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Abstract

We study pure Nash equilibria in random two player games, when

best replies may be multi valued. We first show that, when all best reply

correpondences are equally likely, the probability of at least one pure

Nash equilibrium approaches one, and the expected number of pure Nash

equilibria approaches infinity, when the size of the game becomes large.

We then study the case where the utilities of the players are drawn from

a finite set of utility indices. This set may depend on the size of the

game. We derive an explicit formula for the limit distribution of pure

Nash equilibria. The limit distribution is Poisson with mean that depends

on the relative size of the set of utility indices against the choice set.
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1 Introduction

It is of importance to understand how Nash equilibrium behaves as a solution
concept, on the ”average”. A vast literature has analyzed pure Nash equilibria
(PNE) in games whose payoffs are drawn randomly from a maximum entropy
distribution (see e.g. Stanford 1995a,b, 1996; Powers 1990, Goldberg et al.
1968, Dresher 1970). Of particular interest is the asymptotic distribution of
pure Nash equilibria when the size of the game becomes large.1

A standard assumption in the literature has been that the payoffs are drawn
randomly from a set, typically a continuum, that is much larger than the finite
choice set. This assumption guarantees that players are never indifferent, and

1Our focus is restricted to pure strategies and finite action sets and independently drawn
payoffs. McLennan (1997) allows mixed strategies and Bade et al. (2007) allow infinite action
sets. Rinott and Scarsini (2000) study the case where there may be either positive or negative
dependence among the players’ payoffs.
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that best responses are uniquely defined. This assumption simplifies the analysis
remarkably.

However, we feel that possibility of multiple best responses should be ac-
counted for. First, it can be argued that best reply correspondences are suffi-
cient descriptions of games, at least as far as one is interested in solutions that
depend only on best replies. If all best response correspondences are equally
likely, then multiple best responses will materialize with positive probability (as
is observed by looking at examples is standard game theory texts). Second, even
if there are aspects in strategic interaction that are not captured by best reply
correspondences alone, it is (arguably) not natural to think that - in a model
where everything else is finite - there are infinitely many possible payoffs. This
again leads to multiple best responses with positive probability.

We evaluate the likelihood pure Nash equilibria in random games where
multiple best responses are allowed. Our focus is on random two-player matrix
games where each player has K choices. We first show that, when all best reply
correspondences are equally likely, the probability of at least one pure Nash
equilibrium approaches one, and the expected number of pure Nash equilibria
approaches infinity, when K becomes large.

The situation is more difficult, however, when randomness concerns the un-
derlying utilities. To model this, we let the payoffs of the players be drawn
independently from a finite set of utility indices. Letting the cardinality of the
set of utilities, f(K), depend on K in such a way that f(K)/K approaches
some real number r as K becomes large, the probability of indifferences does
not vanish even in the limit.

The standard result when the utility indices are drawn from a continuum
is that the distribution of pure Nash equilibria converges to the Poisson distri-
bution with mean 1 as K becomes large. This, however, does not hold when
utilities are drawn from a set of f(K) indices. Our main finding is that the limit
distribution of pure Nash equilibria converges to Poisson with mean

(

1/r

1 − e−1/r

)2

.

Since this number converges to 1 as r tends to infinity, our result can be in-
terpreted as a generalization of the previous findings. Our result requires new
combinatorial argument that takes into account the dependency between possi-
bly of multiple best responses; the existence of a pure Nash equilibrium in one
row (column) affects the probability - but does not rule out the possibility -
that there is another pure Nash equilibrium in the same row (column).

The paper is organized as follows. The notation is given in Section 2. In the
rest of the paper, we characterize the distribution of the number of equilibria
and give the expected number of pure Nash equilibria, as the number of pure
strategies goes to infinity.
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2 Preliminaries

There are two players, the row player and the column player, playing a K × K
matrix game. Now we define the concepts of a payoff matrix and a best response

matrix of the column player. By swapping the roles of rows and columns, the
definitions below apply also to the row player.

A payoff matrix of the column player defines a utility index for all action
pairs (i, j) ∈ {1, ..., K}2

U =







u11 · · · u1K

...
...

uK1 · · · uKK






.

Given a payoff matrix U, denote the induced best response matrix by

B(U) =







b11(U) · · · b1K(U)
...

...
bK1(U) · · · bKK(U)






,

where

bij(U) =

{

1, if uij ≥ uij′ , for all j′ = 1, ..., K,
0, otherwise.

Note that at least one element in a row of a best response matrix must be equal
to one. If U is random, then B(U) is random.

Given two best payoff matrices U and U ′ of the row player and the col-
umn player, respectively, an action pair (i, j) ∈ {1, ..., K}2 forms a pure Nash

equilibrium (PNE) if and only if

bij(U)bij(U
′) = 1.

If the value of a function φ is dependent on a random variable x, we denote
by Exφ(x) the expected value of the function.

2.1 Random best reply matrices

Two games with the same players and the same strategy sets are best reply

equivalent if they induce the same best response matrices. Note that all games
in the same equivalence class have the same PNE. Given an equivalence class of
games, we may take the corresponding best reply matrices (one for each player)
as representing this class, since best reply matrices can of course be interpreted
as payoff matrices. In this section we draw equivalence classes from a uniform
distribution, for each number K of actions. We determine the limit probability
that the chosen equivalence class of games has k PNEs as K goes to infinity.

Proposition 1 Suppose that a best reply equivalence class is drawn from the

uniform distribution over all equivalence classes, given K. The probability that

a game in this class possesses exactly k PNEs, for k = 0, 1, ..., goes to zero as

K goes to infinity.
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Proof. Assume first that f(K) = 2 for all K. We may assume w.l.o.g. that 0
and 1 are the possible utility values. Let us call this situation as a 0 − 1 game.
First we claim that, as K becomes large, there is a row (column) in the payoff
matrix of the column (row) player that contains only 0s with probability zero.
To verify this, note that the probability of there being no such row (column) is

(

1 −
1

2K

)K

.

To see that this goes to 1 as K becomes large, observe that

(

1 −
1

2K

)K

=

[

(

1 −
1

2K

)2K ]K/2K

,

and that

ln

(

1 −
1

2K

)K

=
K

2K
ln

(

1 −
1

2K

)2K

goes to zero as K grows to infinity. This proves the claim.
As a consequence of the previous claim, when K becomes large, each row

(column) of the column (row) player’s best response matrix has at least one
1 with probability one. This implies that the payoff matrix of a 0 − 1 game
coincides with probability one with the best response matrix. Since payoffs are
randomly drawn, it follows that the distribution of 0 − 1 payoff matrices also
reflects almost surely the distribution of random best responses matrices.

Now let f(K) ≥ 2. By the observation made in the previous paragraph, a
game with random best response matrices has k PNEs with the same probability
as a game of random 0−1 payoffs has k PNEs with payoffs (1, 1). Since the utility
indices of a 0 − 1 game are drawn independently from the set {0, 1}, an event
”strategy (x, y) induces payoffs (1, 1)” is a Bernoulli trial that is independent
of x and y, and has success probability 1/4. The probability that there exist
exactly k = 0, 1, ... such PNEs is binomially distributed, and equals

(

K2

k

) (

1 −
1

4

)K2
−k (

1

4

)k

=
K2!

(K2 − k)!k!

(

3

4

)K2
−k (

1

4

)k

.

This number goes to zero as K goes to infinity.

An immediate corollary of the previous proposition is that the probability
of there being exactly 0 PNEs goes to zero as K becomes large.

Corollary 2 Suppose that a best reply equivalence class is drawn from the uni-

form distribution over all equivalence classes, given K. The probability that a

game in this class possesses at least one PNE goes to one as K goes to infinity.

Since there is no cluster point in the distribution of the number PNEs as
K becomes large, no sequence of expected number of PNEs can converge to a
finite number.
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Corollary 3 Suppose that a best reply equivalence class is drawn from the uni-

form distribution over all equivalence classes, given K. The expected number of

PNEs goes to infinity as K goes to infinity.

3 Random payoff matrices

In this section, we let the utility indices be the primitive of the model. We
assume that the players payoffs are drawn independently and uniformly from
the set {1/f(K), ..., 1}, where f(K) is a natural number. We also assume that
there is a nonnegative real number r such that

lim
K→∞

f(K)

K
= r.

First we observe the following lower bound on the number of pure PNEs
in the limit game. When payoffs for a K × K game are taken from the set
{1/f(K), . . . , 1}, the best possible PNE is the one with payoffs (1, 1). Our result
says that the distribution of number of such best equilibria is approximately
Poisson with mean 1/r2 as K is large.

Proposition 4 The number of PNE with payoffs (1, 1) is Poisson distributed

with mean 1/r2 as K goes to infinity.

Proof. Fix r > 0. The probability that an action profile results in payoffs (1, 1)
gets arbitrarily close to 1/r2K2 as K grows. The probability of payoffs (1, 1) for
a given action profile is independent of the realization of the payoffs for other
action profiles. For a large fixed K, the number of action profiles with payoffs
(1, 1) is approximately binomially distributed with success probability 1/r2K2.
The number of trials is K2 and so K2 · (1/r2K2) = 1/r2. By the well-known
approximation theorem, the limit distribution is Poisson with mean 1/r2.

As a corollary of the previous proposition it follows that the probability of
at least one PNE with payoffs (1, 1) converges to 1−e−1/r2

as K becomes large.
However, for all K there is also a positive probability that a PNE materializes
with payoffs strictly lower than 1. As long as r > 0, this probability does not
vanish when K becomes large, and it needs to be taken into account when
evaluating the distribution of PNEs.

Let U be a payoff matrix of, say, the column player in a K−game. Denote
the proportion of rows in which he has n best responses of all rows by

αK(n : U) =

∑

i I
{

∑

j bij(U) = n
}

K
, for all n = 1, ..., K.

Also denote the proportion of columns in which the column player has m best
responses of all columns by

βK(m : U) =

∑

j I {
∑

i bij(U) = m}

K
, for all m = 1, ..., K.
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Since the payoff matrix U is a random variable, αK(m : U) and βK(m : U) are
random variables.

Similarly, by changing the roles of columns and rows, if U is a payoff matrix of
the row player in a K−game, then αK(n : U) reflects the proportion of columns

in which the row player has n best responses and βK(m : U) the proportion of
rows in which the row player has m best responses.

Since the total number of best responses of a player is independent on
whether one counts them on the basis of columns or of rows, the average number
of best responses in a row or in a column is the same. Given U, denote this
average by

µK(U) :=

K
∑

m=1

αK(n : U)n =

K
∑

m=1

βK(m : U)m. (1)

Define

µ̄ =
1/r

1 − e−1/r
.

Lemma 5 µK(U) converges to µ̄ as K goes to infinity.

Proof. The probability that the number of, say, the column player’s best re-
sponses in a row is n is the probability that n actions generate the same payoff
v times the probability that all other actions generate lower payoffs, given v.
Since the distribution over the set {1/f(K), 2/f(K), ..., 1} is uniform, we have,
under given K,

EUαK (n : U) =

f(K)
∑

v=1

(

K
n

) (

1

f(K)

)n (

v − 1

f(K)

)K−n

=

(

K
n

) (

1

f(K)

)n f(K)
∑

x=1

(

1 −
v

f(K)

)K−n

,

where the second equality follows by reversing the order of summation. Letting
K become large,

lim
K

EUαK (n : U) = lim
K

1

n!

(

K

f(K)

)n f(K)
∑

v=1

(

1 −
v

f(K)

)K−n

=

∑

∞

v=1 e−v/r

rnn!

=
e−1/r

(1 − e−1/r)rnn!
,

where the second equality follows by taking a component wise limit of the sum-
mation. Since best responses in distinct rows of the column player are indepen-
dently distributed, it follows, by the law of large numbers, that

lim
K

αK (n : U) = lim
K

EUαK (n : U) , for all n.

6



Thus

lim
K

µK(U) = lim
K

f(K)
∑

n=1

nαK (n : U)

=

∞
∑

n=1

ne−1/r

(1 − e−1/r)rnn!

=
e−1/r/r

1 − e−1/r

∞
∑

n=1

1

rn−1(n − 1)!

=
1/r

1 − e−1/r
,

where the final equality follows from noting that
∑

∞

n=1

[

rn−1(n − 1)!
]

−1
is a

Taylor expansion of e1/r.

Lemma 6 Let θK(k) be the probability that a randomly selected column of a

K-matrix contains k PNEs. Then

lim
K→∞

K · θK(k) =

{

µ̄2, if k = 1,
0, if k > 1.

(2)

Proof. Fix an arbitrary column. Let there be m column player’s best responses
and n row player’s best responses in this column. Since each allocation of
the given m and n best responses in the column is equally likely, the number
k ≤ max{m, n} of PNEs in the column is hypergeometrically distributed. The
probability ηK (k : m, n) of k PNEs is

ηK (k : m, n) =

(

m
k

) (

K − m
n − k

)

(

K
n

)

=
m!n!

(m − k)!(n − k)!

(K − n)!(K − m)!

K!(K − m − n + k)!
.

As K becomes large,

lim
K

K · ηK(k : m, n) =

{

mn, if k = 1,
0, if k > 1.

(3)

By definition,
θK(k) = Em,nηK(k : m, n).
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Since the column player’s and the row player’s best responses are independently
distributed, n and m are independent random variables. Hence, by (3),

lim
K

K·θK(k) =

{

limK

(

EU

∑

n αK(n : U)n
)

(

EU

∑

m βK(m : U)m
)

, if k = 1,

0, if k > 1.
(4)

By (1) and Lemma 5, (4) implies (2).

Proposition 7 The number of PNEs is Poisson distributed with mean µ̄2 as K
goes to infinity

Proof. Let K be large so that, by the law of large numbers, βK(· : U) can be
interpreted as the empirical distribution of a K-sequence of independent trials
drawn from the distribution βK(· : U) itself. Because of this independency,
K · θK(k) approximates the expected number of columns that contain exactly
k PNE. By Lemma 6, this expectation is close to zero for all k > 1. Hence any
column contains almost surely at most one Nash equilibrium, and, counting on
the basis of columns, the existence of a PNE in a column can be interpreted
as an independent Bernoulli trial with success rate θK(1). This means that the
total number of PNEs is binomially distributed with success rate θK(1). By
the standard approximation result, Lemma 6 implies that the number of PNE
is Poisson distributed with mean equal to limK K · θK(1) = µ̄2.

Thus, in the limit, the expected number of PNE is

µ̄2 =

(

1/r

1 − e−1/r

)2

and the probability of at least one PNE is

1 − e−µ̄2

= 1 − e−[r(1−e−1/r)]−2

.

For example, when the number of utility indices grows with the same speed
as the number of choices, i.e. r = 1, the expected number of Nash equilibria

in the limit is
(

1 − e−1
)

−2
≈ 2.502 and the probability of at least one PNE is

1 − e−(1−e−1)
−2

≈ 0.329.
Since

lim
r→∞

1/r

1 − e−1/r
= 1,

Proposition 7 implies the following classic result (see e.g. Goldberg et al., 1968;
Powers, 1990; Stanford, 1995a,b): when payoffs are drawn from a set that is
much (infinitely times) larger than the set of choices, the number of pure PNE is
Poisson distributed with mean 1 as the set of choices becomes large. Conversely,

lim
r→0

1/r

1 − e−1/r
= ∞
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implies that when payoffs are drawn from a set that is small relative to the
size of the game the number of PNE approaches infinity, a result parallel to
Proposition 4.

Note also that the ratio between Poisson mean r−2 in Proposition 4 - the
lower bound of the expected number of equilibria - and the Poisson mean µ̄2 in
Proposition 7, i.e.

(

1

1 − e−1/r

)2

tends to one as r goes to 0, reflecting the fact that when the set of utility indices
is small relative the size of the game, most of the PNE are with maximal payoffs.

4 A note on the limit game

The natural limit game when K increases without limit is the one in which both
players have N = {0, 1, . . .} as their strategy sets. If f(K) increases without limit
as well, then the uniform distribution over {1/f(K), . . . , 1} weakly converges to
the uniform distribution over [0, 1]. Assume indeed that the strategy sets are N

and payoffs to both players and to each strategy pair are i.i.d. draws from the
uniform distribution over [0, 1]. In this game there are no pure Nash equilibria
with probability 1. To see this, note that player i = 1, 2 gets utility strictly less
than 1 from every strategy pair with probability 1. Hence a Nash equilibrium
(b, b) should be such that player i = 1, say, gets equilibrium payoff y < 1. But
with probability one he gets payoff x > y from some other action b′ 6= b. This is
one reason why the limit results are of interest: if there were pure Nash equilibria
in the limit game, then such an equilibrium might qualify as an approximate
solution to a large but finite matrix game.
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