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Abstract. In an overlapping generations economy setup we show that, if individuals

can improve their life expectancy at some cost —either in terms of resources or in
terms of utility— then the laissez-faire competitive equilibrium steady state differs

from the first-best steady state. This is due to the fact that under perfect competition

individuals fail to anticipate the impact of their longevity-enhancing efforts on the
returns to their annuitized savings. More specifically, at the competitive equilibrium

steady state the individuals exert too much effort to increase their life expectancy and
they consume too little, compared to the first-best steady state. We identify policies

implementing the first-best steady state as a competitive equilibrium and show that

it is not always necessary to resort to the taxation of health expenditures (if any), the
announcement of a (possibly zero) lump-sum tax contingent to survival rates (and

hence, indirectly, to individuals efforts) suffices to achieve the first-best. Interestingly

enough the tax takes the value zero at the steady state.
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1. Introduction

In the last century, an unprecedented rise in life expectancy has been a pervasive
phenomenon in both developed and developing countries. This has surely been
due mostly to a host of causes affecting whole societies at large like, for instance,
progress in medicine, improvements in agriculture, and better sanitary conditions,
among others. Although there may also be among these causes a component that is
related to individual behaviors or choices, its contribution to this dramatic increase
in life expectancy is likely to have been small compared to those mentioned above.
Nevertheless, an immediate consequence, among many others, of the increase in life
expectancy is the pressure it puts on, for instance, the provision of health care, on
pay-as-you-go pensions systems, on housing, etc.1 Thus, as the constraints on these
and other resources become tighter, the relative importance of the individual-specific
causes of the increase in life expectancy may increase as well, and the question then
arises about whether the decentralized choices made by the individuals about their
efforts to have an ever increasing life expectancy are the right ones from an efficiency
viewpoint. This is the question we address here.

Individuals can privately influence their life expectancy in various ways choosing to
undertake actions and behaviors that tend to increase it, or to avoid those that may
decrease it. Nevertheless, these choices typically imply a cost for them, either in
terms of a disutility incurred or in terms of additional spending in, say, healthcare,
and hence of lost consumption. In effect, while the most obvious way to increase life
expectancy is to increase medical treatment and prevention —which requires the
actual spending of income— individuals can also make behavioral choices to that
end (e.g. exercising, abstaining from smoking, eating a healthy diet, driving safely)
that do not necessarily require an additional spending, but may inflict nonetheless
some disutility on the individual.2

Despite the undisputable positive aspect of having a higher longevity, this overall
increase has had also some detrimental external effects on, for example, pension
systems, publicly provided healthcare, urban development, and the environment.

1Of course, a longer life, specifically a healthier one, increases also the labor force available for
production at any time, which works in the opposite direction, but for the sake of simplicity we

are going to make abstraction of this fact.
2On the impact of health expenditures on life expectancy, see Poikolainen (1986). Several studies
have also shown the impact of factors such as physical activity (Kaplan et al.,1987 and Okamoto,

2006), overweight (see Solomon and Manson, 1997 and Bender et al. 1998) and smoking (Doll and

Hill, 1950).
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The specific point this paper addresses is that, besides these well-known detrimen-
tal external effects, there exists another negative externality due to a higher life
expectancy simply related to the impact that the individual’s choice of quantity of
life has on his quality of life, through the private resources he is left with for his
extended life, if savings are annuitized. Becker and Philipson (1998) emphasized
already how a rise in the quantity of life can affect its quality by showing that indi-
viduals investing in their longevity do not take into account that, by doing so, they
influence the return of their annuitized savings. The result is too much investment
in longevity compared to what would be optimal. Becker and Philipson (1998) thus
suggests that one way to ensure a high return of savings should be to tax health
expenditures (and thus, implicitly longevity). Some papers give recommendations
in this direction. For example, Leroux (2008) showed that in the case of non-
contractible effort to increase longevity, the social planner should tax second-period
consumptions in order to reduce incentives for the individual to invest in longevity.
Leroux et al. (2008a,b) studied the taxation of longevity-enhancing health expen-
ditures and showed that three factors play a role in the choice of the adequate tax
rate: (i) the possible misperception by the agents of their true survival probability;
(ii) the Becker-Philipson effect, as described above; and, in case of asymmetric in-
formation, (iii) incentive constraints. Nevertheless, in Leroux (2008) and Leroux et
al. (2008a,b) the framework was essentially static, with a 2-period-lived agent that
solves a one-shot problem at the begining of the first period.

In this paper, on the contrary, we study the problem in a truly dynamic general
equilibrium framework. Adressing the issue in a dynamic setup is the natural next
step to undertake, since similar instances of inefficiencies due to an overlooked (by
competitive agents) impact of individual saving decisions on the saving returns arise
naturally in overlapping generations models as well (see Dávila (2008)). Thus we
consider an overlapping generations economy in which individuals are identical ex-
cept for the date they are born in. The representative agent is sure to live at least
one period and at most two, conditional on a survival probability. He supplies in-
elastically labor when young and consumes from his labor income when young, and
from his annuitized capital and monetary savings when old (if alive). We assume
that the representative agent can influence his survival probability exerting some
effort. We will distinguish between the case in which this effort entails a direct
disutility but no additional spending (the disutility-effort case), and the case in
which it requires some additional spending but has no direct impact on the agent’s
utility (the expenditure-effort case).3 Thus, an expenditure-effort can be thought of

3We could as well assume that the individual exerts the two different types of efforts at the same

time, but for the sake of simplicity, we consider them separately.
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simply as health expenditures that enters the individual budget constraint and as
resources unavailable for consumption or saving. A disutility-effort implies instead
a cost in terms of utility only, entering negatively the utility function but not the
budget constraint. It can be thought of generally as leading a ”healthy” way of life
(exercising, eating healthily, abstaining from smoking and other instantly gratifi-
cating pleasures, etc.), that might be unappealing to the individual at the time he
exerts the effort, but that improves also his or her life expectancy and hence the
prospects of enjoying utility from consumption in the second period of life.

Under the setup defined above, we show that, both in the disutility-effort and the
expenditure-effort cases, the laissez-faire competitive equilibrium steady state level
of individual effort is higher than the first-best steady state, and hence inefficient.
For instance, in the expenditure-effort case the individuals do not take into account,
as in Becker and Philipson (1998), that by investing in their longevity they also
decrease the return of their annuitized savings —very much as in they do in Dávila
(2008) by saving too much capital— and in that way they reduce their consumption
possibilities in the second period. A similar effect is observed in the disutility-
effort case. As a consequence, there is, as in the static case, room for a public
intervention aiming at making the competitive equilibrium steady state with an
annuity market for savings coincide with the first-best steady state. However, in
the dynamic setup the policy instruments needed are different from those needed
in the static case, and differ as well depending on whether the effort takes the form
of a disutility or of an expenditure. In the disutility-effort case, we show to be
optimal to announce a second-period lump-sum tax that depends on the second-
period consumption of the previous generation and on the rate of growth of the
population (net of the mortality rate between periods). Interestingly enough, at
the competitive equilibrium steady state, the amount actually raised by the tax
is zero in every period, so that the implementation of the first-best steady state
allocation is achieved by the mere announcement of the policy. If, on the contrary,
the effort is only an actual expenditure (e.g. health expenditure), the first-best can
indeed be implemented by a tax on that expenditure at the young age and to make
a lump-sum transfer of the same amount to the contemporary old —at the steady
state, redistribution actually takes place, whenever there is demographic growth.
However, resorting to a tax on health expenditures is actually not needed, in this
case as well (and even when both types of efforts are simultaneously available to
the agents) the first policy based on announcements of a lump-sum tax suffices to
implement the first-best.

Our paper can be related to the growing literature dealing with endogenous longevity
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in overlapping generations setups. Some papers have already emphasized the role
of endogenous longevity in shaping growth and savings patterns (see, for exam-
ple, Chakraborty, 2004) as well as the environment (Jouvet et al., 2007). Other
papers have studied how the golden rule is modified by the introduction of endoge-
nous longevity, inducing the under-accumulation of capital when longevity depends
on public health expenditures (De la Croix and Ponthière, 2008). These papers
differ however from ours in several respects. First, all of them consider health ex-
penditures as a publicly-provided good, so that individuals have no direct control
over their life expectancy. Second, they consider, for a given public policy, either
the competitive equilibrium steady state when the consumption-saving choice has
longevity consequences, as in Chakraborty (2004) or the first-best steady state (as
in De la Croix and Ponthière, 2008), but none of them shows that the laissez-faire
competitive equilibrium steady state with annuitized savings typically differs from
the first-best steady state. In particular, to the best of our knowledge, no paper
has yet established that the combination of private health expenditures and of an
annuity market requires an active fiscal policy if the first-best steady state is to
be implemented as a competitive equilibrium. Moreover, we identify the different
policies required for the implementation of the first-best depending on the specific
form that the life expectancy-increasing effort can take.

The rest of the paper is organized as follows. Section 2 presents the model. Sec-
tion 3 shows for the disutility-effort case that the competitive equilibrium steady
state typically differs from the first-best steady state, and shows how to restore the
first-best. Section 4, does the same but for the expenditure-effort case. Section
5 discusses the case when the two kinds of effort are available to the agents, and
Section 6 concludes.

2. The model

Time is discrete, and at every date t, a generation Gt of identical agents is born.
The size of the generations increases in time at a rate n.4 The typical agents born
at period t lives at least one period and at most two, conditional to a survival
with probability π(et) that he can influence exerting an effort et.5 A period-t agent

4The size of generation t=0 is normalized to be a continuum of mass 1.
5Although agents are identical, we will allow (when relevant) for different agents within the same
generation making different choices. In those cases the choice of, say, effort (but also consumptions

and savings) will be indexed by the agent’s identity i ∈ Gt as in eti. Nonetheless, throughout

the paper we will focus on symmetric allocations (most of the time implicitly to avoid tiresome
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supplies inelastically when young his labor (normalized to 1) for a real wage rate
wt that he can split as he wishes between first period consumption ct0 and saving,
which he can hold in either capital or intrinsically worthless money. His capital
savings kt earn a return rt+1 at t + 1 from a fund in which they are placed and
that lends them in the capital market to firms, while monetary holdings M t bought
at a real price 1

pt
at t are worth 1

pt+1
M t at t + 1. Savings (augmented of their

return) are then used for second period consumption ct1. Note that the probability
of survival π(et) represents also the expected proportion of individuals born at t
and choosing et that survives into the next period and, most importantly, that for
large populations of agents choosing such an effort level et the actual survival rate
will be arbitrarily close to π(et).6 Finally, effort can be costly to agents either in
terms of utility (Section 3) or in terms of an income that could have otherwise been
used for consumption (Section 4). The first case tries to capture the influence on
life expectancy of individual behavioral choices that are unrelated to income but
undesirable per se, while the second case can be simply thought of as standard health
expenditures. Of course, the two types of efforts could be made simultaneously. We
address first the two cases separately mostly for expositional reasons. The general
case will be discussed in Section ?.

Consider first the utility-effort case. The probability of survival π(et) depends on
an effort level et that creates a linear disutility7 γet (where γ represents thus the
intensity of the effort disutility, assumed to be identical across individuals).8 The
probability π is assumed to satisfy

π′(et) > 0

π′′(et) < 0

lim
et→0+

π′(et) = +∞.
(1)

repetitions) so that the index will typically be dropped, as above.
6As a simplification, we will identify expected and actual survival rates throughout the paper. As
stated above, this implicitly requires assuming a sufficiently large population at each period, since

the variance π(e)(1−π(e))/N of the actual survival rate around the expected one π(e) is arbitrarily

close to zero for big enough populations of size N of agents choosing a level of effort e, and would
not be acceptable in the case of small cohorts. A more precise model fully incorporating the exact

random nature of actual survival rates would necessarily be more convoluted and we think that, as

a first approach to the issue, the gain in transparency of working under this assumption more than
justifies the simplification. At any rate, the results from a fully-fledged model are not expected to

depart from those presented here, but to be fair this remains to be checked.
7Note that we obtain the same results by assuming convex disutility of effort. For simplicity of
exposure, we stick to the linear case.
8For the case where, in a static setup, the effort disutility differs across individuals see Leroux

(2008).
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The utility from consumption when young c0 and old c1 is given by twice con-
tinuously differentiable, increasing, strictly concave functions u and v respectively
satisfying the Inada condition, i.e.

u′(c0) > 0 < v′(c1)

u′′(c0) < 0 > v′′(c1)

lim
c0→0+

u′(c0) = +∞ = lim
c1→0+

v′(c1)
(2)

We also assume throughout the paper that the inequality

π(e)π′′(e)v(c1)v′′(c1) ≥ (π′(e)v′(c1))2 (3)

holds everywhere, which is enough to guarantee the quasi-concavity of the objective
functions below, as well as that the first-order conditions are not only necessary but
sufficient to characterize the optimal choices.9 The expected lifetime utility of an
agent born at time t and choosing ct0, ct1, and et is then

U(ct0, c
t
1, e

t) = u(ct0) + π(et)v(ct1)− γet. (4)

Since in this case effort has no impact on the agent’s income, his budget constraints
at periods t and t+ 1 are respectively

ct0 + kt +
1
pt
M t ≤wt

ct1 ≤ rt+1k
t +

1
pt+1

M t
(5)

where wt and rt+1 are the wage and returns to capital savings

Consider now the income-effort case. Here we assume that et is instead an amount
of income that the individual spends in health care, which influences his survival

9This condition can be rearranged to become

π′′(e)

π′(e)
e ·

v′′(c1)

v′(c1)
c1 ≥

π′(e)

π(e)
e ·

v′(c1)

v(c1)
c1

i.e. that the product of the elasticities of π′ and v′ is bigger than the product of the elasticities of

π and v. In other words, the (proportional) marginal increases in survival probability and second
period utility have to be jointly more sensitive to effort and consumption respectively than the

probability and utility themselves, a sort of strong enough concavity of second period expected

utility.
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probability π(et) (with the same properties as before). In this case, in the utility
function above γ = 0 so that the agent’s expected utility from choosing ct0, ct1, and
et is now

U(ct0, c
t
1, e

t) = u(ct0) + π(et)v(ct1) (6)

but the agent bears a cost in terms of real income et not available for consumption
or savings, which reduces the first-period income available for consumption and
saving:

ct0 + kt +
1
pt
M t + et ≤ wt

ct1 ≤ rt+1k
t +

1
pt+1

M t.

(7)

Note that, as opposed to other endogenous longevity models (e.g. Chakraborty
(2004) and De la Croix and Ponthiere (2008)), in the two cases above the level of
effort et is chosen by the individual himself.

Production is standard: at every period, firms produce, out of capital and labor, a
single good that can be either consumed, saved to be used as capital for production
the next period, or in the second case above devoted to a health expenditure. The
production function F (K,L) exhibits constant returns to scale and good and factors
markets are perfectly competitive, so that the wage rate equals the marginal pro-
ductivity of labor and the annuitized marginal productivity of capital remunerates
the latter. Hence, at a competitive equilibrium (in which all the identical agents of
any given generation face the same factor prices, and hence make the same choices,
in particular the same level of capital savings) the factor prices faced by generation
t must satisfy

wt = FL(
kt−1

1 + n
, 1)

rt+1 = FK(
kt

1 + n
, 1)

1
π(et)

(8)

given that, at every period t, aggregate capital Kt equals at equilibrium the previous
period aggregate savings in terms of capital (1+n)t−1kt−1 (for the sake of simplicity
capital is assumed to depreciate completely in one period), aggregate labour Lt
equals (1 + n)t, and marginal productivities are homogeneous of degree 0. Note
that, according to the equations above, capital savings are assumed to be invested
into a fund that lends to firms and the return of which is therefore the marginal
productivity of capital. Since the return to capital savings of any given generation
t is annuitized, it depends on the actual survival rate of that generation as well,
which for an economy with large enough cohorts can be identified to the probability
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of survival π(et), and hence depends on the commonly chosen effort et. Indeed,
the return to the aggregate savings invested in the fund is augmented in such an
equilibrium by the fact that a proportion 1 − π(et) individuals of each generation
does not survive into the next period and therefore profits are to be distributed
among the proportion π(et) of survivors only. This is a crucial feature of our model.

3. Case in which increasing life
expectancy is costly in terms of utility

In this section, we assume that the longevity-enhancing effort has a cost in terms of
utility only.10 We characterize first the laissez-faire competitive equilibrium steady
state, then the first-best steady state, we show that they typically differ, and we
finally find the public intervention that makes them coincide, implementing thus
the latter by means of the former.

3.1. Laissez-faire competitive equilibrium steady state.

We characterize here the competitive equilibrium steady state allocation under
laissez-faire. Any agent’s problem amounts to (i) choose how much to save and
how to allocate his savings between capital and money, and (ii) to choose how
much effort to make in order to increase his chances of surviving into the second
period, that is to say, for an agent born in period t,

max
0≤ct

0,c
t
1,k

t,et,Mt
u(ct0) + π(et)v(ct1)− γet

ct0 + kt +
1
pt
M t ≤ wt

ct1 ≤ rt+1k
t +

1
pt+1

M t.

(9)

This optimization problem is convex, since the objective function is quasi-concave11

and the constrained set is convex. The first-order conditions characterizing therefore

10Think of it as, for instance, the exciting prospect of eating always a healthy diet, never smoking,

non-stop exercising, etc.
11In effect, from

u(c0) + π(e)v(c1)− γe ≤ u(c′0) + π(e′)v(c′1)− γe′
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the solution to this problem12 are
u′(ct0)

π(et)v′(ct1)
0
0

π′(et)v(ct1)− γ

 = λt


1
0
1
1
0

 + µt


0
1

−rt+1

− pt

pt+1

0

 (10)

for some λt > 0 and µt > 0, given the monotonicity of u and v, along with the
budget constraints of the optimization problem above, or equivalently

u′(ct0)
v′(ct1)

= π(et)
pt
pt+1

=π(et)rt+1

ct0 + kt +
1
pt
M t =wt

ct1 = rt+1k
t +

1
pt+1

M t

π′(et)v(ct1) = γ.

(11)

The first equation in the first line equates the marginal rate of substitution (actu-
ally u′(ct

0)
π(et)v′(ct

1)
) between first and second period consumptions to the rate at which

income can be transferred from the first to the second period of life (namely pt

pt+1
);

it determines thus the agent’s optimal level of savings. The second equation in
the first line, on the other hand, requires the absence of arbitrage between the two
saving instruments (money and capital) for the agent to be willing to hold them
both. The second and tird lines are the agent’s budget constraints, and the last
line states that the agent’s optimal level of effort equates the direct marginal cost of

it follows that

u(c0) + π(e)v(c1)− γe
≤ λ[u(c0) + π(e)v(c1)− γe] + (1− λ)[u(c′0) + π(e′)v(c′1)− γe′]
= [λu(c0) + (1− λ)u(c′0)] + [λπ(e)v(c1) + (1− λ)π(e′)v(c′1)]− [λγe+ (1− λ)γe′]

≤ u(λc0 + (1− λ)c′0) + [λπ(e)v(c1) + (1− λ)π(e′)v(c′1)]− γ[λe+ (1− λ)e′]

≤ u(λc0 + (1− λ)c′0) + π(λe+ (1− λ)e′)v(λc1 + (1− λ)c′1)− γ[λe+ (1− λ)e′]

where the last two inequalities follow from the fact that u(c0) and π(e)v(c1) are concave (the latter

under the assumption made in (3) that π(e)π′′(e)v(c1)v′′(c1) ≥ (π′(e)v′(c1))2 holds everywhere).
12The second-order conditions guaranteeing that the first-order conditions are not just necessary

but sufficient as well for a (local, and from the convexity of the problem also) global maximum

have been checked to be satisfied. Details to be added or available upon request.
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increasing effort (the right-hand side) and its marginal benefit (the left-hand side),
i.e. the marginal increase of the survival probability times the utility of second
period consumption.

At a competitive equilibrium of an economy with large enough generations, the two
conditions in (8) equating at every period, the wage rate to the marginal produc-
tivity of labor and the rental rate of capital to its annuitized marginal productivity,
must be satisfied as well. Therefore, adding up the budget constraints of the young
and old alive at any time t, it must hold

ct0 +
π(et−1)
1 + n

ct−1
1 + kt +

1
pt
M t

= FL(
kt−1

1 + n
, 1) + FK(

kt−1

1 + n
, 1)

kt−1

1 + n
+
π(et−1)
pt

M t−1

1 + n

(12)

where (because of the feasibility of the allocation of resources and the constant
returns to scale of the technology) the first three terms of the left-hand side cancel
out with the first two of the right-hand side at equilibrium, so that at any t it must
hold

M t

M t+1
=

1 + n

π(et)
. (13)

Thus, at equilibrium, the individual monetary holdings must always decrease at a
slower pace than in the standard 2-period lifetime case with certainty (where they
decrease every period by a constant factor 1

1+n ). This follows from the fact that
some individuals die at the end of the first period and the claims on resources they
could have made using their monetary savings disappear with them (no one inherits
them).

At a competitive equilibrium steady state the monetary savings held by the agents
must be constant in real terms, i.e. Mt

pt = Mt+1

pt+1 always, and therefore prices must
decrease at the same rate, so that it holds

pt
pt+1

=
1 + n

π(e)
(14)

where e is the steady state level of effort chosen by each individual. Therefore,
the competitive equilibrium steady state under laissez-faire consists of a profile
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c̃0, c̃1, ẽ, k̃, m̃ satisfying

u′(c0)
v′(c1)

= 1 + n = FK(
k

1 + n
, 1)

c0 + k +m = FL(
k

1 + n
, 1)

π(e)
1 + n

c1 = FK(
k

1 + n
, 1)

k

1 + n
+m

π′(e)v(c1) = γ.

(15)

The next proposition establishes the uniqueness of the competitive equilibrium
steady state of this economy.

Proposition 1. In the standard Diamond (1965) overlapping generations economy
with production and money —augmented to allow for the choice of a higher life
expectancy at a cost in terms of utility— the competitive equilibrium steady state
is unique.13

Proof. Assume both c0, c1, k,m, e and c′0, c
′
1, k
′,m′, e satisfy (15). Then from

Fk(
k

1 + n
, 1) = 1 + n = Fk(

k′

1 + n
, 1)

it follows that k = k′, and from

u′(c0)
v′(c1)

= 1 + n =
u′(c′0)
v′(c′1)

if, without loss of generality, c0 < c′0, follows that c1 < c′1, that m > m′ (from the
first budget constraint) and e > e′ (from the second budget constraint). But then

π′(e)v(c1) < π′(e′)v(c′1)

which cannot be, so that c0 = c′0. Similarly, c1 = c′1. It follows then straightfor-
wardly from the equations in (15) that m = m′ and e = e′ as well. Q.E.D.

13Moreover, it is regular solution to the system (15) and hence a continuously differentiable func-

tion of the growth rate n and the disutility rate from effort γ. Just check the adequate Jacobian

at a solution to the system (we did it): it is regular.
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3.2 The first-best steady state.

The first-best steady state maximizes instead the utility of the representative agent
under the feasibility constraint, so that for an economy with large enough genera-
tions14 it is characterized by the solution to the problem

max
0≤c0,c1,k,e

u(c0) + π(e)v(c1)− γe

s.t. c0 +
π(e)
1 + n

c1 + k ≤ F (
k

1 + n
, 1)

(16)

The resource constraint in the optimization problem above requires that the output
per worker (net of capital replacement) allows at any time to satisfy the consumption
of the young and old agents alive that period, the latter being only a proportion

1
1+n of the former because of the population growth of which, moreover, only a
fraction π(e) would have survived, for large enough cohorts. It should be noted
that the optimization problem in (16) is not convex since, although the objective
function of this problem is indeed quasi-concave under (3), the constrained set is
not an upper contour set of a quasi-concave function, but rather of a difference of
two quasi-concave functions —since both the left-hand side and the right-hand side
functions in the constraint in (16) are quasi-concave— which needs not be convex.
Fortunately, this is not a problem since, under the assumptions made, the problem
(16) has a unique solution (see Proposition 2 below) that moreover is interior to
the positive orthant, so that it can be characterized as the only solution to the
first-order conditions satisfying the second-order conditions for a local maximum.15

In effect, the boundary behavior of u, v, and π in (1) and (2) implies that any
solution to the problem (16) above will be interior, and the first-order conditions
characterizing an interior solution to the problem are

u′(c0)
π(e)v′(c1)

0
π′(e)v(c1)− γ

 = λ


1
π(e)
1+n

1− FK( k
1+n , 1) 1

1+n
π′(e)
1+n c1

 (17)

for some λ > 0, given the monotonicity of u and v, along with the resource constraint
in the optimization problem above. Equivalently, the first-best steady state is the

14For the identification of actual and expected survival rates made in the feasibility constraint
below to be acceptable.
15From the absence of non-interior solutions and the uniqueness of the interior one, the local

maximum is necessarily a global maximum.
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only profile (see Proposition 1 below) c∗0, c
∗
1, e
∗, k∗ satisfying the equations:

u′(c0)
v′(c1)

= 1 + n =FK(
k

1 + n
, 1)

c0 +
π(e)
1 + n

c1 + k =F (
k

1 + n
, 1)

π′(e)v(c1) = γ+π′(e)v′(c1)c1.

(18)

The last condition states in this case that the first-best level of effort should be
such that the marginal cost of effort (the right-hand side) should equate its mar-
ginal benefit (the left-hand side). While the marginal benefit is still simply the
marginal increase of the survival probability times the utility of second period con-
sumption, the marginal cost of increasing survival consists now of the sum of the
direct marginal utility cost of increasing effort (namely γ) and an indirect cost (not
internalized by competitive agents) in terms of the additional pressure on resources
(i.e. λπ

′(e)
1+n c1, or equivalently π′(e)v′(c1)c1 from the second first-order condition in

(17)). This latter effect follows from the fact that an increase in everyone’s survival
chances creates an additional demand for the existing resources. This additional
cost of an increased life expectancy is not taken into account by the individuals
when choosing their effort level in a competitive equilibrium under laissez-faire,
which accounts for the departure from the first-best of the competitive equilibrium
steady state.

Under the assumptions made (in particular the concavity of second period utility),
the solution to the first-order conditions (18) is unique, as the next proposition
shows.

Proposition 2. In the standard Diamond (1965) overlapping generations economy
with production —augmented to allow for the choice of a higher life expectancy at
a cost in terms of utility— the first-best steady state is unique.16

Proof. Assume both c0, c1, k, e and c′0, c
′
1, k
′, e′ satisfy the equations (18) character-

izing any solution to the problem (6), so that

F (
k

1 + n
, 1) = 1 + n = F (

k′

1 + n
, 1)

16Moreover, it is regular solution to the system (18) and hence a continuously differentiable func-

tion of the growth rate n and the disutility rate from effort γ. Just check the adequate Jacobian

at a solution to the system (we did it): it is regular.
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from which k = k∗ = k′ for some k∗, and

u′(c0)
v′(c1)

= 1 + n =
u′(c′0)
v′(c′1)

c0 +
π(e)
1 + n

c1 = F (
k∗

1 + n
, 1)− k∗ = c′0 +

π(e′)
1 + n

c′1

π′(e)[v(c1)− v′(c1)c1] = γ = π′(e′)[v(c′1)− v′(c′1)c′1]

Assume without loss of generality that c0 < c′0. Then, since u′′, v′′ < 0, from the
first line above c1 < c′1 as well. Hence from the second line e > e′, since π′ > 0.
But v(c) − v′(c)c is strictly increasing in c, from v′′ < 0, and π(e) decreasing in e,
from π′′ < 0, so that

π′(e)[v(c1)− v′(c1)c1] < π′(e′)[v(c′1)− v′(c′1)c′1]

contradicting the third line above. Hence c0 = c′0. Similarly, c1 = c′1, and hence
from the feasibility condition in (18) also e = e′. Q.E.D.

Moreover, it is straightforward (although tiresome, we did it) to check that the
unique solution to the system (18) satisfies the second-order conditions guarantee-
ing that the solution to the first-order conditions is a strict local maximum. This
combined with the uniqueness established in Proposition 1 above is enough to es-
tablish that the local maximum is indeed global (as already mentioned, uniqueness
is essential, since the constrained set is not necessarily convex).

Note that the equations (15) characterizing the laissez-faire steady state would be
equivalent to those characterizing the first-best steady state in (18)17 if it were not
for the term π′(e)v′(c1)c1 appearing in the last equation on the first-best conditions
(18), but missing from the competitive equilibrium steady state conditions (15).
As a consequence, the laissez-faire competitive equilibrium steady state is not the
first-best steady state, as the next proposition establishes.

Proposition 3. In the standard Diamond (1965) overlapping generations econ-
omy with production and money —augmented to allow for the choice of a higher

17To be more precise they would rather imply the first-best conditions, but under the conditions
guaranteeing the uniqueness of the first-best steady state that amounts to the same thing (up to

a residual determination of m as FL( k
1+n

, 1)− c0 − k if one starts from the first-best).
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life expectancy at a cost in terms of utility— the first-best steady state is not a
competitive equilibrium outcome under laissez-faire.

Proof. Let (c∗0, c
∗
1, k
∗, e∗) be the first-best steady state solution to (18), and (c̃0, c̃1,

k̃, m̃, ẽ) be the laissez-faire competitive equilibrium steady state solution to (15). It
follows trivially from the last equation in each of the systems (18) and (15) that,
should the two steady states coincide, then since

π′(ẽ)v(c̃1) = γ = π′(e∗)[v(c∗1)− v′(c∗1)c∗1] (16)

it would hold also
π′(e∗)v′(c∗1)c∗1 = 0 (17)

which cannot hold for an interior steady state guaranteed by the good behavior at
the boundary of the representative agent’s utility. Q.E.D.

As noted above, the term π′(e)v′(c1)c1 —which from the first-best first order con-
ditions (18) is equivalent to λπ

′(e)
1+n c1 — measures the indirect cost of an increase

in life expectancy implied by the additional pressure put on resources by a bigger
fraction of survivors. This cost is not taken into account by the individuals in a
symmetric competitive equilibrium. In effect, price-taking individuals disregard the
impact of their joint efforts —through a higher life expectancy— on the return to
their own savings. More specifically, they take as given the return to capital rt+1

while it happens to be at equilibrium a function FK( kt

1+n , l)/π(et) of their own com-
mon level of effort et. The same remark holds for the return to monetary savings
which, with perfect foresight, they take as given to be pt/pt+1, while it turns out to
depend at equilibrium on the common level of effort et according to (1 + n)/π(et).
As a consequence, the agents overinvest in their life expectancy with respect to
the efficient level, living in expectation longer lives while saving in terms of capital
the same amount, which leads them to enjoy lower levels of consumption in both
periods, as the following proposition shows.

Proposition 4. In the standard Diamond (1965) overlapping generations economy
with production and money —augmented to allow for the choice of a higher life
expectancy at a cost in terms of utility— the agents consume too little (in both
periods) and devote too much effort to increase their life expectancy at the laissez-

faire competitive equilibrium steady state (c̃0, c̃1, k̃, m̃, ẽ), compared to the first-best
16



steady state (c∗0, c
∗
1, k
∗, e∗), i.e.

c∗1 > c̃1

c∗0 > c̃0

k∗ = k̃

e∗ < ẽ.

(18)

Proof. Firstly, k̃ = k∗ follows trivially from the equalization of the marginal pro-
ductivity of capital to the rate of growth of the population in both the laissez-faire
competitive equilibrium steady state and the first-best steady state.

As for the level of effort e, let us see first that necessarily e∗ ≤ ẽ.
(1) Assume e∗ > ẽ, and assume also that c∗1 ≥ c̃1. Then

π(e∗)
1 + n

c∗1 >
π(ẽ)
1 + n

c̃1 (19)

and hence c∗0 < c̃0 from the equation

c∗0 +
π(e∗)
1 + n

c∗1 = F (
k∗

1 + n
, 1)− k∗ = F (

k̃

1 + n
, 1)− k̃ = c̃0 +

π(ẽ)
1 + n

c̃1 (20)

so that
u′(c∗0) > u′(c̃0). (21)

Moreover, since c∗1 ≥ c̃1, then

1
v′(c∗1)

≥ 1
v′(c̃1)

. (22)

Therefore,
u′(c∗0)
v′(c∗1)

≥ u′(c∗0)
v′(c̃1)

>
u′(c̃0)
v′(c̃1)

(23)

which cannot be since both at the competitive equilibrium steady state and
the first-best steady state these marginal rates of substitution are equal to
the rate of growth of the population 1 + n.

(2) Assume otherwise that e∗ > ẽ and c∗1 < c̃1. Then π′(e∗) < π′(ẽ) since π is
concave, and v(c∗1) < v(c̃1), so that

π′(e∗)v(c∗1) < π′(ẽ)v(c̃1) (24)
17



but then for the last equations in conditions (8) and (15) to hold that would
require

π′(e∗)v′(c∗1)c∗1 < 0 (25)

which cannot be either.
Therefore, necessarily e∗ ≤ ẽ.

Let us see now that e∗ < ẽ indeed.
(1) Assume that e∗ = ẽ and that c∗1 > (<)c̃1. Then

π(e∗)
1 + n

c∗1 > (<)
π(ẽ)
1 + n

c̃1 (26)

and hence c∗0 < (>)c̃0 by (20), from which

u′(c∗0) > (<)u′(c̃0). (27)

Moreover, since c∗1 > (<)c̃1, then

1
v′(c∗1)

> (<)
1

v′(c̃1)
. (28)

Therefore,
u′(c∗0)
v′(c∗1)

> (<)
u′(c∗0)
v′(c̃1)

> (<)
u′(c̃0)
v′(c̃1)

(29)

which again cannot be since both at the competitive equilibrium steady
state and the first best steady state these marginal rates of substitution are
equal to the growth factor of the population 1 + n.18

(2) Assume that e∗ = ẽ and assume moreover that c∗1 = c̃1. Then

π(e∗)
1 + n

c∗1 =
π(ẽ)
1 + n

c̃1 (30)

and hence c∗0 = c̃0, i.e. (c∗0, c
∗
1, e
∗) = (c̃0, c̃1, ẽ) which cannot be by Proposi-

tion 1.
Therefore, necessarily e∗ < ẽ.

Finally, assume c∗1 ≤ c̃1. Then, as previously,

π(e∗)
1 + n

c∗1 <
π(ẽ)
1 + n

c̃1 (31)

18Note that although admittedly repetitive, the argument cannot be collapsed into a single step.
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and hence c∗0 > c̃0 by (20), from which

u′(c∗0) < u′(c̃0). (32)

Moreover, since c∗1 ≤ c̃1, then

1
v′(c∗1)

≤ 1
v′(c̃1)

. (33)

Therefore,
u′(c∗0)
v′(c∗1)

≤ u′(c∗0)
v′(c̃1)

<
u′(c̃0)
v′(c̃1)

(34)

which cannot be since both at the competitive equilibrium steady state and the
first best steady state these marginal rates of substitution are equal to the growth
factor of the population 1 + n.19

Therefore, necessarily c∗1 > c̃1.

As a consquence, since both at the first-best steady state and the laissez-faire com-
petitive steady state, it holds

u′(c∗0)
v′(c∗1)

= 1 + n =
u′(c̃0)
v′(c̃1)

(35)

c∗1 > c̃1 implies c∗0 > c̃0 as well.

Q.E.D.

In the following section, we show how to decentralize the first-best steady state as
a competitive equilibrium.

3.3 Implementation of the first-best steady state as a competitive equi-
librium steady state.

Note that many instances of unhealthy behaviors with a direct link with life ex-
pectancy that do not have an impact on the agent’s budget constraints (like not

19The same remark as in footnote ? applies here.
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exercising or taking prolonged sunbaths) go, for that same reason, untaxed.20 More-
over, in many cases, it is not possible to tax them indirectly either, by taxing, for
example, saving returns (held in terms of either capital or money). In effect, on the
one hand, taxing savings may disincentive the prospect of a high life expectancy
and, thus, it could discourage a healthy behavior. But, on the other hand, taxing
savings distorts the consumption-saving decision, modifying the condition equating
the intertemporal marginal rate of substitution of consumption to the return to sav-
ings in (15), which would make it impossible to coincide with the first-best steady
state.21 Therefore, an alternative type of intervention is needed.

Consider instead the following policy. Announce at each period t to the newborn
generation that in the second period a lump-sum tax or subsidy of an amount
c̃t−1
1 ln π̃t

π̃t−1 will be raised from them or transferred to them respectively, according
to its sign, with c̃t−1

1 being the observed (average of possibly different) second period
consumptions of members of generation t − 1, and π̃t, π̃t−1 being the observed
survival rates of generations t and t − 1. Note that although π̃t, the survival rate
of generation t, is not known at the time t of the announcement (everything else
is), it will crucially be nonetheless known at the time the policy will have to be
implemented in t+ 1.

In the problem that any given agent of period t generation faces now (with the
second period lump-sum tax/subsidy) he clearly takes as given the factor prices
wt, rt+1, the observed past consumptions c̃t−1

1 and the survival rate of the previous
generation π̃t−1. As for the survival rate of his own generation π̃t, whether the agent
thinks of it as being independent of his choice of effort et or not —and in this last case
by how much he thinks he can he influence it— turns out to be a subtler point than
one would have though at first sight. In effect, since the cohorts are supposed to be
large —in particular large enough to justify the identification of actual survival rates
π̃t with expected survival rates π(et)— one would think that each agent would think
of his influence over the actual survival rate as negligible, so that he would maximize
utility assuming π̃t to be constant with respect to et. Nevertheless, proceeding this
way amounts to implicitly assume the following inconsistency from the agent, under
common knowledge of rationality: knowing that all the agents of his generation are

20Others (like smoking and drinking alcohol) do. And others still that could be taxed (like eating
junk food) are not, yet. Nevertheless, harmful behaviors, to one-self or to others, are taxed indeed,

through fines (e.g. for speeding and other instances of dangerous driving).
21For instance, in Leroux (2008), it is shown that, in a static partial equilibrium framework, the
first-best allocation can be restored through a tax on savings or, equivalently, on second period

consumption. In this case, the individual has less incentives to invest in a higher life expectancy

as his second period consumption is distorted downward.
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identical to him, should he think (because of each agent being negligible in his
cohort) that π̃t is constant with respect to his and everybody else’s individual
effort, i.e. that ∂π̃t

∂et (et) = 0 for all et, then he would know that all the agents in his
generation would face the same problem and hence would make the same choice et,
but then he would know also that π̃t would be (arbitrarily close to) π(et), i.e. he
would know that the actual survival rate would depend indeed nontrivially on his
(and everybody else’s common) choice of effort, so that ∂π̃t

∂et (et) 6= 0 for some et !! Is
this enough to justify assuming that the representative agent identifies π̃t to π(et)?
Well, not yet, but it is nonetheless enough to first discard that rational agents
assume ∂π̃t

∂et (et) = 0 for all et. In other words, it is enough to justify assuming that
any rational agent concludes π̃t to be a non-constant function φ of his own effort.
If everybody else, being identical to him, makes exactly the same conjecture about
the dependence of the actual survival rate on his own effort through φ as well,22

then all the agents of any given generation actually face the same problem

max
0≤ct

0,c
t
1,k

t
1,e

t,Mt
u(ct0) + π(et)v(ct1)− γet

ct0 + kt +
1
pt
M t ≤ wt

ct1 ≤ rt+1k
t +

1
pt+1

M t − c̃t−1
1 ln

φ(et)
π̃t−1

(36)

(where the agent substitutes φ(et) to π̃t in the tax), and therefore they make the
same choices, in particular of et so that, for large enough cohorts, π̃t is at every
period indeed π(et). As a consequence, rational agents aware of the fact of all
the agents being identical will conjecture φ to be π, under common knowledge of
rationality. The solution to the problem above is therefore characterized by the

22This is by no means obvious and can be arguably contested. On the one hand, all of them
being identical makes of assuming they making the same conjecture under the same circumstances

only natural but, on the other hand, no condition on any given agent’s φ other than not being

constant can be concluded from rationality and common knowledge of rationality. This is a true
assumption. The problem is that other than this opens the door to arbitrarily distinct individual

conjectures, with the accompanying problem of possible indeterminacy of equilibrium at best, or

of its nonexistence at worst.
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first-order conditions23
u′(ct0)

π(et)v′(ct1)
0
0

π′(et)v(ct1)− γ

 = λt


1
0
1
1
0

 + µt


0
1

−rt+1

− pt

pt+1

c̃t−1
1

π′(et)
π(et)

 (37)

for some λt, µt > 0, along with the budget constraints of the optimization problem
above or, equivalently, by the system of equations

u′(ct0)
v′(ct1)

= π(et)
pt
pt+1

= π(et)rt+1

ct0 + kt +
1
pt
M t = wt

ct1 = rt+1k
t +

1
pt+1

M t−c̃t−1
1 ln

π(et)
π(et−1)

π′(et)v(ct1) = γ + π′(et)v′(ct1)c̃t−1
1

(38)

while, as before, at equilibrium the two conditions (5) determining the wage and
rental rates need to be satisfied as well. Moreover, adding up the budget constraints
of the agents living at any given period t one gets

ct0 +
π(et−1)
1 + n

ct−1
1 + kt +

1
pt
M t =

FL(
kt−1

1 + n
, 1) + FK(

kt−1

1 + n
, 1)

kt−1

1 + n
+
π(et−1)
1 + n

1
pt
M t−1

− π(et−1)
1 + n

(1 + n)tct−2
1 ln

π(et−1)
π(et−2)

.

(39)

and because of the feasibility condition and the constant returns to scale the first
three terms of the left-hand side cancel out with the first two of the right-handside,
so that (39) it is equivalent to

1
pt
M t =

π(et−1)
1 + n

1
pt
M t−1 − π(et−1)

1 + n
(1 + n)tct−2

1 ln
π(et−1)
π(et−2)

(40)

23As a matter of fact, the problem (36) is not convex if φ is π, since the second constraint deter-
mines a non-convex upper contour set (the left-hand side not being quasi-concave). Nonetheless,

the maximum exists, since the constrained set is still compact, and given the boundary behavior of

u, v, and π it must be in the interior of the positive orthant and satisfy the first-order conditions.
The uniqueness of the competitive equilibrium steady state under this policy (which follows from

its coincidence with the unique first-best steady state, see below Proposition 3) guarantees that

at the steady state the agents are maximizing indeed their utility under their given constraints.

22



which, at the steady state, implies again

pt
pt+1

=
1 + n

π(e)
(41)

as the last term in (40) vanishes. Therefore, a competitive equilibrium steady state
under this policy would consist of a profile c̃0, c̃1, ẽ, k̃, m̃ satisfying

u′(c0)
v′(c1)

= 1 + n = FK(
k

1 + n
, 1)

c0 + k +m = FL(
k

1 + n
, 1)

c1 = FK(
k

1 + n
,1)

1
π(e)

k +
1 + n

π(e)
m

π′(e)v(c1) = γ + π′(e)v′(c1)c1.

(42)

which is exactly the first-best steady state system of equations (18). Therefore, the
existence and uniqueness of the first-best steady state guarantees the existence and
uniqueness of the competitive equilibrium steady state implementing it under this
policy.

Note that the value of the tax/susbidy c̃t−1
1 ln π̃t

π̃t−1 is zero at the steady state, so
that no tax or subsidy is actually raised or handed out in that case, keeping the
government budget trivially balanced. As a matter of fact, the mere announcement
of the policy makes the agents modify their choices in such a way that the first-best
steady state is attained in a decentralized way when this was not possible under
laissez-faire. This result is summarized in the next proposition.

Proposition 5. In the standard Diamond (1965) overlapping generations economy
with production and money —augmented to allow for the choice of a higher life
expectancy at a cost in terms of utility— the first-best steady state (c∗0, c

∗
1, k
∗, e∗)

is a competitive equilibrium steady state under a second period a lump-sum tax

(or subsidy if negative) of an amount c̃t−1
1 ln π̃t

π̃t−1 at period t, where c̃t−1
1 and π̃t

are the observed average second period consumptions at t− 1 and survival rate at
t respectively.24

This policy restores the first-best steady state for two reasons. First, adjusting their
effort, the individuals directly reduce (collectively) the tax they face (or increase the

24The actual amount raised or transferred is zero at the steady state.
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subsidy they receive) when old and, second, they adjust their probability of survival
according to the prospect of facing a tax which reduces their future consumption or
a subsidy that increases it. By imposing a lump-sum subsidy or tax on consumption
when old, the planner makes the agents internalize the true consequences for their
own life-expectancy choices and thus provides the incentives to choose the right
level of effort.

4. Case in which increasing life
expectancy is costly in terms of resources

Assume now that the individual can increase his life expectancy at some cost in
terms of resources, so that the individual can divert part of his first period income
away from consumption and saving, in order to increase his chances of survival.
Thus, this effort appears directly in the individual’s first period budget constraint
instead of directly in the individual’s utility. As in the previous case, we will char-
acterize the competitive equilibrium steady state under laissez-faire, the first-best
steady state, and finally the policy that implements the first-best steady state as a
competitive equilibrium outcome.

4.1 Competitive equilibrium steady state under laissez-faire.

The representative agent’s problem under perfect competition is in this case

max
0≤ct

0,c
t
1,k

t,et,Mt
u(ct0) + π(et)v(ct1)

ct0 + kt +
1
pt
M t + et ≤ wt

ct1 ≤ rt+1k
t +

1
pt+1

M t

(46)

As in the utility-effort case, the individual has to decide how much to save as well
as the composition of his savings portfolio in terms of capital and money. The
difference now comes from the fact that, he must decide as well how much of his
income to devote to health expenditures et in order to pin down the optimal (from
his viewpoint) life expectancy. The solution to the agent’s problem is characterized
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by the first-order conditions25
u′(ct0)

π(et)v′(ct1)
0
0

π′(et)v(ct1)

 = λt


1
0
1
1
1

 + µt


0
1

−rt+1

− pt

pt+1

0

 (47)

for some λt, µt > 0, along with the budget constraints in the problem above. Equiv-
alently, agent t’s choice is the solution to

u′(ct0)
v′(ct1)

= π(et)
pt
pt+1

= π(et)rt+1

ct0 + kt +
1
pt
M t + et = wt

ct1 = rt+1k
t+

1
pt+1

M t

π′(et)v(ct1) =π(et)v′(ct1)rt+1.

(48)

At the competitive equilibrium, the wage and rental rate are still determined by the
conditions (5) determining the wage and rental rate of capital, so that the return
to savings invested in capital by a generation depends on the survival rate of that
same generation. Under competitive conditions, the individuals take these variables
as given. Again, from the addition of the budget constraints of the agents alive at
any given period t

ct0 +
π(et−1)
1 + n

ct−1
1 + kt +

1
pt
M t + et =

FL(
kt−1

1 + n
, 1) + FK(

kt−1

1 + n
, 1)

kt−1

1 + n
+
π(et−1)
pt

M t−1

1 + n

(49)

it follows that the feasibility of the allocation is equivalent to

Mt

Mt+1
=

1 + n

π(et)
(50)

25Here the problem is, finally, convex and well behaved. The second-order conditions guaranteeing

the first-order conditions to be sufficient have been checked to be satisfied. Details to be added or

upon request.
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which at a steady state implies also

pt
pt+1

=
1 + n

π(e)
. (51)

Therefore, a competitive equilibrium steady state under laissez-faire consists of a
profile c̃0, c̃1, ẽ, k̃, m̃ such that

u′(c0)
v′(c1)

= 1 + n = FK(
k

1 + n
, 1)

c0 + k +m+ e = FL(
k

1 + n
, 1)

c1 =
1

π(e)
FK(

k

1 + n
, 1)k +

1 + n

π(e)
m

π′(e)v(c1) = (1 + n)v′(c1).

(52)

4.2 First-best steady state.

The first-best steady state results in this case from solving the problem26

max
0≤c0,c1,k,e

u(c0) + π(e)v(c1)

c0 +
π(e)
1 + n

c1 + k + e ≤ F (
k

1 + n
, 1)

(43)

where e denotes the resources devoted to increase the individuals’ life expectancy
(through their probability of survival) as, say, health expenditures, and that enters
directly the feasibility constraint. The solution to the optimization problem above
is characterized by the first-order conditions27


u′(c0)

π(e)v′(c1)
0

π′(e)v(c1)

 = λ


1
π(e)
1+n

1− FK( k
1+n , 1) 1

1+n

1 + π′(e)
1+n c1

 (44)

26Here also the objective function is quasi-concave but the constrained set is not necessarily convex

since it is the upper contour set of a function that is not quasi-concave. Nonetheless, the same

trick as in the previous case (namely, absence of non-interior solutions + uniqueness + SOC’s
guarateeing the solution to the FOC’s to be strict local max = global max) saves the day.
27Here again the SOC’s for the FOC’s to be sufficient were checked to be satisfied. Details to be

added or upon request.
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for some λ > 0, along with the constraint of the problem above. Equivalently, a
first-best steady state consists of a profile c∗0, c

∗
1, e
∗, k∗ satisfying

u′(c0)
v′(c1)

= 1 + n = FK(
k

1 + n
, 1)

c0 +
π(e)
1 + n

c1 + k + e =F (
k

1 + n
, 1)

π′(e)v(c1) = (1 + n)v′(c1) + π′(e)v′(c1)c1.

(45)

Note that the first line is the same condition as the one obtained in the case where
increasing life expectancy is costly in terms of utility in (18): first, the equality
between the inter-temporal marginal rate of substitution and the rate at which con-
sumption can be transferred between the two periods, and second, the maximization
of output net of capital replacement. The feasibility condition in the second line in-
cludes now as an expenditure the resources e devoted to pin down the life expectancy
of the individual, i.e. health expenditures. Thus output net of replacement of used
up capital must be at any period equal to the consumption of young individuals,
plus the consumption of the survivors of the preceding generation, and the health
expenditures.

Finally, the last condition differs from the one obtained in the utility-effort case in
(18). Indeed, the term (1 + n)v′(c1) is now substituted to the term γ in the right-
hand side. As before, this condition still requires that, at the first-best steady state,
the marginal benefit of increasing the life expectancy, π′(e)v(c1), exactly matches
its marginal cost which, in this case, consists of (i) the direct impact that an increase
in health expenditures has on second period consumption —reducing it at a rate
1+n
π(e) and hence reducing second period utility at a rate (1 + n)v′(c1) (first term
on the right-hand side)— and of (ii) the indirect cost (common to both the utility-
effort and the resources-effort cases) in terms of the additional pressure on resources
following from bigger cohorts of survivors (the second term λπ

′(e)
1+n c1 = π′(e)v′(c1)c1

in the right-hand side).

As in the previous case, under the assumptions made (in particular the concavity
of second period utility), the solution to the first- order conditions (45) is unique,
as the next proposition shows.

Proposition 6. In the standard Diamond (1965) overlapping generations economy
with production —augmented to allow for the choice of a higher life expectancy at

27



a cost in terms of income— the first-best steady state is unique.28

Proof. Assume both c0, c1, k, e and c′0, c
′
1, k
′, e′ satisfy the equations (45) character-

izing any solution to the problem (43), so that

F (
k

1 + n
, 1) = 1 + n = F (

k′

1 + n
, 1)

from which k = k∗ = k′ for some k∗, and

u′(c0)
v′(c1)

= 1 + n =
u′(c′0)
v′(c′1)

c0 +
π(e)
1 + n

c1 + e = F (
k∗

1 + n
, 1)− k∗ = c′0 +

π(e′)
1 + n

c′1 + e′

Assume without loss of generality that c0 < c′0. Then, since u′′, v′′ < 0, from the
first line above c1 < c′1 as well. Hence from the second line e > e′, since π′ > 0 and
the identity function is increasing as well. But (45) requires

π′(e)[v(c1)− v′(c1)c1] = (1 + n)v′(c′1)

to be satisfies by both e, c1 and e′, c′1, which cannot be since the left-hand side
increases from e, c1 to e′, c′1 (v(c) − v′(c)c is strictly increasing in c, from v′′ < 0,
and π′(e) decreasing in e, from π′′ < 0), while the right-hand side idecreases from
c1 to c′1. Hence c0 = c′0. Similarly, c1 = c′1, and hence from the feasibility condition
in (45) also e = e′, since the left-hand side is monotone in e. Q.E.D.

Only the last equation in the system above differs from the one in the first-best
system of equations in (45). Indeed, compared to the first-best system (45), the
term π′(e)v′(c1)c1 is missing in (52), which is simply due to the fact that the return
to savings invested in capital, rt+1 = 1

π(et)FK( kt

1+n , l) and in money, pt/pt+1 =
(1 + n)/π(et), are taken as given by the individual under perfect competition. He
does not take into account that, by investing in his longevity, he is also going to
modify the overall return of his savings and thus, his consumption possibilities when
old. As a consequence, the suboptimality of the competitive equilibrium steady state
follows, as the following proposition establishes.

28Moreover, it is a regular solution to the system (8) and hence a continuously differentiable

function of the growth rate n and the disutility rate from effort γ. Just check the adequate

Jacobian at a solution to the system: it is regular.
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Proposition 4. In the standard Diamond (1965) overlapping generations economy
with production and money —augmented to allow for the choice of a higher life
expectancy at a cost in terms of resources— the first-best steady state is not a
competitive equilibrium outcome under laissez-faire.

Proof. Letting (c∗0, c
∗
1, k
∗, e∗) be the first-best steady state solution to (45), and

(c̃0, c̃1, k̃, m̃, ẽ) be the laissez-faire competitive equilibrium steady state solution to
(52), it follows trivially from the last equation in each of the systems (45) and (52)
that should the two coincide, then since

π′(ẽ)v(c̃1) = (1 + n)v′(c̃1) = (1 + n)v′(c∗1) = π′(e∗)[v(c∗1)− v′(c∗1)c∗1] (53)

it would hold also
π′(e∗)v′(c∗1)c∗1 = 0 (54)

which cannot hold for an interior steady state guaranteed by the good behavior at
the boundary of the agent’s utility. Q.E.D.

As in the previous utility-effort case, the fact that the individuals do not take into
account the stress that a higher life expectancy puts on the available resources leads
them to invest too much resources into it compared to what would be the optimal
amount, i.e. ẽ > e∗. The next proposition establishes this.

Proposition 5. In the standard Diamond (1965) overlapping generations economy
with production and money —augmented to allow for the choice of a higher life
expectancy at a cost in terms of resources— the agents devote too much effort
when young to increase their life expectancy and consume too little when old at the
laissez-faire competitive equilibrium steady state (c̃0, c̃1, k̃, m̃, ẽ), compared to the
first-best steady state (c∗0, c

∗
1, k
∗, e∗), i.e.

c∗1 ≥ c̃1
k∗ = k̃

e∗ ≤ ẽ
(55)

Proof. 29 Firstly, k̃ = k∗ follows trivially from the equalization of the marginal
29The proof parallels that of the utility-effort case, but maybe surprisingly has a few twists that
make it significantly different. Notably, a consequence of them is that no relation can be established

between the first period consumptions c̃0 and c∗0, as well as that neither c∗1 > c̃1 nor e∗ < ẽ are

guaranteed anymore.
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productivity of capital to the rate of growth of the population in both the laissez-
faire competitive equilibrium steady state and the first-best steady state.

As for the level of effort e and the second -period consumption c1, let us see first
that necessarily e∗ ≤ ẽ and c∗1 ≥ c̃1.

(1) Assume e∗ > ẽ and c∗1 ≥ c̃1. Then

π(e∗)
1 + n

c∗1 + e∗ >
π(ẽ)
1 + n

c̃1 + ẽ (56)

and hence c∗0 < c̃0 from the equation

c∗0 +
π(e)
1 + n

c∗1 + e∗ = F (
k∗

1 + n
, 1)− k∗ = F (

k̃

1 + n
, 1)− k̃ = c̃0 +

π(ẽ)
1 + n

c̃1 + ẽ (57)

so that
u′(c∗0) > u′(c̃0). (58)

Moreover, since c∗1 ≥ c̃1, then

1
v′(c∗1)

≥ 1
v′(c̃1)

. (59)

Therefore,
u′(c∗0)
v′(c∗1)

≥ u′(c∗0)
v′(c̃1)

>
u′(c̃0)
v′(c̃1)

(60)

which cannot be since both at the competitive equilibrium steady state and
the first best steady state these marginal rates of substitution are equal to
the growth factor of the population 1 + n.

As a consequence, either e∗ ≤ ẽ, or c∗1 < c̃1, or both hold.
(2) Assume that both e∗ ≤ ẽ and c∗1 < c̃1 hold. Then, as previously,

π(e∗)
1 + n

c∗1 + e∗ <
π(ẽ)
1 + n

c̃1 + ẽ (61)

and hence c∗0 > c̃0 by (57), from which

u′(c∗0) < u′(c̃0). (62)
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Moreover, since c∗1 ≤ c̃1, then

1
v′(c∗1)

≤ 1
v′(c̃1)

. (63)

Therefore,
u′(c∗0)
v′(c∗1)

≤ u′(c∗0)
v′(c̃1)

<
u′(c̃0)
v′(c̃1)

(64)

which cannot be since both at the competitive equilibrium steady state and
the first best steady state these marginal rates of substitution are equal to
the growth factor of the population 1 + n.

Therefore, either e∗ ≤ ẽ and c∗1 ≥ c̃1, or e∗ > ẽ and c∗1 < c̃1.
(3) Assume e∗ > ẽ and c∗1 < c̃1. Then v′(c∗1) > v′(c̃1) holds, as well as π′(e∗) <

π′(ẽ) and v(c∗1) < v(c̃1), and hence

π′(e∗)v(c∗1) < π′(ẽ)v(c̃1) (65)

But since,

π′(e∗)v(c∗1) = (1 + n)v′(c∗1) + π(e∗)v′(c∗1)c∗1
π′(ẽ)v(c̃1) = (1 + n)v′(c̃1)

(66)

then necesarily π(e∗)v′(c∗1)c∗1 < 0, which cannot be.

Therefore e∗ ≤ ẽ and c∗1 ≥ c̃1.
Q.E.D.

It is worth noting that, as opposed to what happened in the disutility-effort case,
nothing can be said now about how do the first-period consumptions c∗0 and c̃0
compare. This is simply due to the fact that when e enters the budget constraint, it
gives one additional degree of freedom to the problem, which leaves undetermined
how c∗0 and c̃0 compare.

4.3 Implementation of the first-best steady state as a competitive equi-
librium steady state.

Contrarily to what happened in the utility-effort case, health expenditures can now
be taxed or subsidized directly. This simplifies considerably the implementation of
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the first-best steady state. For instance, assume that the government taxes health
expenditures at a rate σt and hands at t+ 1 a lump-sum transfer T t to agents born
at time t. In this case, the representative agent’s problem becomes

max
ct
0,c

t
1,k

t,et,Mt
u(ct0) + π(et)v(ct1)

ct0 + kt +
1
pt
M t + (1 + σt)et ≤ wt

ct1 ≤ rt+1k
t +

1
pt+1

M t + T t

(67)

The solution to this problem is characterized by the first-order conditions30
u′(ct0)

π(et)v′(ct1)
0
0

π′(et)v(ct1)

 = λt


1
0
1
1

1 + σt

 + µt


0
1

−rt+1

− pt

pt+1

0

 (68)

for some λt, µt > 0, and the budget constraints in the problem above, or, equiva-
lently, by

u′(ct0)
v′(ct1)

= π(et)
pt
pt+1

=π(et)rt+1

ct0 + kt +
1
pt
M t + (1+σt)et = wt

ct1 = rt+1k
t +

1
pt+1

M t + T t

π′(et)v(ct1) = π(et)v′(ct1)rt+1(1 + σt)

(69)

At a competitive equilibrium, the conditions (5) determining the wage and rental
rate of capital still hold. We require also that the government runs a balanced
budget at every period, so that in every period t it must hold

etσt = T t−1π(et−1)
(1 + n)

(70)

where the amount raised by taxes on health expenditures on the left-hand side
matches at every period the amount handed out to the survivors of the previous

30The problem is this time a nicely behaved convex one. No hassles for once.
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generation, on the right-hand side. Finally, adding up the budget constraints of the
agents alive at any given period

ct0+
π(et−1)
1 + n

ct−1
1 + kt +

1
pt
M t + (1 + σt)et =

FL(
kt−1

1 + n
, 1) + FK(

kt−1

1 + n
, 1)

kt−1

1 + n
+
π(et−1)
pt

M t−1

1 + n
+ T t−1π(et−1)

(1 + n)

(71)

it follows that the feasibility condition is again equivalent to

Mt

Mt+1
=

1 + n

π(et)
(72)

which at the steady state requires

pt
pt+1

=
1 + n

π(e)
. (73)

Therefore, the competitive equilibrium steady state is characterized now by a profile
c̃0, c̃1, ẽ, k̃, m̃ satisfying

u′(c0)
v′(c1)

= 1 + n =FK(
k

1 + n
, 1)

c0 + k +m+ (1 + σ)e = FL(
k

1 + n
, 1)

c1 =
1

π(e)
FK(

k

1 + n
, 1)k +

1 + n

π(e)
m+ T

π′(e)v(c1) = v′(c1)(1 + n)(1 + σ)

eσ = T
π(e)
1 + n

.

(74)

Comparing conditions (74) with those characterizing the first-best steady state in
(45), it is straightforward to check that they share the same solution if the tax rate
is31

σ =
π′(e)
1 + n

c1 (75)

31It can be easily verified that an equivalent expression for the optimal tax rate at the first-best

steady state is

σ =
v′(c1)c1

v(c1)− v′(c1)c1

Note, that if v(.) has constant elasticity of substitution, v(x) = xε, this tax takes the form ε/(1−ε)
and depends thus only on the parameter ε and not on the particular value of the steady state second

period consumption c1.
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Therefore, in order to implement the first-best steady state, the government just
needs to announce at the beginning of each period t that (i) health expenditures
are going to be taxed then at a rate

σt =
π′(et−1)

1 + n
ct−1
1

(76)

(which depends only on known variables and cannot be manipulated by individuals
born in period t) and (ii) a lump-sum transfer will be made to period-t agents at
t+ 1 of an amount equal to32

T t = et−1σt
1 + n

π(et−1)
=
π′(et−1)et−1

π(et−1)
ct−1
1 (77)

The lump-sum transfer depends thus on the elasticity of the survival probabil-
ity with respect to health expenditures and on the consumption when old of the
previous generation. Replacing these two expressions into conditions in (74) char-
acterizing the competitive equilibrium steady state with taxes, it is straightforward
to check that at the steady state the conditions coincide with those of the first-
best steady state in (45),33 so that such tax-and-transfers scheme implements the
first-best steady state. This result is summarized in the next proposition.

Proposition 6. In the standard Diamond (1965) overlapping generations economy
with production and money —augmented to allow for the choice of a higher life
expectancy at a cost in terms of resources— the first-best profile (c∗0, c

∗
1, k
∗, e∗)

satisfying (45) is a competitive equilibrium outcome if such expenditure is taxed at
a rate

σt =
π′(et−1)

1 + n
ct−1
1

(78)

for each generation t, and a second period lump-sum transfer is made to each
generation t of an amount

T t =
π′(et−1)et−1

π(et−1)
ct−1
1 . (79)

32Note that the formulation of the transfer T t is defined such that it depends only on variables

which cannot be manipulated by the individuals born in period t. The consequence of such an
assumption is that the budget balance condition, although satisfied at the steady state, will not

be satisfied ex post, outside the steady state.
33Under assumtions guaranteeing the uniqueness of the latter.
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Finally, consider the expected per capita net taxes paid by any given generation t,
i.e. τ t = σtet− π(et)T t (note that the transfer T t is conditional on the individual’s
survival, while the contribution is paid in first period, with certainty). Replacing
for the expressions of σt and T t, it amounts to

τ t = π′(et−1)ct−1
1 [

et

1 + n
− π(et)et−1

π(et−1)
] (80)

which, at the steady state, becomes

τ = π′(e)c1e[
1

1 + n
− 1] < 0. (81)

These expected net taxes are negative simply because of our assumption of pos-
itive demographic growth as (if n = 0, we would also have τ = 0). This is not
incompatible with budget balance at each period, which is guaranteed by (70).

5. Discussion

6. Conclusion

In this paper, we address in a dynamic setup the externality created by expenses or
individual behaviors that have an impact on the individual’s life expectancy. Becker
and Philipson (1998) first showed in a static setup how the individuals’ attempts to
increase the ”quantity” of their life also affect the ”quality” of it in a way that they
do not perfectly anticipate, which typically leads to an inefficient outcome. More
specifically, we show, in this paper, that in an overlapping generations economy
with production à la Diamond (1965) the competitive equilibrium steady state still
differs from the first-best steady state because of this external effect of longevity
on the return to savings, both when individuals can affect their life expectancy
by means of health expenditures, or when they can do it by just improving their
habits in a way that is costly for them in terms of utility (but at no cost in terms
of resources). The externality is created by the fact that individuals do not take
into account that their life expectancy affects the return to their annuitized savings
(held either in money or in capital) and, hence, their consumption possibilities
when old. In this case, they are likely to invest too much in their longevity in
comparison to what would be optimal. We show nonetheless that the first-best
steady state can be decentralized as a competitive equilibrium in both cases if the
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government announces and implements the adequate policy of taxes and transfers,
and we identify this policies.

Still our paper could be extended in several ways. First, we consider a type of effort
which is costly in terms of utility and in terms of resources but we excluded the case
where the effort requires time investment. This would certainly have implications
on the labour supply. Moreover, we assume a perfect annuity market, which may
be far from what is observed in reality; we would certainly relax this assumption in
a extension of this paper.
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