � = f(V ) : V 2 T g and � = f[V ] : V 2 T g . We will show in the

next proposition that � de�nes a topology O on F .

Proposition 74 � is a basis for a topology O on F .

Proof. Suppose V 2F . We must show that there is an element in � which

contains V . Since T 2 V we obtain V 2 (T ) , where T 2 T . We next show

that for (V1) , (V2) 2 � , each point in the intersection (V1)\ (V2) belongs to

an element in � . This assertion clearly holds by the following argument:

V 2 (V1) \ (V2), V 2 (V1) ^ V 2 (V2)

, V1 2 V^V2 2 V

, V1 \ V2 2 V

, V 2 (V1 \ V2) ;

which shows that (V1) \ (V2) = (V1 \ V2) .

Proposition 75 O is T0 .
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Proof. Suppose V1 6= V2 2 F . Then there must be a V 2 T such that V 2

V1^V =2 V2 or V =2 V1^V 2 V2 . Then V12 (V )^V2 =2 (V ) or V1 =2 (V )^V22 (V )

.

As is well-known in the literature, � de�nes a topology on UF called the

Stone topology OS which is compact, totally disconnected and hence Haus-

dor¤ (see for example Sikorski, 1969). Since the restriction � jUF coincides

with � , we clearly have

O jUF= OS ,

where O jUF denotes the restriction of O to UF . The next proposition shows

that UF is dense in F with respect to O .

Proposition 76 UF is dense in F .

Proof. Let V 2 F and V2 (V ) , i.e., V 2 V . Then there is an ultra�lter V

containing V so that V 2 V �V . Hence V 2 (V ) .

In what follows we endow P with the topology of pointwise convergence

as in Armstrong (1980). We then endow CR with the topology of pointwise

convergence and assume that all relevant subsets such as CRT;C and CRQT;SP

inherit this topology and become topological subspaces of CR . Thus a net

Fi converges to F in CR if and only if 8 bR Fi � bR� ! F
� bR� if and only if

8 bR 8x; y Fi � bR� (x; y) ! F
� bR� (x; y) . We will show in the next theorem

that � : CRQT ! F is continuous.

As noted in Armstrong (1980, p.67), P is a totally disconnected compact

Hausdor¤ space with respect to the topology of pointwise convergence.
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Lemma 77 Suppose Ri ! R is a convergent net in P . Then R (x; y) = 1+

if and only if 9i0 8i � i0Ri (x; y) = 1+ .

Proof. Note that Ri ! R if and only if 8x; y Ri (x; y)! R (x; y) if and only

if 8x; y 9i0 8i � i0Ri (x; y) = R (x; y) and our assertion is immediate.

Lemma 78 PQT is closed in P and hence compact Hausdor¤.

Proof. Let Ri be a net in PQT which converges to R 2 P . We must show

that R 2 PQT . To this end suppose R (x; y) = 1+ ^ R (y; z) = 1+ . Then

by Lemma 77, 9i0 8i � i0Ri (x; y) = 1+ ^ Ri (y; z) = 1+ . Since Ri are

quasi-transitive, 8i � i0Ri (x; z) = 1+ . Again by Lemma 77 , we obtain

R (x; z) = 1+ and thus R 2 PQT .

Corollary 79 CRQT =
�
PQT

��
is compact Hausdor¤.

Theorem 80 Suppose jAj � 3 . Then � : CRQT ! F is continuous.

Proof. Let Fi ! F be a convergent net in CRQT . We must show that

VFi! VF in F . Recall that Fi ! F if and only if 8 bR 8x; y Fi � bR� (x; y) !
F
� bR� (x; y) . Let (V ) be a basic neighborhood of VF in F , where V 2 T .

In view of Lemma 25 we then have

VF 2 (V ) if and only if V 2 VF

if and only if

9 bR bR (V ) (x; y) = 1+ , bR (V c) (y; x) = 1+ , and F � bR� (x; y) = 1+ .
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We claim that 9i0 such that 8i � i0 VFi 2 (V ) . Note that 9i0 such that

8i � i0 Fi

� bR� (x; y) = 1+ . This implies that 8i � i0 V 2 VFi and hence

8i � i0 VFi 2 (V ) as desired.

Corollary 81 F is compact.

Proof. Recall that F is the image of CRQT under a continuous map � .

We can also prove that �a0 : UF! CRQT;SP is continuous.

Theorem 82 Suppose jAj � 3 . Then �a0 : UF! CRQT;SP is continuous.

Proof. Assuming Vi ! V , we must show that

8 bR 8x; y �a0 (Vi)� bR� (x; y)!�a0 (V)� bR� (x; y) .
First, suppose �a0 (V)

� bR� (x; y) = 1 . This holds if and only if
n
t : bR (t) (x; y) = 1+o 2 V , V 2

hn
t : bR (t) (x; y) = 1+oi .

Then 9i0 such that 8i � i0 Vi 2
�n
t : bR (t) (x; y) = 1+o� , which holds if

and only if
n
t : bR (t) (x; y) = 1+o 2 Vi if and only if �a0 (Vi)� bR� (x; y) = 1

. This proves our assertion provided �a0 (V)
� bR� (x; y) = 1 . Next, suppose

�a0 (V)
� bR� (x; y) 6= 1 , which holds if and only if

n
t : bR (t) (x; y) = 1+o =2

V if and only if
n
t : bR (t) (x; y) 6= 1+o 2 V if and only if V 2 hnt : bR (t) (x; y) 6= 1+oi

since V is an ultra�lter. Then as in the earlier argument we can deduce that

9i0 such that 8i � i0 �a0 (Vi)
� bR� (x; y) 6= 1 .
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Combining Theorem 80 and 82 we obtain the following corollary:

Corollary 83 Suppose jAj � 3 . Then �a0 : UF ! CRNQT;SP;A;RM is a

homeomorphism. In particular CRNQT;SP;A;RM is compact and totally dis-

connected.

We can also prove that �0 : UF! CRQT;SP is continuous provided jAj � 3

. The proof is almost verbatim to that of Theorem 82. The only change to

be made is to replace
n
t : bR (t) (x; y) = 1+o by nt : bR (t) (x; y) = 1o in the

proof of Theorem 82. We thus obtain the following corollaries:

Corollary 84 Suppose jAj � 3 . Then �0 : UF! CRT;C;RM is a homeomor-

phism. In particular CRT;C;RM is compact and totally disconnected.

Corollary 85 Suppose jAj � 3 . Then e� : CRT;C;RM ! CRNQT;SP;A;RM is

a homeomorphism.

In the sequel we will show that when there are in�nitely many alter-

natives, CRQT;SP becomes nowhere dense in CRQT , and CRT;C becomes

nowhere dense in CRQT;SP . The former assertion in particular has an im-

portant economic implication: In the presence of a large number of social

alternatives the set of Arrovian collective choice rules that fall into Arrow�s

impossibility theorem is in some sense �negligible� in the totality of quasi-

transitive Arrovian collective choice rules.

Lemma 86 Suppose jAj � 3 . Then CRQT;SP is closed in CRQT .
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Proof. Generally, a basic open neighborhood UF of F 2 CRQT looks like

UF =

8><>: G 2 CRQT : G
� bRi� (xij; yij) = F � bRi� (xij; yij) ;

i = 1; � � � ; n; ij = i1; � � � ; iji

9>=>; .

Let F 2 CRQT n CRQT;SP . Then there exist bR0 and distinct x0 and y0
such that bR0 (t) (x0; y0) = 1+ _ bR0 (t) (y0; x0) = 1+ for almost all t 2 T and
F
� bR0� (x0; y0) 6= 1+ ^ F � bR0� (y0; x0) 6= 1+ . De�ne

UF =

8><>: G 2 CRQT : G
� bR0� (x0; y0) = F � bR0� (x0; y0)

^G
� bR0� (y0; x0) = F � bR0� (y0; x0)

9>=>; .

Note that UF is an open neighborhood of F such that UF \ CRQT;SP = ? .

Remark 87 Note that since F is only T0 , even though UF is compact it

may not be closed in F . Thus we cannot conclude the above assertion from

Corollary 55.

Corollary 88 Suppose jAj � 3 . Then CRQT;SP is compact Hausdor¤.

Theorem 89 Suppose jAj =1 . Then CRQT;SP is nowhere dense in CRQT

.

Proof. Since CRQT;SP is closed in CRQT by Corollary 88, it su¢ ces to show

that CRQT;SP has empty interior. Let F 2 CRQT;SP and let UF be an open
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neighborhood of F . We may assume that UF is a basic open neighborhood

of F so that

UF =

8><>: G 2 CRQT : G
� bRi� (xij; yij) = F � bRi� (xij; yij) ;

i = 1; � � � ; n; ij = i1; � � � ; iji

9>=>; .

Then since jAj =1 , we can safely choose x0 6= y0 from the complement of

the list f(xij; yij) : i = 1; � � � ; n; ij = i1; � � � ; ijig . Choose bR0 2 � such thatbR0 (t) (x0; y0) = 1+ _ bR0 (t) (y0; x0) = 1+ for almost all t 2 T and choose the
symmetric factor �0 of any %2 PT;C � PQT . Now de�ne eF 2 CRQT by

eF � bR� =
8><>: F

� bR� bR 6= bR0
�0 bR = bR0 .

Note that eF =2 CRQT;SP and eF 2 UF .
Lemma 90 CRT;C is closed in CRQT;SP .

Proof. First, we show that CRT;C is closed in CR . Then since CRT;C �

CRQT;SP , CRT;C will be closed in CRQT;SP . Let Fi 2 CRT;C be a net

converging to F 2 CR . We must show that F 2 CRT;C . To this end it

su¢ ces to show that if Ri 2 PT;C is a net converging to R 2 P , then R 2

PT;C , i.e., PT;C is closed in P . Suppose R (x; y) = 1 ^ R (y; z) = 1 . Then

9i0 8i � i0Ri (x; y) = 1 ^ Ri (y; z) = 1 and hence 9i0 8i � i0Ri (x; z) = 1 .

Thus R (x; z) = 1 , i.e., R is transitive. We must show that R is complete as

well. Given x and y , suppose R (x; y) = 0 . Then 9i0 8i � i0Ri (x; y) = 0 .
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Since Ri is complete, 9i0 8i � i0Ri (y; x) = 1 , and hence R (y; x) = 1 , i.e.,

R is complete.

Lemma 91 Suppose jAj =1 . Then PT;C is nowhere dense in PQT .

Proof. As noted in the previous proof, PT;C is closed in P and since PT;C �

PQT , PT;C is closed in PQT . We only need to show that PT;C has empty

interior in PQT . To this end, let R 2 PT;C and UR be an open neighborhood

of R . We may assume that UR is a basic open set, i.e.,

UR =
�
R0 2 PQT : R0 (xi; yi) = R (xi; yi) ; i = 1; � � � ; n

	
.

Let D = f(xi; yi) ; i = 1; � � � ; ng and �nd a �nite subset I � A such that

D � I � I . Now de�ne R0 2 P by

R0 (x; y) =

8><>: R (x; y) (x; y) 2 I � I

0 (x; y) =2 I � I
.

Note that since jAj =1 , there exists a (x; y) such thatR0 (x; y) = R0 (y; x) =

0 . Thus R0 is not complete. Furthermore, since R0 is transitive on I � I , it

is transitive on A� A as well. In particular, R0 is quasi-transitive.

The following theorem indicates that in the presence of many social alter-

natives the set of the so-called Arrovian social welfare functions, i.e., CRT;C is

in some sense �negligible�in the totality of quasi-transitive collective choice

rules that give rise to ultra�lters of decisive coalitions.
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Theorem 92 Suppose jAj =1 . Then CRT;C is nowhere dense in CRQT;SP

.

Proof. In view of Lemma 90, we only need to show that CRT;C has empty

interior. De�ne bR0 2 � by bR0 (T ) (x; y) = bR0 (T ) (y; x) = 1 . Let F 2 CRT;C
and let UF be an open neighborhood of F . We may assume that UF is a

basic open neighborhood of F so that

UF =

�
�bR2�W bR

�
\ CRQT;SP ,

whereW bR is an open subset of PQT containing F
� bR� , andW bR = PQT for all

but �nitely many bR . By Lemma 91 , we can choose R0 2 �PQT n PT;C�\W bR0
. Now de�ne a modi�cation eF of F by

eF � bR� =
8><>: F

� bR� bR 6= bR0
R0 bR = bR0 .

Note that eF 2
�
CRQT n CRT;C

�
\
�
�bR2�W bR

�
and by our construction, eF

satis�es SP as well and hence belongs to
�
CRQT;SP n CRT;C

�
\ UF .

7 Large Society and Dictatorial Coalitions

We give yet another natural generalization of Arrow�s dictators:

De�nition 93 Given F 2 CR and V 2 VF , if V is minimal with respect to
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set inclusion modulo N , V is said to be a dictatorial coalition.

Proposition 94 (Uniqueness of a Dictatorial Coalition) Suppose jAj �

3 and F 2 CRQT . Then a dictatorial coalition is unique modulo N .

Proof. Suppose there are two dictatorial coalitions V1; V2 2 VF . Since VF

is a �lter under the present assumptions, we obtain V1 \ V2 2 VF . Now

since V1 \ V2 � Vi , we deduce by minimality that V1 = V2 modulo N , i.e.,

V14 V2 2 N , where 4 denotes symmetric di¤erence.

De�nition 95 Suppose V; V 0 2 T . If V 0 � V implies either V 0 2 N or

V n V 0 2 N , then V is said to be an atom.

Proposition 96 (Atomicity of a Dictatorial Coalition) Suppose jAj �

3 and F 2 CRQT;SP . Then a dictatorial coalition is an atom.

Proof. Suppose a dictatorial coalition V is not an atom. Then there exists

V 0 � V; V 0 2 T such that V 0 =2 N and V nV 0 =2 N . If V 0 2 VF , it contradicts

the minimality of V . On the other hand if V 0 =2 VF , we obtain by Corollary

51 that V n V 0 2 VF , which again contradicts the minimality of V .

Proposition 97 Suppose jAj � 3 and F 2 CRQT . Then if V 2 VF is an

atom, it is dictatorial.

Proof. By way of contradiction, assume that V 2 VF is not dictatorial.

Then there must be a V 0 2 VF such that V c \ V 0 2 N and V n V \ V 0 =2 N .
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Since V is assumed to be an atom, we obtain V \ V 0 2 N , which leads to a

contradiction in light of Proposition 21.

The following theorem is yet another version of Arrow�s impossibility

theorem.

Theorem 98 Suppose jAj � 3 and and F 2 CRQT;SP . Let (T; T ;N ) be a

�nite disjoint union of atoms. Then there exists a unique dictatorial coalition

V 2 T .

Proof. By assumption we can write T = T1[T2[ � � �[TN , where T1; T2 � � �

are mutually disjoint atoms. Then by Corollary 51 either T1 or T c1 is deci-

sive. If T1 is decisive our assertion holds by Proposition 97. Now suppose

T c1 is decisive. Repeating the preceding argument we eventually capture a

dictatorial Ti . The uniqueness follows from Proposition 94.

Remark 99 Note that when T = f1; 2; � � �Ng with T = 2T and N = f?g

, the statement of the above theorem means precisely the same thing as that

of Arrow�s impossibility theorem since dictatorial coalitions in this case are

singletons.

Consider (T; T ;N ) where T = f1; 2; 3; � � � g , T = 2T , and N = f?g

. Note that (T; T ;N ) is a disjoint union of atoms, i.e., singletons. We

demonstrate in this case that a collective choice rule F 2 CRQT;SP may

or may not admit a dictator, where jAj � 3 . Denote the initial segment

f1; 2; 3; � � �ng by In . Given F , there are two possibilities:
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Case 100 In 2 VF for some n .

Case 101 In =2 VF for any n .

If Case 1 holds, In contains a dictator and hence F admits a dictator. On

the other hand, if Case 2 holds and if there is a dictator n0 2 f1; 2; 3; � � � g ,

which is necessarily unique in virtue of Proposition 94 , we reach a contra-

diction that is

n0 2
1\
n=1

Icn

= ? .

Therefore, F does not admit a dictator. For example, let V be the ultra�lter

on T consisting of all sets with �nite complement in T = f1; 2; 3; � � � g and

let F = �0 (V) . Since VF= V falls into Case 2, F admits no dictators.

We de�ne large society to be one in which all members are negligible.

Hence large society is the opposite extreme of �nite society considered by

Arrow.

De�nition 102 Large society is an atomless triple (T; T ;N ) .

In view of Proposition 96, there cannot be any dictatorial coalition in

large society. We formally state this fact in the following proposition:

Proposition 103 Suppose jAj � 3 and F 2 CRQT;SP . In large society

(T; T ;N ) , there cannot exist a dictatorial coalition.
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Remark 104 When large society (T; T ;N ) arises from an atomless measure

space, where T is a � -algebra and N the collection of null sets with respect

to some measure � on T , Kirman and Sondermann (1972, p.271) showed

that there exists an arbitrary small decisive coalition. To be precise, they

showed that for any � > 0 , there exists a decisive coalition V 2 T such that

� (V ) < � .
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