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1 Introduction

This paper develops a model of dynamic informed trading from a canonical framework in the market
microstructure literature and characterizes an equilibrium. In asymmetric information models of finan-
cial markets, trading behavior imperfectly reveals the private information held by traders. Informed
traders who trade dynamically thus have an incentive not only to trade less aggressively but also to
manipulate the market by trading in the wrong direction, undertaking short-term losses to confuse the
market and then recouping the losses in the future. Dynamic trading and price manipulation by an
informed trader have been a challenging issue in the literature of market microstructure.

There are two standard reference frameworks in the literature. The first is called the “continuous
auction framework” first developed by Kyle (1985). The second is the “sequential trade framework”
proposed by Glosten and Milgrom (1985). A large amount of research has been done involving the
application of these two frameworks. Both frameworks are sufficiently simple and well behaved that
they easily lend themselves to analysis of policy issues and empirical testing (see Madhavan (2000) and
Biais et al. (2005) for extensive surveys of the literature).

One of the simplifying assumptions in Glosten and Milgrom (1985) is that traders can trade only
once. In the original Glosten-Milgrom model manipulation does not occur because there is no chance
to re-trade and as a result traders maximize their one-period payoff. In the Kyle model the informed
trader’s strategy is monotonic in the sense that she buys the asset when it is undervalued given her
information and vice versa; dynamic price manipulation is ruled out by assumption.

This paper follows the strand of the sequential trade framework developed by Glosten and Mil-
grom. This paper considers markets where a risky asset is traded for finitely many periods between
competitive market makers, two types of strategic informed traders and liquidity traders. In the begin-
ning of the game, nature chooses the liquidation value of a risky asset to be high or low and tells the
informed trader who trades dynamically. In each period there is a random determination of whether
the informed trader or a liquidity trader trades. The market maker posts bid and ask prices for the next
period, after which the trader buys or sells one unit. The termination value is revealed at the end of the
game and the payoff for the informed trader is the sum of the termination value times net-holding of the
asset and revenue from buying and selling the asset. Within the model described above we consider an
equilibrium such that (a) the informed trader’s strategy is optimal beginning at any history; (b) market
makers make zero profit in each period under their common Bayesian belief conditional on the history
and chosen trade; (c) liquidity traders trade for their exogenous liquidity needs.

There exist a large number of papers that theoretically and empirically examine price manipulation
in different settings. For example, Jordan and Jordan (1996) examine Solomon Brothers’ market corner
of a Treasury note auction in May 1991. Felixson and Pelli (1999) examine closing price manipulation
in the Finnish stock market. Mahoney (1999) examines stock price manipulation leading up to the
Securities Exchange Act of 1934. Vitale (2000) examines manipulation in the foreign exchange market.
Merrick et al. (2005) examine a case of manipulation involving a delivery squeeze on a bond futures
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contract traded in London. A recent paper by Aggarwal and Wu (2006) suggests that stock market
manipulation may have important impacts on market efficiency. According to the empirical findings in
Aggarwal and Wu (2006), while manipulative activities seem to have declined on the main exchanges,
it is still a serious issue in both developed and emerging financial markets, especially in the over-the-
counter markets.

The theoretical literature starts with manipulation by uninformed traders. Allen and Gale (1992)
provide a model of strategic trading in which some equilibria involve manipulation. Furthermore, Allen
and Gorton (1992) consider a model of pure trade-based uninformed manipulation in which an asym-
metry in buys and sells by liquidity traders creates the possibility of manipulation. The first paper to
consider manipulation by an informed trader within the discrete-time Glosten-Milgrom framework is
Chakraborty and Yilmaz (2004). They show that when the market faces uncertainty about the existence
of informed traders and there are a large number of trading periods long-lived informed traders will
manipulate in every equilibrium. On the other hand, Back and Baruch (2004) study the equivalence
of the Glosten-Milgrom model and the Kyle model in a continuous-time setting, and show that the
equilibrium in the Glosten-Milgrom model is approximately the same as that in the Kyle model when
the trade size is small and uninformed trades arrive frequently. They conclude that the continuous-time
Kyle model is more tractable than the Glosten-Milgrom model, although most markets are organized
as in the sequential trade models. More recently there has been an interest in the informed trader’s
dynamic strategy. Among others, Brunnermeier and Pedersen (2005) consider dynamic strategic be-
havior of large traders and show that “overshooting” occurs in equilibrium. Back and Baruch (2007)
analyze different market systems by allowing the informed traders to trade continuously within the
Glosten-Milgrom framework.

Despite the importance of dynamic trading strategies by informed traders in the literature, charac-
teristics of price dynamics and information transmission have not yet been adequately studied because
there is no closed-form solution for equilibrium in the dynamic Glosten-Milgrom framework and it is
not yet known if equilibrium is unique either in the Kyle model (see Boulatov et al. (2005) for a further
development) or the dynamic Glosten-Milgrom model in which strategic informed traders can trade
repeatedly. In this paper we present a model of dynamic informed trading and show that there exists a
unique equilibrium when the value functions of the informed traders are monotonic and strictly convex
in terms of the market maker’s prior belief. In addition, we characterize the equilibrium bid and ask
prices and specify the necessary condition for manipulation to occur in equilibrium. Finally, we present
a computational method to solve for the equilibrium and comparative statics from the simulations.

The paper uses the Markov property of equilibrium to prove the uniqueness of equilibrium assum-
ing that the next-period value function is strictly convex and monotone in terms of market makers’
prior belief. In each period time and the market maker’s prior belief are the state variables. We truncate
T -period serial problem into the problem of two-period decision making. Consider the last period.
In order for manipulation to arise in equilibrium, there must be at least one more period to re-trade.
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Therefore in the last period manipulation would not arise in equilibrium. So we know what is the rela-
tionship between the informed trader’s payoff and the market maker’s belief due to Bayes’ rule. Given
this relationship, the informed trader chooses the probability of each trade, buy or sell, in the second
last period. Then we will obtain the relationship between the second last period payoff, which is the
sum of second last and last period payoffs, and the market maker’s prior belief in the second last period.
This is repeated recursively to the first period. Since there is no closed-form solution to the informed
trader’s optimization problem, we are unable to obtain the closed-form value functions. However, we
will show that if the value functions satisfy: strict concavity and monotonicity, then there is a unique
solution to the informed trader’s optimization problem. In other words, trade today will affect the prior
belief tomorrow and we will prove the uniqueness of equilibrium by using backward induction.

It is worth mentioning that in Back and Baruch (2004) the equilibrium strategy of the informed
trader is not accurately simulated. This is because their model is a continuous-time stationary case and
their program tries to find the value functions as a fixed point. To do this they use an extrapolation
method which requires calculating the slopes of the value functions. In the region of beliefs at which
manipulation arises the slopes of the value functions are very small. In fact, Back and Baruch (2004)
wrote that even though all the equilibrium conditions hold with a high order of accuracy, it appears
from their plots that the strategies are not estimated very accurately when manipulation arises and this
is probably an inevitable result of their estimation method, because the derivative of the value function
is small where manipulation arises (see Back and Baruch (2004) p.464, last paragraph).

This difficulty prevents accurate analysis of the informed trader’s manipulative strategy even if
the value functions are known exactly. The method developed in this paper takes advantage of the
deterministic construction of our model and allows us to accurately analyze the informed trader’s ma-
nipulative strategy. Instead of using the extrapolation method we find bid and ask prices to make the
informed trader indifferent between the two orders: buy and sell. In this way we can solve for the
equilibrium directly. This method is one of the significant contributions that we make to the literature.

The paper is organized as follows. The second section presents the model. The third section
proves the uniqueness of equilibrium under specific assumptions for the value functions of the informed
traders. The fourth section characterizes an equilibrium and provides a numerical simulation of the
model. The fifth section concludes.

2 The model

Trade occurs for finitely many periods, denoted by t = 1, 2, ⋅ ⋅ ⋅ , T . Each interval of time accommo-
dates one trade. There is a risky asset and a numeraire in terms of which the asset price is quoted. The
terminal value of the risky asset, denoted by ṽ, is a random variable which can take the value 0 or 1.
The risk-free interest rate is assumed to be zero.

There are three classes of risk-neutral market participants: competitive market makers, an informed
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trader and a liquidity trader. Trade arises from both the informed trader, who knows the terminal value
of the asset, and uninformed traders. The type of the trader arriving in period t is determined by a
random variable �̃t, which takes values from the set {i, l}. The letters i and l respectively denote the
informed type and the liquidity type. The random variables {�̃t : t = 1, ...T} satisfy Pr(�̃t = i) = �.

There are two kinds of orders available to traders: sell or buy. Let A = {S,B} where S denotes a
sell order and B denotes a buy order. Let ℎt denote the order that the market maker receives in period
t, i.e. ℎt is the realized order in period t. If the trader’s type in period t is l, then the demand in that
period is determined by the random variable Q̃t which takes values from A. The random variables
{Q̃t : t = 1, ..., T} are i.i.d. and satisfy Pr(Q̃t = B) =  > 0. For any given period t, the random
variables �̃t, Q̃t, ṽ are mutually independent and �̃t, Q̃t are i.i.d. across the periods 1, ..., T .

The private information of the informed trader is determined by a random variable �̃ ∈ Θ =

{H,L}. When � = L, the informed knows that the value of the asset is 0. We call this type of trader
“low-type” and denote him by L. When � = H , the informed trader knows that the value of the asset
is 1. We call this type of trader “high-type” and denote him by H . Only one type of trader is actually
chosen by nature to trade for any given play of the game.

Knowledge of the game structure and of the parameters of the joint distribution of the state variables
is common to all market participants. In each period market makers post bid and ask prices equal to
the expected value of the asset conditional on the observed history of trades. The trader trades at those
prices. Trading happens for finitely many periods after which all private information is revealed. The
timing structure of the trading game is as follows:

1. In period 0 nature chooses the realization of the risky asset payoff. The informed trader observes
�.

2. In successive periods, indexed by t = 1, ..., T , having observed the realized trades in periods
1, ..., t− 1, the competitive market maker posts bid and ask prices. Nature chooses an informed
trader of type � with probability � and a liquidity trader with probability 1−�. The trader learns
market makers’ price quotes.

3. If the trader is informed he takes the profit-maximizing quote. If the trader is a liquidity trader
he trades according to his liquidity needs.

4. In the end of period T , payoffs realized.

Next we describe the details with regard to market makers’ pricing strategy and the informed
trader’s trading strategy. When the trader chooses his order and the market maker posts the bid and
ask prices in period t, each knows the entire trading history until and including period t− 1. A period
t history ℎt := (ℎ1, ⋅ ⋅ ⋅ , ℎt) is a sequence of realized orders for periods until and including t. Let
ℋt := A× ⋅ ⋅ ⋅ ×A︸ ︷︷ ︸

t times

. We assume that: ℎ0 = ∅.
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In the model first we consider a Markov “subgame-perfect” equilibrium and then we will show that
there is not other equilibrium which does not have the Markov property. In other words we focus on
the equilibrium in which market makers’ prior belief is the state variable in each period t. In this kind
of equilibrium, we can present the next-period value of the game as a function of the prior belief in
the next-period. Given that the informed trader’s optimal strategy maximizes the current-value with
respect to the zero-profit prices that market makers quote. In the current period t, there are three
possible events; the informed trader is chosen to trade, a liquidity trader is chosen to trade and buy, and
a liquidity trader is chosen to trade and sell.

For each type of informed trader a trading strategy specifies a probability distribution over trades
in period t with respect to the bid and ask prices pt = (�t, �t) posted in period t. The high-type
informed trader buys the security with probability �tH and sells with probability 1 − �tH , and the low-
type buys and sells with probabilities �tL and 1 − �tL respectively. Since there are only trades, buy or
sell, available to traders, choosing a probability of buy automatically determines a probability of sell.
We call �t = (�tH , �

t
L) a t-period strategy profile.

To determine bid and ask prices to be posted in period t the market maker updates his prior con-
ditional on the arrival of an order of the relevant type. Suppose that the market makers’ prior belief at
period t is given by b ∈ (0, 1). This belief, b, is resulted from some history ℎt−1. Since we focus on
the equilibrium with Markov property, we will not explicitly state ℎt. The market maker’s prior belief
after history ℎt on the event: �̃ = H , which we denote by �(ℎt), is updated through Bayes’ rule and
thus formalized as:

�(ℎt−1, B) ≡ Pr(�̃ = H∣ℎt−1, B) (1)

=
b×

[
��tH + (1− �) Pr(Q̃t = B)

]
� [b× �tH + (1− b)× �tL] + (1− �) Pr(Q̃t = B)

,

and

�(ℎt−1, S) ≡
b×

[
� (1− �tH) + (1− �) Pr(Q̃t = S)

]
� [b× (1− �tH) + (1− b)× (1− �tL)] + (1− �) Pr(Q̃t = S)

. (2)

We assume that: �(ℎ0) = �0 = Pr(�̃ = H) for some �0 ∈ (0, 1). The market makers post bid and
ask prices according to the zero-profit condition. Since the value of the asset is either 0 or 1, ask price
in period t is equal to �(ℎt−1, B) and bid price in period t is equal to �(ℎt−1, S).

Now, we will define the informed trader’s optimal strategy recursively in the sense that given the
continuation value of the game in the next-period the informed trader’s optimal strategy maximizes the
current value of the game and this is true in all the periods. Suppose that the next-period t + 1 value
functions V t+1

L and V t+1
H are given as a function of the market makers’ prior belief �(ℎt). Remember

that as stated before we focus on an equilibrium with the Markov property in the sense that the market
makers’ prior belief b = �(ℎt−1) is the state variable at period t. Thus time and the market makers’
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prior belief are the only state variables. Therefore the period-t value of the game for each type is
expressed as: for b = �(ℎt−1), and in response to prices pt = (�t, �t)

V t
H(b) = max

�H∈[0,1]

(
��H(1− �t + V t+1

H (�t)) (3)

+�(1− �H)(�t − 1 + V t+1
H (�t)) + (1− �)×

[
V t+1

H (�t) + (1− )V t+1
H (�t)

])
,

and

V t
L(b) = max

�L∈[0,1]

(
��L(−�t + V t+1

L (�t)) + �(1− �L)(�t + V t+1
L (�t))

)
+(1− �)×

(
V t+1

L (�t) + (1− )V t+1
L (�t)

))
. (4)

Notice that after buy or sell order at period t, the market makers’ posterior belief becomes �t or �t
and thus the next-period value of the game for each type becomes a function of those variables.

Definition 1. The high-type informed trader’s strategy {�t∗H : t = 1, ⋅ ⋅ ⋅ , T} is optimal in response to
prices {pt : t = 1, ⋅ ⋅ ⋅ , T} if it prescribes a probability {�t∗H : t = 1, ⋅ ⋅ ⋅ , T} such that for every t, �t∗H
solves (3) in response to pt. The low-type informed trader’s strategy {�t∗L : t = 1, ⋅ ⋅ ⋅ , T} is optimal
in response to prices {pt : t = 1, ⋅ ⋅ ⋅ , T} if it prescribes a probability {�t∗L : t = 1, ⋅ ⋅ ⋅ , T} such that
for every t, �t∗L solves (4) in response to pt.

Next we define an equilibrium for our economy:

Definition 2. An equilibrium consists of a pair of bid and ask prices {p∗t = (�∗t , �
∗
t )}t∈{1,⋅⋅⋅ ,T}, and an

informed trader’s strategies {�t∗}t=1,⋅⋅⋅ ,T such that for all t ∈ {1, ⋅ ⋅ ⋅ , T} and for every b = �(ℎt−1)

with ℎt−1 ∈ ℋt−1,

(P1) the pair of bid and ask prices p∗t satisfies the zero-profit condition with respect to the market
maker’s posterior belief;

(P2) the informed trader’s strategy profile {�t∗}t=1,⋅⋅⋅ ,T is optimal given the pair of bid and ask prices
p∗t ;

(B) the pair of bid and ask prices p∗t = (�∗t , �
∗
t ) satisfies Bayes’ rule.

Now, we define a manipulative strategy. We say that a strategy is manipulative if it involves the
informed trader undertaking a trade in any period that yields a strictly negative short-term profit. If this
occurs in equilibrium it means that manipulation enables the informed trader to recoup the short-term
losses.

Definition 3. In response to a pair of bid and ask prices pt for some t ∈ {1, ⋅ ⋅ ⋅ , T}, a strategy profile
{�}t=1,⋅⋅⋅ ,T is called manipulative for the high type in period t if �tH < 1; or for the low type if �tL > 0.
Moreover we say that {�}t=1,⋅⋅⋅ ,T is manipulative for both types in period t if both conditions hold; or
for only one type if only one of the two conditions holds.
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This is the same definition used by Chakraborty and Yilmaz (2004). Back and Baruch (2004)
used the term “bluffing” instead. We call the situation where the informed trader chooses a totally
mixed strategy “price manipulation.” It’s worth mentioning that in Huberman and Stanzl (2004) a price
manipulation is defined as a round-trip trade. In this paper price manipulation occurs as a round-trip
trade in equilibrium but not by definition. This is because if the informed trader trades against his short
term profit incentive he incurs a loss which must be recouped, consequently price manipulation takes
the form of a round-trip trade in equilibrium.

3 Preliminary Results

In this section we will prove the uniqueness of equilibrium if the next-period value function is strictly
monotonic and convex in market makers’ prior belief b. Take an arbitrary time period t. Since our plan
is to use the Markov property of equilibrium, we will focus on the time period t given the property of
the next-period value function in terms of market makers’ prior in the next-period t + 1. So in this
section for the simplicity of notation we will eliminate t or t+ 1 from superscript or subscript in each
variable unless specified. Fix a history ℎt arbitrarily and let b = �(ℎt) ∈ (0, 1) be market makers’ prior
belief after history ℎt. Let WH = V t

H and WL = V t
L represent the current value of the game for both

traders. Let VH = V t+1
H and VL = V t+1

L represent the continuation value of the remainder of the game
for both traders. In other words, WH and WL are the value functions in the current period and VH and
VL are the value functions in the next period. Suppose that the next-period value function VH , and VL
satisfy the following two conditions:

(M) VH is strictly decreasing in [0, 1] and VL is strictly increasing in [0, 1];

(C) VH and VL are strictly convex in [0, 1].

Theorem 1. The equilibrium exists if conditions (M), and (C) hold.

Proof: For arbitrary belief b, define the best-response correspondence BRb = (BRbM , BR
b
H , BR

b
L) as

follows:

BRbM (�L, �H) = p = {(�, �) : (�, �) satisfies Bayes′ rule (1 & (2)};

BRbH(p) = {�H : �H solves (3)};

BRbL(p) = {�L : �L solves (4)}.

Then, the equilibrium (p∗, �∗H , �
∗
L) is defined as a fixed-point of BRb. When t = T , we must

have: �TH = 1 and �TL = 0. Then fix t ∈ {1, ⋅ ⋅ ⋅ , T − 1} arbitrarily. Notice that [0, 1] is a non-empty
compact convex set. To apply Kakutani’s fixed point theorem, we have to prove that BRb is upper
semi-continuous, convex and non-empty mapping.
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Non-Emptiness: Fix p arbitrarily and then VH(b) becomes a continuous function of �H . For all t <∞,
V t+1
H is well-defined and �H is defined in a compact set [0, 1]. Therefore there is �H which solves (3).

Thus BRbH(p) is non-empty. Similarly we can say that BRbL(p) is non-empty. Fix � arbitrarily and
then BRbM is non-empty and thus BRb is non-empty. □
Upper Semi-continuity: It is clear that BRbM is continuous in �. It remains to show that BRbH and
BRbL are upper semi-continuous. On the contrary, suppose that BRbH is not upper semi-continuous.
Then there are two sequences {pk}k converging to p and {�kH}k converging to �H such that for every
k �kH ∈ BRbH(pk) but �H ∕∈ BRbH(p). Then there must be a different �̂H ∈ BRbH(p) such that: for
some � > 0,

�(�̂H(1− �+ VH(�)) + (1− �̂H)(� − 1 + VH(�))) + (1− �)× [VH(�) + (1− )VH(�)]

> �(�H(1− �+ VH(�)) + (1− �H)(� − 1 + VH(�))) + (1− �)× [VH(�) + (1− )VH(�)] + 5�.

Since VH is continuous and pk → p and �kH → �H , for each k there exists a collection of strictly
positive numbers (�k1, ⋅ ⋅ ⋅ , �k4) such that: for all k′ ≥ k,

∣�− �k′ ∣ < �k1; ∣� − �k′ ∣ < �k2; ∣VH(�)− VH(�k
′
)∣ < �k3; ∣VH(�)− VH(�k

′
)∣ < �k4. (5)

Take k1 sufficiently large so that we have: � > max(�k11 , ⋅ ⋅ ⋅ , �
k1
4 ). Notice that: for all k ≥ k1,

�(�̂H(1− �+ VH(�)) + (1− �̂H)(� − 1 + VH(�))) + (1− �)× [VH(�) + (1− )VH(�)]

−�(�̂H(1− �k + VH(�k)) + (1− �̂H)(�k − 1 + VH(�k)))− (1− �)×
[
VH(�k) + (1− )VH(�k)

]
< �(�̂H(�k11 + �k13 ) + (1− �̂H)(�k12 + �k14 )) + (1− �)× (�k13 + (1− )�k14 )

< 2��+ (1− �)� < 2�. (6)

Therefore, for all k ≥ k1, we obtain:

�(�̂H(1− �k + VH(�k)) + (1− �̂H)(�k − 1 + VH(�k))) + (1− �)×
[
VH(�k) + (1− )VH(�k)

]
> �(�H(1− �+ VH(�)) + (1− �H)(� − 1 + VH(�))) + (1− �)× [VH(�) + (1− )VH(�)] + 3�

> �(�H(1− �k + VH(�k)) + (1− �H)(�k − 1 + VH(�k))) + (1− �)×
[
VH(�k) + (1− )VH(�k)

]
+ �.

Then take k2 sufficiently large so that we have:

� >
[
�(2− �k2 + VH(�k2)− �k2 − VH(�k2))(�k2HB − �H)

]
, (7)

and then we have: for all k ≥ k2,

�(�̂H(1− �k + VH(�k)) + (1− �̂H)(�k − 1 + VH(�k))) + (1− �)×
[
VH(�k) + (1− )VH(�k)

]
�(�H(1− �k + VH(�k)) + (1− �H)(�k − 1 + VH(�k))) + (1− �)×

[
VH(�k) + (1− )VH(�k)

]
+ �

> �(�kH(1− �k + VH(�k)) + (1− �H)k(�k − 1 + VH(�k))) + (1− �)×
[
VH(�k) + (1− )VH(�k)

]
.
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This contradicts with our assumption: �kH ∈ BRbH(pk) for all k. We can prove the desired result
for BRbL in a similar fashion. Finally we conclude that BRb is upper semi-continuous. □
Convexity: Given �,BRbM (�L, �H) consists of a unique point pwhich satisfies Bayes’ rule. Therefore
BRbM is convex. Now suppose that: �H , �̂H ∈ BRbH(p). Then for any r ∈ (0, 1) we have r�H + (1−
r)�̂H ∈ BRbH(p). This implies that:

�(�̂H(1− �+ VH(�)) + (1− �̂H)(� − 1 + VH(�))) + (1− �)× [VH(�) + (1− )VH(�)]

= �(�H(1− �+ VH(�)) + (1− �H)(� − 1 + VH(�))) + (1− �)× [VH(�) + (1− )VH(�)] .

Then we obtain:

(�̂H − �H)(1− �+ VH(�)) + ((1− �̂H)− (1− �H))(� − 1 + VH(�)) = 0.

This implies that: �̂H = �H or 1 − � + VH(�) = � − 1 + VH(�) because (1 − �̂H) = 1 − �̂H
and (1 − �H) = 1 − �H . If �̂H = �H , then r�H + (1 − r)�̂H ∈ BRbH(p) for any r because
r�H + (1− r)�̂H = �H ∈ BRbH(p) by our assumption. If 1−�+ VH(�) = � − 1 + VH(�), then for
any r ∈ (0, 1) and �̄H = r�H + (1− r)�̂H we have:

�̄H(1− �+ VH(�)) + (1− �̄H)(� − 1 + VH(�)) = �H(1− �+ VH(�)) + (1− �H)(� − 1 + VH(�)).

Then we conclude that: �̄H ∈ BRbH(p). We can prove the desired result for BRbL(p) in a similar
fashion. Finally we conclude that BRb is convex. □

Finally, by Kakutani’s fixed point theorem, we conclude that: the equilibrium exists in period
t. Since in period t = T the equilibrium exists and V T

L and V T
H are both well-defined, by using

mathematical induction we conclude that the equilibrium exists in all periods.
After Theorem 1 the equilibrium correspondence and the graph in each period t are well-defined

and given by:

ℰ(b) = {� : � is an equilibrium strategy profile for belief b};

G(b) = {(b, �) : � ∈ ℰ(b)}.

Proposition 1. The equilibrium correspondence ℰ is upper semi-continuous and the graph G is closed
on [0, 1].

Proof of Proposition 1: Now on the contrary, suppose that ℰ is not upper semi-continuous. Then there
is a sequence {bk} which converges to b and �k which converges to � with �k ∈ ℰ(bk) for every k but
� /∈ ℰ(b). We respectively denote the sequences of prices which satisfy Bayes’ rule with �k and bk by
pk and � and b by p. Then there must be �̂ with �̂ ∈ ℰ(b) and there exists � > 0 such that:

�(�̂H(1− �+ VH(�)) + (1− �̂H)(� − 1 + VH(�))) + (1− �)× [VH(�) + (1− )VH(�)]

> �(�H(1− �+ VH(�)) + (1− �H)(� − 1 + VH(�))) + (1− �)× [VH(�) + (1− )VH(�)] + 5�.
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Since p is continuous in � and b, we must have: pk → p. Take k1 sufficiently large so that we have:
� > max(�k11 , ⋅ ⋅ ⋅ , �

k1
4 ) (�k11 , to �k41 are defined in (5)). Then by continuity of the value function (which

condition (C) implies) and prices, a similar argument with (6) gives us:

�(�̂H(1− �k + VH(�k)) + (1− �̂H)(�k − 1 + VH(�k))) + (1− �)×
[
VH(�k) + (1− )VH(�k)

]
> �(�H(1− �+ VH(�)) + (1− �H)(� − 1 + VH(�))) + (1− �)× [VH(�) + (1− )VH(�)] + 3�

> �(�H(1− �k + VH(�k)) + (1− �H)(�k − 1 + VH(�k))) + (1− �)×
[
VH(�k) + (1− )VH(�k)

]
+ �.

Since �k → �, we can take k2 which satisfies (7). Then for all k ≥ k2, we obtain:

�(�̂H(1− �k + VH(�k)) + (1− �̂H)(�k − 1 + VH(�k))) + (1− �)×
[
VH(�k) + (1− )VH(�k)

]
�(�H(1− �k + VH(�k)) + (1− �H)(�k − 1 + VH(�k))) + (1− �)×

[
VH(�k) + (1− )VH(�k)

]
+ �

> �(�kH(1− �k + VH(�k)) + (1− �H)k(�k − 1 + VH(�k))) + (1− �)×
[
VH(�k) + (1− )VH(�k)

]
.

This contradicts with the assumption that �k ∈ ℰ(bk) for all k. The closedness of the graph G
follows.

To simplify our proof we will make use of the symmetric setting of the model. Let: b̃ = 1− b and
̃ = 1− . Consider the same situation with our original economy except that now liquidity buys with
probability ̃ and market maker’s belief is set as b̃. We call this economy “mirror economy.” In what
follows, ˜ stands for variables associated with the mirror economy.

Proposition 2. Suppose that conditions (C) and (M) hold. Fix time t and prior b = �(ℎt−1).
1. Let � ∈ ℰ(b) and �̃L = 1− �H , �̃H = 1− �L. Then we have: �̃ ∈ ℰ̃(b̃).
2. Let (�, �) denote the equilibrium prices associated with � in the original economy and (�̃, �̃) be the
equilibrium prices associated with �̃ in the mirror economy. Then, we have: � = 1− �̃, � = 1− �̃.
3. For every t, we have: V t

L(b) = Ṽ t
H(b̃) and V t

H(b) = Ṽ t
L(b̃).

Proof:
By definition the period-t value of the game for each type in the mirror economy is expressed as: for
b̃ = 1− b = 1− �(ℎt−1), and in response to prices p̃ = (�̃, �̃)

Ṽ t
H(b̃) = max

�̃H∈[0,1]

(
��̃H(1− �̃+ Ṽ t+1

H (�̃)) (8)

+�(1− �̃H)(�̃ − 1 + Ṽ t+1
H (�̃)) + (1− �)×

[
̃Ṽ t+1

H (�̃) + (1− ̃)Ṽ t+1
H (�̃)

])
,

and

Ṽ t
L(b̃) = max

�̃L∈[0,1]

(
��̃L(−�̃+ V t+1

L (�̃)) + �(1− �̃L)(�̃ + V t+1
L (�̃))

)
(9)

+(1− �)×
(
̃Ṽ t+1

L (�̃) + (1− ̃)V t+1
L (�̃)

))
.
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Also Bayes’ rule dictates:

�̃ =
��̃H + (1− �)̃

(1− �)̃ + ��̃L(1− b̃) + ��̃H b̃
⋅ b̃; (10)

and
�̃ =

�(1− �̃H) + (1− �)(1− ̃)

(1− �)(1− ̃) + �(1− �̃L) ⋅ (1− b̃) + �(1− �̃H) ⋅ b̃
⋅ b̃. (11)

Having the description of the equilibrium in the mirror economy, now we consider the relationship
of the two equilibria in the original economy and mirror economy recursively. When t = T , we have:
�̃L = (1 − �H) = 1 and 1 − �̃H = �L = 0 because they do not manipulate in the last period, and so
1. is proved. Then by Bayes’ rule, (10) and (11), we have: � = 1 − �̃, � = 1 − �̃, which proves 2.,
and also since there is no more chance to trade, the equalities of those prices and the comparison of (3)
and (9) or (4) and (8) give us: V T

L (b) = Ṽ T
H (b̃) and V T

H (b) = Ṽ T
L (b̃). This gives us 3. and completes

the proof for this case. □
When t ∕= T , suppose that � ∈ ℰ(b) and (�, �) is the equilibrium prices associated with � in the

original economy. Moreover suppose that the next-period value functions satisfy the property that 3.
describes. Let: �̃LB = (1− �H), �̃HS = �L. Then we have 2. because:

� = 1− �̃ and � = 1− �̃. (12)

By substituting 2. into (9) and Ṽ t+1
L , applying 3. to Ṽ t+1

L , we obtain:

(9) = max
�H∈Δ(A)

(
��H(1− �t + V t+1

H (�t)) (13)

+�(1− �H)(�t − 1 + V t+1
H (�t)) + (1− �)×

[
V t+1

H (�t) + (1− )V t+1
H (�t)

])
= V t

H(b),

and similarly by substituting 2. into (8) and Ṽ t+1
H , applying 3. to Ṽ t+1

H , we obtain:

(8) = max
�L∈Δ(A)

(
��L(−�t + V t+1

L (�t)) + �(1− �L)(�t + V t+1
L (�t))

)
(14)

+(1− �)×
(
V t+1

L (�t) + (1− )V t+1
L (�t)

))
= V t

L(b).

This shows that the current-period value functions also satisfy 3. and it remains to show that 1. is
satisfies. If �̃ ∕∈ ℰ̃(b̃), then there must be a different strategy profile � ∈ ℰ̃(b̃), which indicates that
there is a different strategy profile � ∈ ℰ(b). This is a contradiction to our assumption. □

Since the results hold for the last period T , by mathematical induction we conclude that the results
hold for all the periods.

To show that an equilibrium exists uniquely we first show that under these conditions the bid-ask
spread is always strictly positive. In this sense, there is no pure arbitrage opportunity for the informed
traders. In what follows the proofs are kept in the Appendix unless otherwise specified.
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Lemma 1. Let: � ∈ ℰ(b) and p = (�, �) be an equilibrium price associated with � and b. The
followings hold:

1. � > b > �;

2. �H > �L.

Proof of Lemma 1 - 1: On the contrary suppose that for some b, � ≤ �. Notice that for b ∈ (0, 1) �

or � cannot be either 0 nor 1 by Bayes’ rule. Then, by (M) we have:

1− �+ VH(�) > � − 1 + VH(�); (15)

−�+ VL(�) < � + VL(�). (16)

Then, it must be the case that in equilibrium �H = 1 and �L = 0. Then, by Bayes’ rule, we must
have: � > b > �, which contradicts with our assumption. □
Proof of Lemma 1 - 2: The result follows from 1 and Bayes’ rule. □

In equilibrium the high-type trader will not sell with probability one and the low-type trader will
not buy with probability one. This means that an informed trader either trades on his information
or assigns a positive probability to both buy and sell orders. In the latter case the informed trader is
indifferent between buy and sell orders. This motivates the following lemma.

Lemma 2. Let: � ∈ ℰ(b) and p = (�, �) be an equilibrium price associated with � and b. Then, the
following holds:

WH(b, �) = � (1− �+ VH(�)) + (1− �) (VH(�) + (1− )VH(�)) , (17)

and
WL(b, �) = � (� + VL(�)) + (1− �) (VL(�) + (1− )VL(�)) . (18)

Proof of Lemma 2: Omitted.

Next, we consider the slopes of the value functions. By condition (C) we know that V ′H or V ′L exists
except at most in a countable set. By Lemma 1 bid-ask spread �−� is strictly positive. If the low-type
manipulates we have:

dL ≡
VL(�)− VL(�)

�− �
=
�+ �

�− �
= 1 +

2�

�− �
> 1. (19)

Similarly if the high-type manipulates we have:

dH ≡
VH(�)− VH(�)

�− �
=
�+ � − 2

�− �
= −1− 2− 2�

�− �
< −1. (20)

This means that if the low-type manipulates, then the average slope between the ask and bid price in
the value function is greater than 1. A similar argument also holds for the high-type. Thus we conclude
the following.
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Lemma 3. Let: � ∈ ℰ(b) and p = (�, �) be an equilibrium price associated with � and b.

L. If the low-type takes a manipulative strategy at b, then

D+VL(�) ≡ lim
ℎ→0+

VL(�+ ℎ)− VL(�)

ℎ
≥ D−VL(�) ≡ lim

ℎ→0+

VL(�)− VL(�− ℎ)

ℎ
> 1.

H. If the high-type takes a manipulative strategy at b, then

D−VH(�) ≡ lim
ℎ→0+

VH(�)− VH(� − ℎ)

ℎ
≤ D+VH(�) ≡ lim

ℎ→0+

VH(� + ℎ)− VH(�)

ℎ
< −1.

Proof of Lemma 3: By condition (C) D−VH(�) ≤ D+VH(�) holds. By Lemma 1 � − � is strictly
positive and so � − � > ℎ for sufficiently small and thus by condition (C) we have: D+VH(�) <

dH < −1. We can prove the desired result for L. in a similar fashion.

If both types take a manipulative strategy at b, then by the indifference conditions for both types
the following is true:

[VL(�)− VL(�)]− [VH(�)− VH(�)] = 2. (21)

Dividing both sides by the difference between the bid and ask prices (that is, bid-ask spread) we
obtain:

dL − dH =
2

�− �
. (22)

Consider the �-neighborhood of b. When b changes, � or � and thus � − � could change. If
� increases, by condition (C), dL increases and −dH decreases. If both types manipulate in the �-
neighborhood then (22) must hold for different dL, dH , and � − �. We now prove that there is only
one pair of bid and ask prices � and � which satisfies (21). The next result holds irrespective of market
makers’ prior belief b.

Lemma 4. Suppose that both types manipulate in an interval (b0, b1) with b0 < b1. There exists at
most only one pair of equilibrium bid and ask prices in the interval (b0, b1).

Proof of Lemma 4: First we define: for � ∈ [0, 1] and � ∈ [0, 1],

H(�, �) = VH(�)− VH(�) + 2− �− �;

L(�, �) = VL(�)− VL(�)− �− �.

If both types manipulate in an (b0, b1), then it must be the case that there are sets of ask and bid
prices associated with every b ∈ (b0, b1) and for those prices H(�, �) = 0 and L(�, �) = 0 both hold.

Suppose that both types manipulate at the same time and there are two different equilibrium prices,
say p1 = (�1, �1) and p2 = (�2, �2). Then we must have: H(p1) = H(p2) = 0 and L(p1) = L(p2) =

0.
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Now we divide the interval between p1 and p2 into n sub-intervals {pk}k=1,⋅⋅⋅ ,n+1; that is, p1 = p1,
p2 = pn+1 and the length of each interval is given by ℎn := ∣p1−p2∣

n .
Notice that:

H(p1)−H(p2) = limn→∞
∑n

k=1
H(pk+1)−H(pk)

pk+1−pk ⋅ (pk+1 − pk);
L(p1)− L(p2) = limn→∞

∑n
k=1

L(pk+1)−L(pk)
pk+1−pk ⋅ (pk+1 − pk).

(23)

By the definition of partial derivative, we have:

H(pk+1)−H(pk)
pk+1−pk = H(�k+1,�k)−H(�k,�k)

(�k+1,�k)−(�k,�k)
+ H(�k,�k+1)−H(�k,�k)

(�k,�k+1)−(�k,�k)
;

L(pk+1)−L(pk)
pk+1−pk = L(�k+1,�k)−L(�k,�k)

(�k+1,�k)−(�k,�k)
+ L(�k,�k+1)−L(�k,�k)

(�k,�k+1)−(�k,�k)
.

(24)

For each interval, we have:

H(pk+1)−H(pk)

pk+1 − pk
≤ D−VH(�)− 1−D+VH(�)− 1; (25)

and
L(pk+1)− L(pk)

pk+1 − pk
≥ D−VL(�)− 1−D+VL(�)− 1. (26)

Notice that: condition (C) and Lemma 1 indicates:

D+VL(�)−D+VH(�) < D−VL(�)−D−VH(�). (27)

This indicates that for each interval we have: H(pk+1)−H(pk)
pk+1−pk < L(pk+1)−L(pk)

pk+1−pk . By (23) H(p1) −
H(p2) ∕= L(p1)−L(p2), which makes it impossible forH(p1) = H(p2) = 0 and L(p1) = L(p2) = 0.
If H(p1) = 0 and L(p1) = 0, then it must be: H(p2) ∕= 0 and L(p2) ∕= 0. Therefore we conclude that
there is only one price for which both types manipulate.

Let: � ∈ ℰ(b) and p = (�, �) be an equilibrium price associated with � and b. Depending on the
equilibrium strategy, we can classify the equilibrium into four regimes:

Regime L: � is manipulative for only the low-type;

Regime H: � is manipulative for only the high-type;

Regime ∅: � is not manipulative;

Regime LH: � is manipulative for both types.

We denote the set of equilibrium strategies when Regime i arises at belief b by Ri(b) for i ∈
{L, ⋅ ⋅ ⋅ , LH} and more formally it is defined as:

RL(b) = {� ∈ ℰ(b) : �H = 1 & �L > 0};
RH(b) = {� ∈ ℰ(b) : �H < 1 & �L = 0};
R∅(b) = {� ∈ ℰ(b) : �H = 1 & �L = 0};

RLH(b) = {� ∈ ℰ(b) : �H < 1 & �L > 0}.

(28)
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We also define: Ii = {b ∈ (0, 1) : ∃� ∈ Ri(b)}. There is a possibility that several regimes co-exist
in some beliefs. We will consider this co-existing possibility later. First we consider equilibrium within
each regime. In Regime 3, there is only one equilibrium strategy in which the low-type sells and the
high-type buys with probability 1. The next lemma shows that if Regime L or H arises in equilibrium,
then there is only one equilibrium strategy in that regime.

Lemma 5. If �, �̂ ∈ RL(b) or �, �̂ ∈ RH(b), then � = �̂.

Proof of Lemma 5: Since the argument is symmetric, we will prove the result for RH(b). Let �, �̂ ∈
RL(b) and suppose by way of contradiction �H ∕= �̂H and without loss of generality we may assume:
�H < �̂H . Let (�, �) be an equilibrium price associated with � and b, and (�̂, �̂) be an equilibrium
price associated with �̂ and b, respectively. Since �L = �̂L = 0, we have by Bayes rule �̂ > � and
�̂ < �. By the indifference condition for the high-type we have:

1− �+ VH(�) = � − 1 + VH(�); (29)

1− �̂+ VH(�̂) = �̂ − 1 + VH(�̂). (30)

Subtracting (30) from (29) yields:

�̂− �− VH(�̂) + VH(�) = � − �̂ + VH(�)− VH(�̂). (31)

By Lemma 3 we know that: V ′H(�) < −1. By condition (C) and �̂ < �, the right hand side of (31)
is strictly smaller than 0. However, since VH is decreasing by condition (M), the left hand side of (31)
is strictly greater than 0, which makes (31) impossible to hold.

The remaining case is Regime LH . By Lemma 4 we know that there is at most only one pair of bid
and ask prices within Regime LH . The next lemma establishes the unique relationship between prices
and strategy. Since Lemma 4 gives us the uniqueness of prices if both manipulate, this gives us unique
equilibrium strategy within Regime LH .

Lemma 6. Let �, �̂ ∈ ℰ(b) and we denote the equilibrium prices associated with � and �̂ by (�, �)

and (�̂, �̂), respectively. If � = �̂ and � = �̂, then � = �̂.

Proof of Lemma 6: For the simplicity of notation, let ℎ = (1− �) + ��H and l = (1− �) + ��L.

Suppose that in equilibrium, there are two different pairs of strategies, � and �̂ in RLH . Similarly with
ℎ and l, we define ℎ̂ and l̂ associated with �̂LB and �̂H . By the Bayes rule, we can write: � = ℎb

ℎb+(1−b)l ,

and �̂ = ℎ̂b
ℎ̂b+(1−b)l̂

. Since �̂ = �, we must have:

ℎ̂l = l̂ℎ. (32)

Similarly, we have � = (1−ℎ)b
(1−ℎ)b+(1−b)(1−l) , and �̂ = (1−ℎ̂)b

(1−ℎ̂)b+(1−b)(1−l̂)
. By equating them, we must

have:
(1− ℎ̂)(1− l) = (1− l̂)(1− ℎ). (33)
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Combining the equations (32) and (33) gives ℎ̂− ℎ = l̂− l ≡ Δ. Then, by substituting it into (32)
we obtain:

(ℎ+ Δ)l = (l + Δ)ℎ. (34)

Therefore, we must have ℎ = l and ℎ̂ = l̂, which indicates: � = �̂.

Lemma 7. If �, �̂ ∈ RLH(b), then � = �̂.

Proof of Lemma 7: Proved by Lemma 4 and Lemma 6.

Proposition 3. Equilibrium exists uniquely within each regime.

Proof of Proposition 3:
Let: � ∈ ℰ(b). We will show that there is only one � ∈ Ri for every i ∈ {1, ⋅ ⋅ ⋅ , 4}. In Regime L and
H , by Lemma 5 the result follows. In regime ∅, it is obvious. In regime LH , by Lemma 4 and Lemma
7 the result follows.

Now we consider the possibility of co-existence of different regimes for one prior belief. We will
prove that two different regimes do not co-exist by eliminating the possibility of each combination of
regimes. Next four lemmas establish this result.

Lemma 8. Regime L or H does not co-exist with Regime ∅.

Proof of Lemma 8: Since the argument is symmetric, we will prove the result for RH(b). Let � ∈
RH(b) and suppose by way of contradiction �̂ ∈ R∅(b). Let (�, �) be an equilibrium price associated
with �, and (�̂, �̂) be an equilibrium price associated with �̂, respectively. Since (1− �L) = �̂LS = 1,
we have by Bayes’ rule �̂ > � and �̂ < �. We have:

1− �+ VH(�) = � − 1 + VH(�); 1− �̂+ VH(�̂) ≥ �̂ − 1 + VH(�̂). (35)

Subtracting (35) from (35) yields:

�̂− �− VH(�̂) + VH(�) ≤ � − �̂ + VH(�)− VH(�̂). (36)

By Lemma 3 we know that: V ′H(�) < −1. By condition (C) and �̂ < �, the right hand side of (30)
is strictly smaller than 0. However, since VH is decreasing by condition (M), the left hand side of (30)
is strictly greater than 0, which makes (30) impossible to hold.

After Lemma 8 and Proposition 5 it remains to show that Regime L does not co-exist with Regime
H . The next proposition explores this remaining case and shows the uniqueness of equilibrium under
the conditions (M) and (C).

Lemma 9. Regime L does not co-exist with Regime H .
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Proof of Lemma 9:
By way of contradiction suppose that at prior b Regime L and Regime H co-exist.

We denote one pair of prices associated with Regime L by (�1, �1), and the other associated with
Regime H by (�2, �2). Then by the indifference condition we must have:

−�1 + VL(�1) = �1 + VL(�1); (37)

1− �1 + VH(�1) ≥ �1 − 1 + VH(�1); (38)

and also

−�2 + VL(�2) ≤ �2 + VL(�2); (39)

1− �2 + VH(�2) = �2 − 1 + VH(�2). (40)

Consider Bayes’ rule:

�1 =
ℎ̄b

ℎ̄b+ l(b)(1− b)
& �2 =

ℎ(b)b

ℎ(b)b+ l̄(1− b)
;

�1 =
(1− ℎ̄)b

(1− ℎ̄)b+ (1− l(b))(1− b)
& �2 =

(1− ℎ(b))b

(1− ℎ(b))b+ (1− l̄)(1− b)
.

Case 1: �1 > �2: Let ℎ̄ = (1− �) + � and l̄ = (1− �) so that we have: ℎ(b) ≤ ℎ̄ and l(b) ≥ l̄.
Since �2 > �2, we must have:

�2 =
b

b+ l̄
ℎ(b)(1− b)

> �2 =
b

b+ (1−l̄)
(1−ℎ(b))(1− b)

.

Therefore we must have:
l̄

ℎ(b)
<

(1− l̄)
(1− ℎ(b))

. (41)

Now by Bayes’ Rule, we must have:

�1 =
ℎ̄b

ℎ̄b+ l(b)(1− b)
> �2 =

ℎ(b)b

ℎ(b)b+ l̄(1− b)
.

⇐⇒
ℎ̄l̄ > ℎ(b)l(b). (42)

⇐⇒
ℎ̄l̄ − ℎ(b)l̄ > ℎ(b)l(b)− ℎ(b)l̄. (43)

⇐⇒
(ℎ̄− ℎ(b))l̄ > ℎ(b)(l(b)− l̄). (44)
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⇐⇒
(ℎ̄− 1 + 1− ℎ(b))l̄ > ℎ(b)(l(b)− 1 + 1− l̄). (45)

⇐⇒
(1− 1− ℎ̄

1− ℎ(b)
)l̄(1− ℎ(b)) > ℎ(b)(1− l̄)(1− 1− l(b)

1− l̄
). (46)

⇐⇒
(1− 1− ℎ̄

1− ℎ(b)
)

l̄

1− l̄
>

ℎ(b)

1− ℎ(b)
(1− 1− l(b)

1− l̄
). (47)

By (41) we must have: l̄
1−l̄ <

ℎ(b)
1−ℎ(b) . In addition 1−ℎ̄

1−ℎ(b) < 1 and 1−l(b)
1−l̄ < 1. Therefore in order

for (47) to hold, we must have:

1− 1− ℎ̄
1− ℎ(b)

> 1− 1− l(b)
1− l̄

. (48)

Therefore we must have: 1−ℎ̄
1−ℎ(b) <

1−l(b)
1−l̄ , which indicates �1 < �2 by Bayes’ rule. Now subtract-

ing (40) from (38) yields:

−�1 + �2 + VH(�1)− VH(�2) ≥ �1 − �2 + VH(�1)− VH(�2). (49)

Since �1 < �2, by condition (C) we have: VH(�1)−VH(�2)
�1−�2 < −1, which indicates the RHS of (49)

> 0. However �1 ≥ �2 indicates the LHS of (49) ≤ 0. Therefore (49) is impossible. □
Case 2: �2 ≥ �1: Suppose that we have: �2 ≥ �1. Then by Proposition 2 in the mirror economy,
we must have: 1 − �̃2 ≥ 1 − �̃1. Therefore we have: �̃2 ≤ �̃1. Then by taking the contrapositive
of the proved statement in the first part of this proof, which is: �1 > �2 → �1 < �2, we obtain:
�2 ≤ �1 → �1 ≤ �2. By applying this result to the mirror economy, we obtain: �̃2 ≤ �̃1 → �̃1 ≤ �̃2,
which indicates: 1− �1 ≤ 1− �2. Therefore we conclude: �2 ≤ �1.

Now subtracting (37) from (39) yields:

�1 − �2 + VL(�2)− VL(�1) ≤ �2 − �1 + VL(�2)− VL(�1). (50)

Since �1 ≥ �2, by condition (M) we must have: the RHS of (50) ≤ 0. However �1 < �2 indicates
by condition (C) we have: VL(�2)−VL(�1)

�2−�1
> 1 and thus the LHS of (50) > 0. Therefore (50) is

impossible. □

Lemma 10. Regime LH does not co-exist with Regime ∅.

Proof of Lemma 10:
Let � ∈ RLH(b) and suppose by way of contradiction �̂ ∈ R∅(b). Let (�, �) be an equilibrium price
associated with �, and (�̂, �̂) be an equilibrium price associated with �̂, respectively. By Bayes’ rule
�̂ > � and �̂ < �. We have:

1− �+ VH(�) = � − 1 + VH(�); (51)

1− �̂+ VH(�̂) ≥ �̂ − 1 + VH(�̂). (52)
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Subtracting (52) from (51) yields:

�̂− �− VH(�̂) + VH(�) ≤ � − �̂ + VH(�)− VH(�̂). (53)

By Lemma 3 we know that: V ′H(�) < −1. By condition (C) and �̂ < �, the right hand side of (52)
is strictly smaller than 0. However, since VH is decreasing by condition (M), the left hand side of (52)
is strictly greater than 0, which makes (52) impossible to hold.

Lemma 11. Regime LH does not co-exist with Regime L or H .

Proof of Lemma 11:
Let � ∈ RLH(b) and suppose by way of contradiction �̂ ∈ RH(b). Let (�, �) be an equilibrium price
associated with �, and (�̂, �̂) be an equilibrium price associated with �̂, respectively. We have:

1− �+ VH(�) = � − 1 + VH(�); (54)

1− �̂+ VH(�̂) = �̂ − 1 + VH(�̂); (55)

and

−�+ VL(�) = � + VL(�); (56)

−�̂+ VL(�̂) ≤ �̂ + VL(�̂). (57)

Subtracting (55) from (54) yields:

�̂− �− VH(�̂) + VH(�) = � − �̂ + VH(�)− VH(�̂), (58)

and similarly
Case 1: � > �̂: Since �̂ > �̂, we must have:

�̂ =
b

b+ l̄
ℎH(b)(1− b)

> �̂ =
b

b+ (1−l̄)
(1−ℎH(b))(1− b)

.

Therefore we must have:
l̄

ℎH(b)
<

(1− l̄)
(1− ℎH(b))

. (59)

Now by Bayes’ Rule, we must have:

� =
ℎ(b)b

ℎ(b)b+ l(b)(1− b)
> �̂ =

ℎH(b)b

ℎH(b)b+ l̄(1− b)
.

⇐⇒
l̄ℎ(b) > ℎH(b)l(b). (60)

⇐⇒
l̄ℎ(b)− l̄ℎH(b) > ℎH(b)l(b)− l̄ℎH(b). (61)
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⇐⇒
(ℎ(b)− ℎH(b))l̄ > ℎH(b)(l(b)− l̄). (62)

⇐⇒
(ℎ(b)− 1 + 1− ℎH(b))l̄ > ℎH(b)(l(b)− 1 + 1− l̄). (63)

⇐⇒
(1− 1− ℎ(b)

1− ℎH(b)
)l̄(1− ℎH(b)) > ℎH(b)(1− l̄)(1− 1− l(b)

1− l̄
). (64)

⇐⇒
(1− 1− ℎ(b)

1− ℎH(b)
)

l̄

1− l̄
>

ℎH(b)

1− ℎH(b)
(1− 1− l(b)

1− l̄
). (65)

By (59) we must have: l̄
1−l̄ <

ℎH(b)
1−ℎH(b) . In addition 1−l(b)

1−l̄ < 1, which indicates 1 − 1−ℎ(b)
1−ℎH(b) > 0

by (65). Therefore in order for (65) to hold, we must have:

1− 1− ℎ(b)

1− ℎH(b)
> 1− 1− l(b)

1− l̄
. (66)

Therefore we must have: 1−ℎ(b)
1−ℎH(b) <

1−l(b)
1−l̄ , which indicates � < �̂ by Bayes’ rule. By condition

(M) the LHS of (58) is strictly smaller than 0. If � < �̂ then by Lemma 3 we must have: VH(�)−VH(�̂)

�−�̂
<

−1 which indicates that the RHS of (58) is strictly greater than 0. This is a contradiction. □
Case 2: � ≤ �̂: By the same logic in the proof for case 2 of Lemma 9, we must have: �̂ ≤ �.

Now subtracting (57) from (56) yields:

�̂− �− VL(�̂) + VL(�) ≥ � − �̂ + VL(�)− VL(�̂). (67)

Since �̂ ≤ �, by condition (M) we must have: the RHS of (67) ≥ 0. If � = �̂, then we must
have: � = �̂, which is impossible because as the proof in 7, if both prices are the same, then � = �̂.
This is a contradiction with our assumption. Now suppose � < �̂. However by condition (C) we have:
VL(�̂)−VL(�)

�̂−� > 1 and thus the LHS of (67) < 0. Therefore (67) is impossible. □

We have proved that two different regimes do not co-exist. This result indicates that when one
regime shifts to a different regime as prior belief increases/decreases, there is no jump in the equilibrium
strategy. The following Lemma and Proposition formally state this intuition.

Lemma 12. Consider the boundary of each regime, which is a prior b ∈ (0, 1) such that for any
sufficiently small � > 0, b − � ∈ Ii and b + � ∈ Ij for j ∕= i and i, j ∈ {L,H, ∅}. Let � = ℰ(b) and
then we must have: �H = 1 and �L = 0.

Proof of Lemma 12:
By Proposition 6 and Proposition 4, the equilibrium strategy is expressed by a continuous function of
prior belief denoted by ℰ(b). The result is clear when IL shifts to/from I∅ and IH shifts to/from I∅
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because of the definition of Regime ∅ and the continuity of the equilibrium strategy. Consider IL shifts
to/from IH . Since the argument is symmetric, we only consider IL shifts to/from IH . Take a sequence
{�k}k with �k > 0 which converges to 0. For every bk = b − �k, we have �k = RL(bk) and every
b̂k = b + �k, we have�̂k = RH(b̂k). Take a limit of k to infinity. Then we have �k → � and �̂k → �

by the continuity of the equilibrium strategy. The only possibility is: �H = 1 and �L = 0 by the
continuity of the equilibrium strategy.

Proposition 4. The equilibrium strategy � = ℰ(b) is continuous in b on (0, 1).

Proof of Proposition 4:
By Proposition 6, ℰ is a function of prior belief b. By Theorem 1 the equilibrium correspondence ℰ is
upper semi-continuous. Therefore we conclude that it is continuous.

Since there is no jump in the equilibrium strategy, by Bayes rule the following result about bid and
ask prices is immediate.

Lemma 13. Bid and ask prices are continuous in b.

Proof of Lemma 13:
By Lemma 4 and Bayes’ rule, the result follows.

In the end we will prove that Regime LH does not arise. Let �∗ ∈ ℰ(b) and (�, �) denote the
equilibrium ask and bid prices. We denote payoff from buy by �B� and payoff from sell by �S� for
� ∈ {L,H}. Payoff from buy is a function of ask price and payoff from sell is a function of bid
price. When manipulation arises, those two payoff functions intersect. If both types manipulate at the
same time, then the two pairs of the two payoff functions intersect for the same bid and ask prices.
We will prove that this will not happen. To do so, we define the following functions to consider the
single-crossing property of the functions for each type:

A(b, �L, �H) = [(1−�)+��H ]b
(1−�)+�b�H+�(1−b)�L ;

B(b, �L, �H) = [(1−�)(1−)+�(1−�H)]b
(1−�)(1−)+�b(1−�H)+�(1−b)(1−�L) .

(68)

By the definition of the functions, obviously we have:

A(b, �∗L, �
∗
H) = � & B(b, �∗L, �

∗
H) = �. (69)

Lemma 14. Suppose that b ∈ IH . Then the following holds:

�BH(A(b, 0, 1)) < �SH(B(b, 0, 1)). (70)

Proof of Lemma 14:
Since b ∈ IH , there must be �∗H which satisfies:

�BH(A(b, 0, �∗H)) = �SH(B(b, 0, �∗H)). (71)
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Notice that as �H increases, A(b, 0, �H) increases and B(b, 0, �H) decreases. Take �′H > �∗H .
Then since VH is strictly decreasing, we have: �BH(A(b, 0, �′H)) < �BH(A(b, 0, �∗H)). Moreover since
when the high-type manipulates, the slope of the value function satisfies: V ′H(�) < −1 by Lemma
3, the strict convexity of the value function implies: �SH(B(b, 0, �′H)) > �SH(B(b, 0, �∗H)). Since
�∗H ∈ (0, 1), by (71) we must have: (70).

Lemma 15. If �BH(A(b, 0, 1)) < �SH(B(b, 0, 1)) and �BL (A(b, 0, 1)) < �SL(B(b, 0, 1)), then b ∈ IH .

Proof of Lemma 15:
Suppose that �BH(A(b, 0, 1)) < �SH(B(b, 0, 1)) and �BL (A(b, 0, 1)) < �SL(B(b, 0, 1)). Then it is clear
that: b ∕∈ I∅. Notice that when �H = 0 we have:

�BH(A(b, 0, 0)) = 1− b+ VH(b) > �SH(B(b, 0, 0)) = b− 1 + VH(b). (72)

Since �B� ’s and �S� ’s are continuous in �H , the intermediate value theorem is applicable. Thus there
must be �∗H ∈ (0, 1) which satisfies (71). By the same argument with the above, �BH is monotonically
decreasing in terms of �H and �BH is monotonically increasing and thus there is only one �∗H .

On the contrary suppose that b ∕∈ IH . Then, we must have:

�BL (A(b, 0, �∗H)) ≥ �SL(B(b, 0, �∗H)). (73)

We consider two cases where the inequality (73) is strict or the equality holds.
(Case 1) The expression (73) holds with strict inequality. Since �BL (A(b, 0, 1)) < �SL(B(b, 0, 1)),
by the intermediate value theorem there must be �̄H ∈ (�∗H , 1) such that:

�BL (A(b, 0, �̄H)) = �SL(B(b, 0, �̄H)). (74)

As A(b, 0, �̄H) > B(b, 0, �̄H) for �̄H ∕= 0 by Bayes rule, (74) gives:

VL(A(b, 0, �̄H))− VL(B(b, 0, �̄H))

A(b, 0, �̄H)−B(b, 0, �̄H)
> 1.

Therefore as �H decreases, the RHS of (74) decreases and the LHS of (74) increases. Therefore
(73) is impossible to hold since �̄H > �∗H . □
(Case 2) The expression (73) holds with equality. By (71) and (73) we have:

�BL (A(b, 0, �∗H)) = �SL(B(b, 0, �∗H));

�BH(A(b, 0, �∗H)) = �SH(B(b, 0, �∗H)).
(75)

Since b ∕∈ IH by our assumption, by Theorem 1 we must have: b ∈ Ir for r ∈ {∅, L, LH}. By
Lemma 9, Lemma 11, and Lemma 8 we know that there is no other pair of bid and ask prices to satisfy
the indifference conditions for other regimes at the same time with (75). This is a contradiction.
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Lemma 16. Suppose that b ∈ IL. Then the following holds:

�BL (A(b, 0, 1)) > �SL(B(b, 0, 1)). (76)

Proof of Lemma 16:
Proved symmetrically with Lemma 14.

Lemma 17. Suppose that b ∈ ILH . Then the following holds:

�BH(A(b, 0, 1)) < �SH(B(b, 0, 1)); (77)

�BL (A(b, 0, 1)) > �SL(B(b, 0, 1)). (78)

Proof of Lemma 17:
Proved symmetrically with Lemma 14.

Lemma 18. Both types do not manipulate at the same time in an interval (b0, b1) with b0 ∕= b1.

Proof of Lemma 18:
By Lemma 7 RLH is a function of prior b. Let � = RLH(b) and we define: ℎ(b) = (1− �) + ��H ,
and l(b) = (1−�)+��L. In this proof we have to consider an interval but not a point unlike Lemma
7. Thus we need to define ℎ or l as a function of prior b and in this way we consider the interval of
priors in Regime LH .

On the contrary, suppose that they manipulate at the same time in an interval (b0, b1) with b0 < b1.
By Lemma 4 we know that there exists only one pair of equilibrium bid and ask prices for which
both types manipulate. Therefore ask and bid prices associated with every b ∈ (b0, b1) must be same.
Consider Bayes’ rule for the interval. Since it gives us constant bid and ask prices for the interval, it
is continuously differentiable. Therefore, if they manipulate in the interval, the first derivative of the
bid and ask prices must be equal to zero. By taking the derivatives for b ∈ (b0, b1) and setting the
numerators at zero, we obtain:

l(b) ⋅ ℎ(b) = (1− b)b[ℎ(b) ⋅ l′(b)− ℎ′(b) ⋅ l(b)], (79)

and
[1− ℎ(b)][1− l(b)] = (1− b)b[ℎ′(b) ⋅ (1− l(b))− (1− ℎ(b)) ⋅ l′(b)]. (80)

By (79) we obtain:

l′(b) =
l(b)

(1− b)b
+
ℎ′(b) l(b)

ℎ(b)
. (81)

By substituting (81) into (80) and organizing the terms we obtain:

[1− ℎ(b)][1− l(b)] = (1− b)bℎ′(b)[(1− l(b))− (1− ℎ(b)) l(b)

ℎ(b)
]− (1− ℎ(b))l(b). (82)
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Therefore we obtain:
1− ℎ(b) = (1− b)bℎ′(b)× ℎ(b)− l(b)

ℎ(b)
(83)

By Lemma 1 we must have ℎ(b)− l(b) ∕= 0. Thus we obtain:

ℎ′(b) =
ℎ(b)[1− ℎ(b)]

b(1− b)(ℎ(b)− l(b))
> 0. (84)

Then by (81) we obtain:

l′(b) =
l(b)[1− l(b)]

b(1− b)(ℎ(b)− l(b))
> 0. (85)

Consider the case where Regime L shifts to Regime LH . In the end of Regime L, we must have:
�H = 1. It is impossible to increase �H out of 1 but by (84) ℎ′(b) > 0. Similarly it is impossible to
have a shift from Regime ∅ to Regime LH .

The last case that we have to prove is that RegimeH does not shift to RegimeLH as prior increases.
On the contrary suppose that it does. Then there has to be a prior bH such that bH ∈ IH but bH+� ∕∈ IH
for sufficiently small � > 0. Notice that when b = 1, the low-type does not manipulate. So 1 ∕∈ ILH . So
there has to be a prior bLH(≤ 1) in which bLH − � ∈ ILH for sufficiently small � > 0 but bLH ∕∈ ILH .

In the end of Regime H , we must have: �L = 0 and �H < 1 because by (84) and (85) if Regime
LH arises in prior b+ �, we must have: ℎ(b+ �) > ℎ(b). Notice that: l(b+ �) > l(b) = (1− �).

Let �∗ ∈ ℰ(bH) and �∗∗ ∈ ℰ(bLH). Notice: bLH ∕∈ IH because bLH − � ∈ ILH means that
the low-type manipulates at bLH − � and in the interval IH the low-type does not manipulate, which
contradicts with l′(b) > 0 in Regime LH by the continuity of equilibrium strategies. For the same
reason we have: bLH ∕∈ I∅. The remaining possibility is: bLH ∈ IL. In other words, we may have:
�∗∗H = 1 and �∗∗L > 0. So it remains to show that this last case does not happen.

The idea here is that we look at the two boundary points bH and bLH . If Regime LH arises in
an interval (b0, b1), the indifference conditions for both types hold for the only one pair of prices
irrespective of priors in that interval.

We denote the equilibrium prices at Regime LH by (�, �). The indifference condition for the
low-type dictates:

−�+ VL(�) = � + VL(�). (86)

Next consider the low-type’s payoffs at bH . Lemma 14 implies:

−A(bH , 0, 1) + VL(A(bH , 0, 1)) < B(bH , 0, 1) + VL(B(bH , 0, 1))).

Consider bLH . Lemma 17 implies:

�BL (A(bLH , 0, 1)) < �SL(B(bLH , 0, 1)).

Therefore by the intermediate value theorem there must be b̄ ∈ (bH , bLH) such that:

�BL (A(b̄, 0, 1)) = �SL(B(b̄, 0, 1)).
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Then we obtain:

�−A(b̄, 0, 1) + VL(A(b̄, 0, 1))− VL(�) = B(b̄, 0, 1)− � + VL(B(b̄, 0, 1))− VL(�). (87)

By Bayes’ rule we must have: � < A(b̄, 0, 1) and � > B(b̄, 0, 1). Since the low-type manipulates
at � and VL is strictly convex, we must have: VL(A(b̄,0,1))−VL(�)

A(b̄,0,1)−� > 1. Therefore the RHS of (87) is
strictly positive. On the other hand since � > B(b̄, 0, 1) and VL is monotonically increasing, the LHS
of (87) is strictly negative. This is a contradiction.

Proposition 5. Both types do not manipulate at the same time. In other words, Regime LH does not
arise.

Proof of Proposition 5:
Suppose not. Then, there is a b ∈ Δ(Θ) and � ∈ ℰ(b) such that: �H < 1 and �L > 0. Since � is
continuous, there is � such that for every b′ within the �-neighborhood of b and �′ ∈ ℰ(b′) �′H < 1

and �′L > 0 holds. This gives us the interval at which both types manipulate at the same time, which
contradicts with Proposition 18.

Proposition 6. The equilibrium exists uniquely when the value functions in every period satisfy the
conditions (M) and (C).

Proof of Proposition 6:
Proposition 5 indicates: ILH = ∅. Lemma 8 indicates that IL ∩ I∅ = ∅ and IH ∩ I∅ = ∅. Lemma 9
indicates that IL ∩ IH = ∅. In the end Proposition 3 completes our proof.

To end this section we remark that in the last period neither type manipulates because there is no
opportunity to re-trade. As a result, we can calculate the value functions in the last period and show
that they satisfy (C) and (M). Therefore, in the second last period there is a unique equilibrium.

Remark 1. Suppose that T = 3. Equilibrium exists uniquely (without (C) and (M)).

4 Characterization and Simulation

In the previous section we proved that if the value function is monotone and strictly convex in the
market-maker’s belief, then the equilibrium exists uniquely. In this section we will characterize the
equilibrium prices under the two conditions (C) and (M). Moreover, we will demonstrate some simu-
lation results of the model.

We redefine ask and bid functions as � : Δ(Θ) → [0, 1] and � : Δ(Θ) → [0, 1]. Moreover we
extend the definitions for the functions ℎ(b) and l(b) to all regimes, that is, for � ∈ ℰ(b), ℎ(b) =

(1 − �) + ��H , l(b) = (1 − �) + ��L. In addition, define: P (b) = ℎ(b) × b + l(b) × (1 − b). In
words P is the market maker’s expectation that buy order comes.
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Lemma 19. Ask and bid prices, �(b) and �(b), satisfy the following:
1. for every prior b ∈ (0, 1), 1 > �(b) > 0 and 1 > �(b) > 0;
2. for every prior b ∈ (0, 1), bid-ask spread is non-zero: that is, �(b)− �(b) ∕= 0.

Proof of Lemma 19:
1. For every b ∈ (0, 1), 1 > P (b) > 0 by Lemma 1. In addition ℎ(b)b ∕= 0 and (1 − ℎ(b))b ∕= 0. By
Bayes’ rule we conclude: 1 > �(b) > 0 and 1 > �(b) > 0. □
2. The proof is done by Lemma 1. □

Lemma 20. In each regime, bid and ask prices are piecewise differentiable in every period. Moreover
the value functions are piecewise differentiable in every period.

Proof of Lemma 20:
Notice that: �H ∈ R2(b) or �L ∈ R1(b) solves the following equation:

1− b×[��H+(1−�) ]
� [b×�H ]+(1−�)  + VH( b×[��H+(1−�) ]

� b×�H+(1−�)  )

= b×[(1−�) (1−)+�(1−�H)]
� [b×(1−�H)+(1−b)]+(1−�) (1−) − 1 + VH( b×[� (1−�H)+(1−�) (1−)]

� [b×(1−�H)+(1−b)]+(1−�) (1−));

− b×[�+(1−�) ]
� [b+(1−b)×�L]+(1−�)  + VL( b×[�+(1−�) ]

� [b+(1−b)×�L]+(1−�)  )

= b×+(1−�) (1−)
� (1−b)×(1−�L)+(1−�) (1−) + VL( b×(1−�) (1−)

� (1−b)×(1−�L)+(1−�) (1−)).

(88)

Notice that: V T ’s are continuously differentiable on [0, 1]. Suppose that the next-period value
functions are piecewise differentiable. By the Implicit Function Theorem, �H or �L are piecewise
continuously differentiable in terms of b. Bid and ask prices are a continuously differentiable function
in terms of b or �H or �L. Therefore we conclude that bid and ask prices are piecewise differentiable.
By Lemma 2 the current value function is also piecewise differentiable. By mathematical induction the
result holds for every period.

Suppose that the low-type manipulates. Let: Fl(b) = l(b)− l′(b)b(1− b). Then, we have:

�′(b) =
ℎ̄ ⋅ Fl(b)
P (b)

and �′(b) =
(1− ℎ̄) ⋅ (1− Fl(b))

1− P (b)
.

Therefore, we have:

�′(b)b = �(b) ⋅ Fl(b)
P (b)

and �′(b)b = �(b) ⋅ 1− Fl(b)
1− P (b)

, (89)

and
�′′(b) = ℎ(b)×

F ′l (b)P (b)− Fl(b)× 2P ′(b)

(ℎ(b)b+ l(b)(1− b))3 ; (90)

�′′(b) = [1− ℎ(b)]×
−F ′l (b)(1− P (b)) + (1− Fl(b))× 2P ′(b)

([1− ℎ(b)]b+ [1− l(b)](1− b))3 . (91)
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Proposition 7. Suppose that the next-period value functions satisfy (C) and (M). Ask and bid prices,
�(b) and �(b) are strictly increasing in b.

Proof of Proposition 7:
By Proposition 5 we know that Regime 4 does not arise. When nobody manipulates, by the Bayes rule
we can show that bid and ask prices decrease as market makers’ belief b decreases. It remains to show
that the result holds in Regime L and H . Since the argument is symmetric, suppose that the low-type
manipulates at b. Then, as the low-type’s indifference condition for � we have:

−�(b) + VL(�(b)) = � + VL(�(b)). (92)

Taking the first derivative we obtain:

�′(b)(−1 + V ′L(�(b))) = �′(b)(1 + V ′L(�(b))). (93)

By Lemma 3−1 +V ′L(�(b)) > 0. By condition (M) (1 +V ′L(�(b))) > 0. Therefore (93) indicates
that: �′(b) > 0 if and only if �′(b) > 0. By (89) if �′(b) ≤ 0 we must have: 1 − Fl(b) ≤ 0, which is
impossible.

Let �H : [0, 1] → [0, 1] be the high-type’s equilibrium strategy of buying as a function of b and
similarly let �L : [0, 1]→ [0, 1] be the low-type’s equilibrium strategy of buying as a function of b. By
taking the first and second derivatives in the bid and ask prices with �H(b) = 1 and �L(b) = 0, we
obtain the following result.

Proposition 8. Suppose that nobody manipulates in equilibrium. In equilibrium, the ask price is strictly
concave and the bid price is strictly convex.

Proof of Proposition 8: Omitted.
By Lemma 4, we know that if Regime LH arises in equilibrium, then there is a unique pair of bid

and ask prices. The following Lemma shows that in Regime L and H , the slope from the origin in
equilibrium ask price is decreasing and the slope from the origin in equilibrium bid price is increasing.

Lemma 21. In Regime L and H , �(b)
b is decreasing and �(b)

b is increasing in terms of b.

The previous lemma does not say that the ask price is strictly concave and the bid price is strictly
convex, although convex or concave functions satisfy the properties in Lemma 21. To see how bid
and ask prices behave in equilibrium we have written a computer program. In our program we use
a calibrating method called “linear interpolation.” Since in the last period of the game neither type
manipulates, we can calculate the value functions in the last period as well as the bid and ask prices.
We then split the interval [0, 1] into n segments and linearly interpolate the value function for each
type in each interval. The first case we consider is manipulation by a high-type. We do this by seeing
whether or not a pair of ask and bid prices exist that make the high-type indifferent between buy and
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sell orders in each interval of the market makers belief. Similarly, we consider a second case where the
low-type manipulates and a third case where both types manipulate. Using the bid and ask prices we
obtain from this procedure, we calculate the current period value functions and repeat the procedure
in the following periods. To simplify the following calculation let fH(b) = (1 − �) + ��H(b), and
fL(b) = (1− �) + ��L(b).

Consider the case where only the low-type manipulates. Expressing fL(b) as a function of the ask
price �(b) gives:

fL(b) =
�(b)× (1− b)− b(1− �(b))fH(b)

�(b)× (1− b)
. (94)

Since the high-type does not manipulate, fH(b) = (1− �) + �, which we denote by H . Then,:

�(b) =
�(b)× b× (1−H)

�(b)− b×H
. (95)

We construct a new function ṼL by a linear interpolation of VL. Define for each �L ∈ [bk, bk+1],

ṼL(�L) = (�L − bk)
VL(bk+1)− VL(bk)

(bk+1 − bk)
+ VL(bk), (96)

and for each �L ∈ [bj , bj+1],

ṼL(�L) = (�L − bj)
VL(bj+1)− VL(bj)

(bj+1 − bj)
+ VL(bj). (97)

Let mL
k =

VL(bk+1)−VL(bk)
bk+1−bk and mL

j =
VL(bj+1)−VL(bj)

(bj+1−bj) . By substituting the bid price (95) into the
indifference condition for the low-type and rearranging yields:

�2
L(mL

k − 1) + �L
(
bH(1−mL

k ) + b(H − 1)(1 +mL
j )− [VL(bj)− VL(bk) + bkm

L
k − bjmL

j ]
)

+[VL(bj)− VL(bk) + bkm
L
k − bjmL

j ]bH = 0. (98)

Thus we obtain the following lemma.

Lemma 22. If the low-type manipulates in equilibrium, then the equilibrium price �L solves (98).
Moreover, the equilibrium price �L satisfies:

L̃ ≡ �L(1− b)− b(1− �L)H

�L(1− b)
≤ (1− �)(1− ) + �. (99)

Inequality (99) states that the low-type’s strategy of selling cannot exceed 1. We may calculate the
low-type’s strategy of selling from the ask price andH . If it exceeds 1, then this strategy is not feasible.
The details for Regime 2 and 4 can be found in the Appendix.

In our computer simulation we look for equilibrium pairs of bid and ask prices that satisfy the
conditions for Regime 1 through 4. If there are two regimes, we ask the computer to report them. Then,
we repeat this procedure recursively. The following figures describe the simulation results. The x-axis
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shows market makers’ prior belief b ∈ [0, 1] and we have used a grid size of 100 in [0, 1]. The y-axes
in Figures 1 to 4 show the value functions and figures 5 to 8 show the equilibrium prices.

Notice that we can use the Markov property of the model and this backward method because we
know that there exists a unique equilibrium if the next-period value function satisfies (C) and (M) by
Proposition 6. In each figure, each curve shows the equilibrium variable for each period. Since the
equilibrium is unique, given the values at period t + 1, we can compute the values at period t. Those
curves in the figures show them.

In the figures of the bid and ask prices, there is a region of beliefs in which bid or ask prices
are different between periods. Given these beliefs, manipulation arises. Since the informed trader’s
strategy is different between the current period and the next period and so forth, bid or ask prices are
also different. The results of the simulation also show that the high-type manipulates in a region of
beliefs close to 0 and the low-type manipulates in a region of beliefs close to 1. This result is somewhat
counter-intuitive, because for example if the high-type manipulates in a region of beliefs close to 0,
bid price will be very low and he can only obtain a little amount of money. However, motivation for
manipulation is to affect the future payoffs through market maker’s belief updating. Therefore, they
would manipulate when the bid and ask spread is small and the slope of the next-period value function
is steep.
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Suppose that the information structure is as follows: T = 4, � = 0.8,  = 0.2. Suppose that the ask
price � ∈ [bk, bk+1] and the bid price � ∈ [bj , bj+1]. Then, by linear interpolation, we can approximate
the sum of the payoffs from taking each action for each type as follows:

ℎigℎbuy(b) = 1− �+ (�− bk)
VH(bk+1)− VH(bk)

bk+1 − bk
+ VH(bk); (100)

ℎigℎsell(b) = � − 1 + (� − bj)
VH(bj+1)− VH(bj)

bj+1 − bj
+ VH(bj); (101)

lowbuy(b) = �+ (�− bk)
VL(bk+1)− VL(bk)

bk+1 − bk
+ VL(bk); (102)

lowsell(b) = � + (� − bj)
VL(bj+1)− VL(bj)

bj+1 − bj
+ VL(bj). (103)

The table below shows some of the numerical results for b = 0.01, 0.02, and 0.03. The high-type
manipulates in each case.

b 0.01 0.02 0.03

�(b) 0.1654 0.2919 0.3931

�(b) 0.0023 0.0041 0.0052

�HB 0.9309 0.9599 0.9970

ℎigℎbuy(b) = ℎigℎsell(b) 1.1058 0.8708 0.7227

lowbuy(b) -0.1143 -0.1983 -0.2590

lowsell(b) 0.0031 0.0055 0.0071

Consider the indifference condition for the high-type. Rearanging yields:

2− �(b)− �(b) = VH(�(b))− VH(�(b)). (104)

By Lemma 3 we know that if manipulation arises in some region of a belief, then the value function
VH needs to be steep enough in that region. In other words, manipulation changes the market maker’s
posterior belief from �(b) to �(b). Consequently, if manipulation arises, then there is a difference
between VH(�(b)) and VH(�(b)). However, if this difference is too large, then (104) does not hold.
This effect can be seen in the results of our numerical simulation which show that manipulation arises
in the region of beliefs where the value function is steep and the bid and ask spread is small.

From our numerical simulation we make the following conjectures. First, there is an interval of
beliefs in which each type manipulates. Our first conjecture is that both types do not manipulate at the
same time. Our second conjecture is that as the time period increases, manipulation occurs at wider
ranges of the market maker’s belief. In the previous example manipulation arises between b = 0.1 to
0.4 for t = 5, b = 0.1 to 0.5 for t = 6 and 71. Our last, and most important conjecture, is that the value
functions are strictly convex, the ask price is strictly concave and the bid price is strictly convex. If the

1We ran many other examples and this conjecture was observed in all cases.
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third conjecture is proved, it would complete the proof of uniqueness result in a general case. To do
so, proving the first conjecture would simplify the proof for a general case, because in this way we can
focus on one type.

5 Remarks

Notice that in the last period the informed trader trades on their information because there is no chance
to re-trade. This means that in the last period of the game the informed trader’s unique equilibrium
strategy is to trade honestly. By taking the first and second derivative of the last-period value function
we can see that the value of the game in the last period is strictly monotonic and convex in the market
maker’s belief. The idea behind proving the uniqueness of equilibrium in the general case is to prove the
uniqueness of the equilibrium strategy, supposing the existence of unique next-period value functions
VL and VH , which are monotonic and convex in terms of the market maker’s belief.

From the results of our numerical simulation we make several conjectures. First, in equilibrium
both types do not manipulate at the same time. Second, the bid and ask price is strictly monotonic
and the bid price is strictly convex. Third, the value functions are monotonic and strictly convex.
These conjectures are important steps towards a proof of the uniqueness of equilibrium in the general
case. One specific difficulty in proving uniqueness for the general case can be seen by considering the
indifference condition for the low-type. If the low-type manipulates the following must hold:

−�(b) + VL(�(b)) = �(b) + VL(�(b)). (105)

If the equilibrium is unique, then the equilibrium strategy should be continuous. Therefore, if the
low-type manipulates at belief b then he should manipulate in an �-neighborhood of b. This means that
in an �-neighborhood of b, a similar indifference condition must hold. The question comes down to
the properties of VL, � and � that make the two indifference conditions hold in an �-neighborhood of
b. Ultimately, the question becomes how the low-type changes his strategy in an �-neighborhood of b.
Similar questions arise if we consider the indifference condition for the high type. Regime 4 is the most
difficult case because we have to consider how both types change their strategies in an �-neighborhood
of b. This is why proving our first conjecture that both types do not manipulate at the same time is a
key step in proving uniqueness in the general case.

The last difficulty is to prove that the value functions are strictly convex in the market maker’s prior
belief. If VL is monotone and strictly convex we can write the current-period value function as:

WL(b) = � (�(b) + VL(�(b))) + (1− �) (VL(�(b)) + (1− )VL(�(b))) . (106)

Notice that if � and VL are strictly convex and monotone, then VL(�(b)) is strictly convex. The
problem is the ask price. If � is strictly concave, then we cannot determine if VL(�(b)) is strictly
concave. This prevents us from determining if WL is strictly convex.
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Proving the uniqueness of equilibrium in the general case is a challenging endeavor and this paper
opens up the path to it. In this paper we have presented a model of dynamic informed trading, in which
there exists a unique equilibrium under two conditions for the value functions. We have presented a
computational method to solve for an equilibrium and have made several conjectures for proving the
uniqueness of equilibrium in the general case.

Appendix: Proof of Theorem 1

In order to prove the existence of equilibrium, we consider the equilibrium strategies (�∗L, �
∗
H) to be

a fixed point of the collection of their best response correspondences BR = {BRt}t=1⋅⋅⋅ ,T with BRt :

[Δ(A)]2 ⇒ [Δ(A)]2 such that for each t, (�∗L, �
∗
H) = BRt(�∗L, �

∗
H). Let U tn : Δ(A) × [0, 1]2 → IR

denote the payoff function for the type n ∈ N trader in period t. More formally, for n ∈ {H,L},

U tn(�n, pt) =
T∑
t′=t

[�nB(� − �t′)− �nS(� − �t′)] . (107)

Then, we define the informed trader’s best response correspondence: for every t ∈ {1, ⋅ ⋅ ⋅ , T} and
given pt,

BRt(�L, �H) =

{
(�L, �H) ∈ [Δ(A)]2∣�n ∈ arg max

�∈Δ(A)
U tn(�, pt) ∀n ∈ N

}
. (108)

Therefore, when b(ℎt) = bt, �∗t (b(ℎt)) = �t and �∗t (b(ℎt)) = �t, continuation value of the game
for the high-type in period t is:

V t
H(bt) = max

�H∈Δ(A)
[�HB(1− �t + V t+1

H (b(ℎt, B))) + �HS(�t − 1 + V t+1
H (b(ℎt, S)))], (109)

and one for the low type is:

V t
L(bt) = max

�L∈Δ(A)
[−�LB�t + V t+1

L (b(ℎt, B)) + �LS(�t + V t+1
L (b(ℎt, S)))]. (110)

Thus, an equilibrium defined in Definition 2 is a fixed point of the best response correspondence
BR, and �t and �t are respectively updated by Bayes rule.

Lemma 23. The payoff function U tn is continuous. In addition, for every t, BRt is a upper semi-
continuous correspondence.

Proof: Since the argument is symmetric, we only consider the high-type’s payoff function and the
value function. Note that U tH is continuous in his strategy and also the market maker’s quotes (�t, �t).
Then, U tH is a continuous numerical function.

We respectively denote the sequences of prices associated with �k and �̂k by pk and p̂k and also �
and �̂ by p and p̂. Then, since the prices are continuous in strategies, we have pk → p and p̂k → p̂.
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Now on the contrary, suppose that there exists a sequence as above but �̂ /∈ BR(�H , �L). Without
loss of generality, we suppose that there exists a � > 0 and �̄H ∈ Δ(E) such that:

U tH(�̄H , p) > U tH(�̂H , p) + 3�. (111)

For k large enough, by continuity of the payoff function and prices, we have:

U tH(�̄H , p
k) > U tH(�̄H , p)− � > U tH(�̂H , p) + 2�

> U tH(�̂kH , p) + � > U tH(�̂kH , p
k). (112)

This contradicts with the fact that (�̂kH , �̂
k
L) ∈ BRt(�kH , �kL) for all k.

Lemma 24. The set [Δ(A)]2 is non-empty, compact and convex.

Proof: The set of strategies Δ(A) is non-empty, compact and convex. The set [Δ(A)]2 is a Cartesian
product of those sets and thus the result follows.

Lemma 25. The informed trader’s best response correspondenceBRt is non-empty and convex-valued
for every t ∈ {1, ⋅ ⋅ ⋅ , T}.

Proof: We will prove this by mathematical induction. Since the argument is symmetric, we only
consider the high type. Consider the last period t = T . Then, the high type and low type trade on their
information. In this sense,BRT is non-empty and convex-valued. Next we suppose that in period t+1,
BRt+1 is non-empty and convex-valued. Then, we will prove that in period t, BRt is also non-empty
and convex-valued.

By the assumption for the inductive hypothesis, we know that V t+1
H is well-defined. Now, fix a

history ℎt−1 arbitrarily. Then, given V t+1
H , the right hand side of the expression in (109) is linear in the

strategies �H . Therefore the expression in (109) has a maximum so that the set BRt is non-empty.
Second, we will prove that it is also convex-valued. Take two different strategies (�̄H , �̄L) ∈

BRt(�̄H , �̄L) and (¯̄�H , �̄L) ∈ BRt(�̄H , �̄L). We denote the prices associated with the strategies
(�̄H , �̄L) by p̄t. Then, the following must hold: U tH(�̄H , p̄t) = U tH(¯̄�H , p̄t).

Let �̂tH = �̄H + (1 − )¯̄�H for some  ∈ (0, 1). By using linearity of the payoff function, we
conclude: (�̂H , �̄L) ∈ BRt(�̄H , �̄L). Therefore, BRt is convex-valued.

Proof of Theorem 1: By Lemma 23 to Lemma 25, we can apply the Kakutani’s fixed point theorem to
the best response correspondence BRt on [Δ(A)]2 for all t ∈ {1, ⋅ ⋅ ⋅ , T}.

Appendix: Proofs

Let: P (b) = fH(b)× b+ fL(b)× (1− b).
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Lemma 26. Fix a history ℎt arbitrarily and suppose that b = b(ℎt). Suppose that VH is monotonically
decreasing and strictly convex in the market maker’s prior b and that VL is monotonically increasing
and strictly convex in b. Suppose that only one type manipulates at the belief b. Then, P is increasing
at the belief b.

Proof of Lemma 26:
Case 1: When the high-type manipulates at the belief b.
By the indifference condition, we know that if the high-type manipulates, then the slope between bid
and ask prices should be:

dH(b) =
�(b) + �(b)− 2

�(b)− �(b)
. (113)

Thus, we obtain:

d′H(b) =
�′(b)(1− �(b))− �′(b)(1− �(b))

[�(b)− �(b)]2
× 2. (114)

Suppose that the high-type manipulates at the belief b. Then by the continuity of the equilibrium
strategy, we must have d′H(b) > 0 because the equilibrium strategy is unique. By the Bayes rule, we
have:

log(1− �(b)) = log(1− b) + log(1− �) − logP (b), (115)

and
log(1− �(b)) = log(1− b) + log((1− �)(1− ) + �)− log(1− P (b)). (116)

By taking the first derivative of the above equations, we obtain:

−�′(b)
1− �(b)

=
−1

1− b
− P ′(b)

P (b)
, (117)

and
−�′(b)

1− �(b)
=
−1

1− b
+

P ′(b)

1− P (b)
. (118)

Notice that:

�′(b)(1− �(b))− �′(b)(1− �(b)) = (1− �(b))(1− �(b))× P ′(b)×
(

1

P (b)
+

1

1− P (b)

)
.

Therefore, we have:

d′H(b) =
(1− �(b))(1− �(b))× P ′(b)×

(
1

P (b) + 1
1−P (b)

)
[�(b)− �(b)]2

× 2. (119)

and thus we conclude P ′(b) > 0. □

Case 2: When the low-type manipulates at the belief b.
By the indifference condition, we know that if the low-type manipulates, then the slope between bid
and ask prices should be:

dL(b) =
�(b) + �(b)

�(b)− �(b)
. (120)
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Thus, we obtain:

d′L(b) =
�(b)�′(b)− �′(b)�(b)

[�(b)− �(b)]2
× 2. (121)

Suppose that the low-type manipulates at the belief b. Then by the continuity of the equilibrium
strategy, we must have d′L(b) > 0 because the equilibrium strategy is unique. By the Bayes rule, we
have:

log�(b) = log b+ log((1− �) + �)− logP (b), (122)

and
log �(b) = log b+ log(1− �)(1− )− log(1− P (b)). (123)

By taking the first derivative of the above equations, we obtain:

�′(b)

�(b)
=

1

b
− P ′(b)

P (b)
, (124)

and
�′(b)

�(b)
=

1

b
+

P ′(b)

1− P (b)
. (125)

Notice that:

�(b)�′(b)− �′(b)�(b) = �(b)�(b)× P ′(b)×
(

1

1− P (b)
+

1

P (b)

)
. (126)

Thus, we can write:

d′L(b) =
�(b)�(b)× P ′(b)×

(
1

1−P (b) + 1
P (b)

)
[�(b)− �(b)]2

× 2. (127)

Thus, we must have P ′(b) > 0.

Proof of Lemma 21:
Regime 1: By the Bayes rule, we have:

b× ((1− �) + �) = P (b)× �(b), (128)

and
b(1− �)(1− ) = (1− P (b))× �(b). (129)

By Lemma 26, for k < 1, we have:

P (b)

P (kb)
=
�(kb)

k�(b)
> 1, (130)

and
1− P (b)

1− P (kb)
=
�(kb)

k�(b)
< 1. (131)

Dividing both sides by b and arranging terms yields the desired results. □

Regime 2: The proof will be done in a similar fashion with the previous lemma. □

40



Appendix: Numerical Simulation

Let mH
k =

VH(bk+1)−VH(bk)
bk+1−bk and mH

j =
VH(bj+1)−VH(bj)

(bj+1−bj) . Moreover, let (1− �)(1− ) + � = L.

Lemma 27. When the high-type manipulates, then equilibrium ask price �H solves:

(mH
k − 1)�2

H + �H
(
−bkmH

k + 1 + VH(bk) + (b+ L(1− b))(1−mH
k )
)

+�H
[
L(1− b) + [bj − 1 + L(1− b)]mH

j − VH(bj)
]

−(−bkmH
k + 1 + VH(bk))(b+ L(1− b))

+(−L(1− b) + [b(1− bj)− bjL(1− b)]mH
j + VH(bj) (b+ L(1− b)) = 0. (132)

Moreover, equilibrium ask price �H must satisfy:

H̃ ≡ �(1− L)(1− b)
b(1− �)

≤ (1− �) + �. (133)

Proof of Lemma 27: To avoid lengthy calculations, we only explain the key steps. Then, the equation
in question is:

1−�+(�−bk)mH
k +VH(bk) =

(b− �) + �L(1− b)
(b− �) + L(1− b)

−1+(
(b− �) + �L(1− b)
(b− �) + L(1− b)

−bj)mH
j +VH(bj).

It is very similarly done with Lemma 22. Finally, we obtain the desired result.

Let mD
k =

D(bk+1)−D(bk)
bk+1−bk and mD

j =
D(bj+1)−D(bj)

bj+1−bj .

Lemma 28. If both types manipulate, then the equilibrium ask price �M and strategy �∗HB satisfies:

mD
k �

2
M + �M

[
−bkmD

k +D(bk)− bH∗mD
k + (b(H∗ − 1) + bj)m

D
j − (D(bj) + 2)

]
+ bH∗(D(bj) + 2− bjmD

j + bkm
D
k −D(bk)) = 0, (134)

and
H∗ = (1− �) + ��∗HB. (135)

Proof of Lemma 28: For the simplicity of notation, let us define: D = VL − VH . If both types
manipulate, this means that there is a pair of ask and bid prices which satisfies: D(�) = D(�) + 2.

By using the linear interpolating method, we check if there is a pair of �, b and H which satisfies the
indifference conditions for both types:

(�− bk)mD
k +D(bk) =

[
�b(H − 1)

(bH − �)
− bj

]
mD
j +D(bj) + 2. (136)

Then, we obtain the desired result.
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