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1 Introduction

We consider the object allocation problem introduced by Shapley and Scarf (1974)

with strict preferences. There is a group of agents, each of whom initially owns

one object.1 A solution reallocates the objects with the condition that each agent

consumes one and only one object. Important real-life examples of this model are

the assignment of campus housing to students (Abdulkadiroğlu and Sönmez, 1999;

Chen and Sönmez, 2002, 2004; and Sönmez and Ünver, 2005) and kidney exchange

(Roth, Sönmez, and Ünver, 2004).

In this context, the “strict core solution” is a central one since it satisfies var-

ious desirable properties. Some characterizations of the solution can be found in

Ma (1994), Svensson (1999), Takamiya (2001), and Miyagawa (2002). Furthermore,

the solution is dominant strategy implementable (Mizukami and Wakayama, 2007)

and Nash implementable when there are at least three agents (Sönmez, 1996). How-

ever, these results do not guarantee that the solution is securely implementable (Saijo,

Sjöström, and Yamato, 2007); note that here, the notion of implementation signifies

double implementation in the two equilibrium concepts. Thus, it is natural to raise

the following question: Can the strict core solution be securely implemented? In

fact, the answer to this question is no (Saijo, Sjöström, and Yamato, 2004, 2007).

Based on the result, this paper seeks solutions that can be securely implemented in

our model.

Our main results consist of two parts. We first focus on the two-agent case.

In this case, we provide a complete characterization of securely implementable so-

lutions; a solution is securely implementable if and only if it is either a constant

solution or a “serial dictatorship.” By a serial dictatorship, we mean that one agent

chooses her best object from among the set of objects, then the second agent chooses

his best object from among the set of remaining objects, then the third agent chooses,

and so on; the order in which agents make their choices is fixed in advance.

Next, we consider the general case where there are more than two agents. In

contrast to the two-agent case, it is hard to characterize the class of securely im-

plementable solutions in the general case. Thus, in the general case, we then pin

down smaller classes of securely implementable solutions by adding some properties.

1In this paper, the sets of agents and objects are fixed. Some studies consider object allocation
problems where either the set of agents or the set of objects varies; for instance, Ergin (2000),
Ehlers, Klaus, and Pápai (2002), and Ehlers and Klaus (2003a) consider house allocation problems
where each agent consumes at most one object, and Klaus and Miyagawa (2001) and Ehlers and
Klaus (2003b) consider multiple assignment problems where agents may consume more than one
object.
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First, we show that the “no-trade solution” is the unique securely implementable

one that satisfies individual rationality (no agent is worse off after trading with other

agents). The no-trade solution is the one that selects the initial endowments for each

preference profile. Second, we prove that a securely implementable solution satisfies

neutrality (symmetric treatment of objects) if and only if it is a serial dictatorship.

Finally, we establish that an efficient solution is securely implementable if and only

if it is a “sequential dictatorship.” For any sequential dictatorship, there exists the

first dictator in every preference profile. However, in contrast to serial dictatorships,

in the sequential dictatorship, the second agent, who chooses his best object from

among the set of remaining objects, is decided by the choice of the first dictator.

Similarly, the third agent is decided by the choices of the previous agents, and so on.

As far as we know, ours is the first result that characterizes the class of sequential

dictatorships in Shapley-Scarf housing markets.

Our model has a close relationship with multiple assignment problems. Klaus

and Miyagawa (2001) show that serial dictatorships are the only ones that satisfy

efficiency and strategy-proofness in the two-agent case. In the general case, Pápai

(2001) and Ehlers and Klaus (2003b) characterize sequential dictatorships by means

of efficiency, strategy-proofness, and non-bossiness. Their characterizations still hold

even if strategy-proofness and non-bossiness are replaced by secure implementability.

On the other hand, it should be noted that the results of Klaus and Miyagawa

(2001), Pápai (2001), and Ehlers and Klaus (2003b) do not hold in our model. This

is because the strict core solution satisfies efficiency, strategy-proofness, and non-

bossiness. Therefore, results in multiple assignment problems cannot directly apply

to our model.

The rest of the paper is organized as follows: Section 2 provides basic notation

and definitions. Section 3 examines the implementability of the strict core solution.

Section 4 addresses the two-agent case. Section 5 analyzes the general case. Section 6

concludes the paper. Appendix contains the proofs of the results omitted from the

main text.

2 Preliminaries

2.1 The model

We denote the set of agents by N = {1, 2, . . . , n}, where 2 ≤ n < +∞. Each agent

i ∈ N owns one object, denoted by i. Thus, N also stands for the set of objects.
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Each agent i ∈ N has a complete and transitive binary relation %i over N , i.e.,

a preference relation. We denote the associated strict preference relation by ≻i and

indifference relation by ∼i. We assume that all preferences are strict; i.e., for each

h, k ∈ N , if h ∼i k, then h = k. Let P denote the set of all strict preferences.

A preference profile is a list of preferences % ≡ (%1, %2, . . . , %n) ∈ PN . We often

denote N \{i} by “−i.” With this notation, (%′
i,%−i) is the preference profile where

agent i has %′
i and agent j ̸= i has %j. Similarly, given S ⊆ N , we denote N \ S

by “−S,” and (%′
S,%−S) is the preference profile where each agent i ∈ S has %′

i

and each agent i /∈ S has %i. We often represent %i by an ordered list of objects as

follows:

%i: h1, h2, h3, . . .

This means that agent i prefers object h1 the most; further, i prefers h1 to h2, h2 to

h3, and so on.

An allocation is a bijection x : N → N . Let x(i) denote the object allocated to

agent i ∈ N . For convenience, we use the notation xi instead of x(i). Let X be the

set of allocations.

2.2 Solutions

A solution is a function f : PN → X that associates an allocation x ∈ X with each

preference profile % ∈ PN . Let fi(%) denote the object allocated to agent i at %.

Let x, y ∈ X and S ⊆ N with S ̸= ∅. Then, x weakly dominates y via S at

% ∈ PN if S =
∪

i∈S{xi}, and xi %i yi for each i ∈ S and xj ≻j yj for some

j ∈ S. The strict core for % ∈ PN is the set of all allocations that are not weakly

dominated by any other allocation at % ∈ PN . The strict core solution is the

solution C : PN → X such that for each % ∈ PN , C(%) is the strict core for %.2

A solution f is constant if there exists x ∈ X such that for each % ∈ PN ,

f(%) = x. In particular, we term the constant solution that selects the initial

endowments for each preference profile as the no-trade solution.

A permutation π on N is a bijection π : N → N . Let ΠN denote the set of all

permutations on N . Given that i ∈ N and S ⊆ N , let b(%i, S) be agent i’s most

preferred object under %i in S, i.e., b(%i, S) ∈ S and for each h ∈ S, b(%i, S) %i h.

A solution f is a sequential choice function if for each % ∈ PN , there exists a

2Under strict preferences, the strict core is a singleton for every preference profile (Roth and
Postlewaite, 1977). Thus, the strict core solution C is well-defined.
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permutation π% ∈ ΠN such that

fπ%(1)(%) = b(%π%(1), N);

fπ%(2)(%) = b(%π%(2), N \ {fπ%(1)(%)});

fπ%(3)(%) = b(%π%(3), N \ [{fπ%(1)(%)} ∪ {fπ%(2)(%)}]);
...

fπ%(n)(%) = b

(
%π%(n), N

\[
n−1∪
i=1

{
fπ%(i)(%)

}])
.

We then say that π%(i) is the i-th dictator at %.

The class of sequential dictatorships is a subclass of sequential choice functions.

For any sequential dictatorship, there exists a unique first dictator who chooses her

best object in every preference profile. However, the second dictator, who chooses his

best object from among the set of remaining objects, is decided by the choice of the

first dictator. Similarly, the next dictator is decided by the choices of the previous

dictators. Formally, a solution f is a sequential dictatorship if it is a sequential choice

function that satisfies the following properties: for each %,%′ ∈ PN , (i) π%(1) =

π%′(1) and (ii) for each j ∈ N \ {1}, if π%(i) = π%′(i) and fπ%(i)(%) = fπ%′ (i)(%′) for

each i ∈ {1, 2, . . . , j − 1}, then π%(j) = π%′(j).

The class of serial dictatorship is a subclass of sequential dictatorships. For any

serial dictatorship, the order in which an agent chooses an object from the set of

remaining objects is fixed. That is, the order does not depend on the choices of the

previous dictators. Formally, a solution f is a serial dictatorship if it is a sequential

dictatorship and there exists π̄ ∈ ΠN such that for each % ∈ PN , π% = π̄.

2.3 Axioms and implementation

We now define our central axioms. The first axiom is a voluntary participation

condition, according to which no agent receives an object that she considers worse

than her endowment.

Individual rationality: For each % ∈ PN and each i ∈ N , fi(%) %i i.

The next axiom states that it is impossible to render an agent better off without

rendering someone else worse off.

Efficiency: For each % ∈ PN , there does not exist x ∈ X such that xi %i fi(%)

for each i ∈ N and xj ≻j fj(%) for some j ∈ N .
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The last axiom states that a solution is defined independently of the names of

the objects. For each % ∈ PN and each π ∈ ΠN , let T (%, π) be a preference profile

%′ such that for each i, j, k ∈ N ,

j %i k ⇐⇒ π(j) %′
i π(k).

Neutrality: For each % ∈ PN , each π ∈ ΠN , and each i ∈ N , fi(T (%, π)) =

π(fi(%)).

We next define some notions of implementation. Let M ≡ M1 × M2 × · · · × Mn

be the message space where Mi is agent i’s message space. A mechanism is a pair

Γ = (M, g), where g : M → X is an outcome function. For each % ∈ PN , let

NEΓ(%) and DSEΓ(%) denote the sets of Nash equilibrium and dominant strategy

equilibrium allocations of Γ at % ∈ PN respectively.

A solution f is Nash implementable if there is a mechanism Γ such that for each

% ∈ PN , f(%) = NEΓ(%). By L(h,%i) ≡ {k ∈ N : h %i k}, we denote that agent

i’s lower contour set of object h ∈ N at %i ∈ P. Maskin (1999) shows that the

following axiom is necessary and almost sufficient for Nash implementation.

Monotonicity: For each %,%′ ∈ PN , if L(fi(%),%i) ⊆ L(fi(%),%′
i) for each

i ∈ N , then f(%) = f(%′).

That is, monotonicity states that if an allocation x is chosen for % and another

preference profile %′ is obtained by expanding each agent’s lower contour set at xi,

then x is also chosen for %′.

A solution f is dominant strategy implementable if there is a mechanism Γ such

that for each % ∈ PN , f(%) = DSEΓ(%). Mizukami and Wakayama (2007) show

that the following axiom is necessary and sufficient for dominant strategy imple-

mentation in many economic environments.

Strategy-proofness: For each % ∈ PN , each i ∈ N , and each %′
i ∈ P, fi(%) %i

fi(%′
i, %−i).

That is, strategy-proofness states that no agent can obtain a benefit by misrepre-

senting her preferences.

Although strategy-proofness and dominant strategy implementability are desir-

able requirements in the light of robust mechanism design, Saijo, Sjöström, and Yam-

ato (2007) show that many strategy-proof (and dominant strategy implementable) so-

lutions admit multiple Nash equilibrium outcomes that are different from the “true”
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outcome, thereby making these solutions somewhat ineffective. In other words, the

existence of “bad” Nash equilibria prevents strategy-proof solutions from working ef-

fectively. The results of the experiments conducted by Cason, Saijo, Sjöström, and

Yamato (2006) support this fact.3 Therefore, Saijo, Sjöström, and Yamato (2006)

developed a new concept, namely, secure implementation. It states that a solution

is securely implementable if there exists a mechanism that implements it through

dominant strategy equilibria and if the set of dominant strategy equilibrium out-

comes coincides with the set of Nash equilibrium outcomes. Formally, a solution is

securely implementable if there exists a mechanism Γ such that for each % ∈ PN ,

f(%) = NEΓ(%) = DSEΓ(%). Saijo, Sjöström, and Yamato (2007) provide a char-

acterization of the class in the abstract setting on the basis of strategy-proofness and

the following additional axiom:4

Rectangular property: For each %, %′ ∈ PN , if fi(%′) = fi(%i, %′
−i) for each

i ∈ N , then f(%) = f(%′).

Proposition 1 (Saijo, Sjöström, and Yamato, 2007). A solution is securely

implementable if and only if it satisfies strategy-proofness and the rectangular prop-

erty.

Before closing this section, we will discuss the relationships among axioms that

are often studied in the literature. It is well known that monotonicity and strategy-

proofness are related to each other in many economic environments. In fact, mono-

tonicity implies strategy-proofness. However, the converse does not hold. Takamiya

(2001) shows that the gap between the two aforementioned axioms is filled by the

next axiom. This axiom states that when each agent unilaterally changes her pref-

erence report, she cannot influence the total allocation without changing her own

consumption.

Non-bossiness: For each % ∈ PN , each i ∈ N , and each %′
i ∈ P, if fi(%) =

fi(%′
i, %−i), then f(%) = f(%′

i,%−i).

It has been shown that non-bossiness and strategy-proofness together imply a

coalitional version of strategy-proofness, which states that no group of agents can

3The laboratory experiment demonstrates that subjects play dominant strategies more fre-
quently in a securely implementable solution, rather than in a non-securely implementable solu-
tion.

4Mizukami and Wakayama (2009) provide an alternative characterization of securely imple-
mentable solutions.
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gain by collusively misrepresenting their preferences. This can be formally explained

as follows:

Coalitionally strategy-proofness: There exists no S ⊆ N with S ̸= ∅, % ∈ PN ,

and %′
S ∈ PS such that (i) fi(%′

S, %−S) %i fi(%) for each i ∈ S, and (ii)

fj(%′
S,%−S) ≻j fj(%) for some j ∈ S.

Takamiya (2001) shows that the converse holds in Shapley-Scarf housing markets

with strict preferences. The above discussions can be summarized as follows:

Fact 1 (Takamiya, 2001). The following three statements are equivalent:

• A solution f satisfies strategy-proofness and non-bossiness.

• A solution f satisfies coalitionally strategy-proofness.

• A solution f satisfies monotonicity.

It should be noted that non-bossiness is much weaker than the rectangular prop-

erty.

Fact 2 (Saijo, Sjöström, and Yamato, 2007). If a solution satisfies the rectan-

gular property, then it satisfies non-bossiness.

From Proposition 1 and Facts 1 and 2, one might infer that the class of securely

implementable solutions is equivalent to the class of coalitionally strategy-proof so-

lutions. Clearly, secure implementability implies coalitionally strategy-proofness and

monotonicity.

Fact 3. If a solution is securely implementable, then it satisfies coalitionally strategy-

proofness and monotonicity.

Proof. It immediately follows from Proposition 1 and Facts 1 and 2.

However, the converse of Fact 3 does not hold. The strict core solution does not

satisfy the rectangular property, although it satisfies coalitionally strategy-proofness

and monotonicity.5

5The fact that the strict core solution does not satisfy the rectangular property will be established
in the next section.
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3 Implementability of the strict core solution

This section examines the implementability of the strict core solution, which is the

central solution in our model because it satisfies the desirable axioms introduced

in Section 2 (except for neutrality and the rectangular property) (Roth, 1982; Bird,

1984). Nash implementability of the strict core solution has been studied by Sömmez

(1996). He establishes that the strict core solution is Nash implementable whenever

there are more than three agents.6 Thus, we discuss the dominant strategy imple-

mentability and secure implementability of the solution.

We first consider the dominant strategy implementability. To the best of our

knowledge, no one has previously attempted to explicitly identify the dominant

strategy implementability of the strict core solution. In order to establish it, we

will exploit the result of Mizukami and Wakayama (2007). They show that if a

solution satisfies strategy-proofness and the following axiom, then it is dominant

strategy implemented by its associated direct revelation mechanism (see Theorem 2

in Mizukami and Wakayama, 2007).

Quasi-strong-non-bossiness: For each % ∈ PN , each i ∈ N , and each %′
i ∈ P,

if fi(%i, %′′
−i) ∼i fi(%′

i, %′′
−i) for each %′′

−i ∈ PN\{i}, then f(%) = f(%′
i,%−i).

Proposition 2. The strict core solution is dominant strategy implemented by its

associated direct revelation mechanism.

Proof. It suffices to show that the strict core solution C satisfies quasi-strong-non-

bossiness. Let % ∈ PN , i ∈ N , and %′
i ∈ P be such that Ci(%i,%′′

−i) ∼i Ci(%′
i,%′′

−i)

for each %′′
−i ∈ PN\{i}. Since preferences are strict, Ci(%i,%′′

−i) = Ci(%′
i, %′′

−i) for

each %′′
−i ∈ PN\{i}. Thus, Ci(%) = Ci(%′

i,%−i). Since C satisfies non-bossiness,

C(%) = C(%′
i, %−i).

The solution is not only dominant strategy implementable, but also Nash im-

plementable, when there are at least three agents. Thus, one might conjecture that

it is securely implementable. However, Saijo, Sjöström, and Yamato (2004) show

that the strict core solution is not securely implementable.7 To see this, consider

the following example:

6In the two-agent case, the strict core solution cannot be Nash implementable. The proof of
this result is available upon request.

7Saijo, Sjöström, and Yamato (2004) illustrate this for the two-agent case. However, we can see
that the strict core solution is not even Nash implementable in the two-agent case. On the other
hand, it is Nash implementable when there are at least three agents. Thus, it is not clear as to
whether the strict core solution is securely implementable when there are three or more agents.
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Example 1. Suppose that N = {1, 2, 3}. Let % ∈ PN and %′
1, %′

2 ∈ P be such

that

%1 : 1, 2, 3; %′
1 : 2, 1, 3;

%2 : 1, 2, 3; %′
2 : 2, 1, 3;

%3 : 3, 2, 1.

Then,

C(%1,%2,%3) = C(%1,%′
2, %3) = C(%′

1, %′
2,%3) = (1, 2, 3);

C(%′
1,%2, %3) = (2, 1, 3).

Since C(%1,%′
2, %3) = C(%′

1,%′
2, %3) and C(%1,%′

2, %3) = C(%1,%2,%3), the rect-

angular property requires that C(%1, %′
2,%3) = C(%′

1,%2,%3). However, since

C(%1, %′
2,%3) ̸= C(%′

1, %2,%3), the strict core solution violates the rectangular

property and is thus not securely implementable.8 ¥

Thus, this paper seeks to identify the solutions that are securely implementable.

4 The two-agent case

In this section, we consider the two-agent case. For each i ∈ N , let

%12
i : 1, 2;

%21
i : 2, 1.

Proposition 3 provides a complete characterization of the class of solutions satisfying

strategy-proofness and the rectangular property in the two-agent case.

Proposition 3. Assume n = 2. A solution satisfies strategy-proofness and the

rectangular property if and only if it is either a constant solution or a serial dicta-

torship.

Proof. It is easy to verify the “if” part. We prove the “only if” part below. Let f

be a solution satisfying the two axioms. We now discuss the following two cases:

8This can be directly derived from Theorem 2 in our paper.
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Case 1: f(%%%12
1 , %%%12

2 ) = (1,2). If f(%12
1 ,%21

2 ) = (2, 1), then f2(%12
1 , %21

2 ) ≻12
2

f2(%12
1 , %12

2 ), which is in violation of strategy-proofness. Therefore, f(%12
1 ,%21

2 ) =

(1, 2).

We first consider the case f(%21
1 ,%12

2 ) = (1, 2). By the rectangular property,

f(%21
1 ,%21

2 ) = (1, 2). Hence, f is constant.

Next, we consider the case f(%21
1 ,%12

2 ) = (2, 1). If f(%21
1 ,%21

2 ) = (1, 2), then, by

the rectangular property, f(%21
1 , %12

2 ) = (1, 2). This is a contradiction. Therefore,

f(%21
1 ,%21

2 ) = (2, 1). Then, f1(%) = b(%1, N) for each % ∈ PN . This implies that

f is a serial dictatorship.

Case 2: f(%%%12
1 , %%%12

2 ) = (2,1). By an argument similar to that in Case 1, we

have that f is either a constant solution or a serial dictatorship.

The two axioms in Proposition 3 are independent. It is easily verifiable that

the strict core solution satisfies strategy-proofness but violates the rectangular prop-

erty. The following solution satisfies the rectangular property but violates strategy-

proofness: for each % ∈ PN ,

f(%) =

{
(2, 1) if % = (%12

1 ,%21
2 );

C(%) otherwise.

By Proposition 1, we immediately obtain the characterization of the class of

securely implementable solutions in the two-agent case.

Theorem 1. Assume n = 2. A solution is securely implementable if and only if it

is either a constant solution or a serial dictatorship.

Considering other axioms, we obtain the following corollary:

Corollary 1. Assume n = 2.

1. An individually rational solution is securely implementable if and only if it is

the no-trade solution.

2. A neutral solution is securely implementable if and only if it is a serial dicta-

torship.

3. An efficient solution is securely implementable if and only if it is a serial

dictatorship.
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5 The general case

In contrast to the two-agent case, in the general case where there are more than two

agents, there exists a securely implementable solution other than constant solutions

and serial dictatorships. To verify this, consider the following example:

Example 2. Let N = {1, 2, 3}. Let f be a solution satisfying the following: for

each % ∈ PN ,

f(%) =

{
(2, 1, 3) if 1 ≻2 3;

(2, 3, 1) if 3 ≻2 1.

It is easy to see that the solution is securely implementable. ¥

It would be expected that there are a lot of securely implementable solutions in

the general case. In fact, as we will see later, in the general case, there are several

different types of securely implementable solutions. Thus, the main purpose of this

section is to characterize the class of securely implementable solutions satisfying a

certain property.

5.1 Individual rationality and neutrality

This subsection first considers the class of securely implementable solutions that

satisfy individual rationality. The next proposition would be helpful in characterizing

the class.

Proposition 4. A solution satisfies individual rationality and the rectangular prop-

erty if and only if it is the no-trade solution.

Proof. Since the “if” part is obvious, it will suffice to show the “only if” part. Let f

be a solution satisfying the two axioms. Let %′ ∈ PN be such that for each i ∈ N ,

b(%′
i, N) = i. By individual rationality, fi(%′) = i for each i ∈ N . Let % ∈ PN .

Then, individual rationality implies that fi(%i,%′
−i) = i for each i ∈ N . Hence,

by the rectangular property, f(%′) = f(%). This implies that f is the no-trade

solution.

It is easy to check that none of the axioms in Proposition 4 are redundant. The

strict core solution satisfies individual rationality but violates the rectangular prop-

erty. A constant solution that is not the no-trade solution satisfies the rectangular

property but violates individual rationality.
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Interestingly, Proposition 4 enables us to pin down the class of securely imple-

mentable solutions satisfying individual rationality without using strategy-proofness.

Thus, we immediately obtain the following result.

Theorem 2. An individually rational solution is securely implementable if and only

if it is the no-trade solution.

Next, we consider the class of securely implementable solutions that satisfy neu-

trality. Svensson (1999) establishes that a solution is strategy-proof, non-bossy, and

neutral if and only if it is a serial dictatorship.9 From the logical relationship between

the rectangular property and non-bossiness, we obtain the following result:

Theorem 3. A neutral solution is securely implementable if and only if it is a serial

dictatorship.

5.2 Efficiency

In this subsection, we characterize the class of securely implementable solutions that

satisfy efficiency. We first provide a characterization of the class of solutions that

satisfy strategy-proofness, the rectangular property, and efficiency.

Proposition 5. A solution satisfies strategy-proofness, the rectangular property,

and efficiency if and only if it is a sequential dictatorship.

Proof. Throughout the proof, we often use the following notation: for each k ∈ N ,

let Nk ≡ {1, 2, . . . , k}.

The “if” part. Let f be a sequential dictatorship. Since it is obvious that f

satisfies efficiency, we show that f satisfies strategy-proofness and the rectangular

property.

• Strategy-proofness: Pick any % ∈ PN . Without loss of generality, we assume

that π%(i) = i for each i ∈ N . Let j ∈ N and %′
j ∈ P. First, let j = 1.

Then, obviously, agent 1 cannot manipulate at %. Next, let j ≥ 2. Note that for

each agent i ∈ Nj−1, she reveals the same preference relation %i at both % and

(%′
j,%−j). By the definition of the sequential dictatorship, this implies that for

each agent i ∈ Nj−1, π%(i) = π(%′
j ,%−j)(i) = i and fi(%) = fi(%′

j,%−j). Therefore,

9Svensson (1999) considers a situation where the total number of objects is at least as great as
the number of agents. Therefore, Theorem 3 holds in this situation.
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π%(j) = π(%′
j ,%−j)(j) = j. Note that

fj(%) = b

(
%j, N

\[
j−1∪
i=1

fi(%)

])
;

fj(%′
j,%−j) = b

(
%′

j, N

\[
j−1∪
i=1

fi(%′
j,%−j)

])
= b

(
%′

j, N

\[
j−1∪
i=1

fi(%)

])
.

Hence agent j cannot manipulate at %.

• Rectangular property: Let %,%′ ∈ PN be such that fi(%′) = fi(%i,%′
−i) for each

i ∈ N . Without loss of generality, we assume that π%′(i) = i for each i ∈ N . We

now use an induction argument.

• Basic step: Let j = 1. Note that π%′(1) = π(%1,%′
−1)(1) = π%(1) = 1. Then,

f1(%′) = f1(%1,%′
−1) implies that b(%′

1, N) = b(%1, N). Therefore,

f1(%′) = b(%′
1, N) = b(%1, N) = f1(%).

• Induction hypothesis: When j = k − 1, π%′(i) = π%(i) = i and fi(%′) =

fi(%) for each agent i ∈ Nk−1.

• Induction step: Let j = k. Note that for each agent i ∈ Nk−1, she reveals

the same preference relation %′
i at both %′ and (%k,%′

−k). Then, by the definition

of the sequential dictatorship, for each agent i ∈ Nk−1,

π%′(i) = π(%k,%′
−k)(i) = i and fi(%′) = fi(%k, %′

−k). (1)

Thus, π%′(k) = π(%k,%′
−k)(k) = k. Then, (1) and fk(%′) = fk(%k, %′

−k) together

imply that

b

(
%′

k, N

\[
k−1∪
i=1

fi(%′)

])
= b

(
%k, N

\[
k−1∪
i=1

fi(%k,%′
−k)

])

= b

(
%k, N

\[
k−1∪
i=1

fi(%′)

])
. (2)

Furthermore, by the induction hypothesis and the definition of the sequential dic-

tatorship, π%′(k) = π%(k) = k. Hence, the induction hypothesis and (2) together

13



imply that

fk(%′) = b

(
%′

k, N

\[
k−1∪
i=1

fi(%′)

])
= b

(
%k, N

\[
k−1∪
i=1

fi(%′)

])

= b

(
%k, N

\[
k−1∪
i=1

fi(%)

])
= fk(%).

The “only if” part. Let f be a solution satisfying the three axioms. We begin by

proving that there exists the first dictator. For each i ∈ N , let %̂i be such that

%̂i : n, n − 1, . . . , k + 1, k, k − 1, . . . , 2, 1.

Let %̂ ≡ (%̂1, %̂2, . . . , %̂n). Without loss of generality, assume that for each i ∈ N ,

fi(%̂) = i. We establish the following claim:

Claim 1. For each k ∈ N and each %Nk
∈ PNk ,

fi(%Nk
, %̂−Nk

) = i ∀ i ∈ N \ Nk;

fk(%Nk
, %̂−Nk

) = b(%k, Nk).

The proof for Claim 1 can be found in Appendix. When k = n, Claim 1 implies

that for each % ∈ PN , fn(%) = b(%n, N). Therefore, agent n is the first dictator.

Now, we show that f is a sequential dictatorship. Since agent n is the first

dictator, we can set π%(1) = n and fn(%) = b(%n, N) for each % ∈ PN . In what

follows, we will establish that there is the second dictator decided by the choice of

the first dictator, i.e., for each % ∈ PN and each a ∈ N , if b(%n, N) = a, there is

an agent j(a) ∈ N \ {n} such that fj(a)(%) = b(%j(a), N \ {a}).
Fix % ∈ PN and a ∈ N such that b(%n, N) = a. Let P|N\{a} denote the set of

all strict preferences %i|N\{a} over N \{a}. Then, let fa :
(
P|N\{a}

)N\{n} → N \{a}
be a solution such that for each %|N\{a} ∈

(
P|N\{a}

)N\{n}
and each i ∈ N \ {n},

fa
i (%|N\{a}) ≡ fi(%a) where %a ∈ PN is a preference profile such that:

• %a
n: a, n, n − 1, . . . , a + 1, a − 1, . . . , 2, 1;

• for each i ∈ N \ {n}, b(%a
i , N) = a and

c %i|N\{a} d ⇐⇒ c %a
i d ∀ c, d ∈ N \ {a}.
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Since f satisfies strategy-proofness, the rectangular property, and efficiency, fa also

satisfies the three axioms. Therefore, by adopting an argument similar to that for

proving that there is the first dictator of f , we can prove that there is a dictator of

fa. Let j(a) ∈ N \ {n} be the dictator of fa. It should be noted that who becomes

j(a) depends only on a due to the definition of fa. Let us consider a preference

profile %′ ∈ PN such that (i) %′
n = %a

n, and (ii) for each i ∈ N \ {n}, b(%′
i, N) = a

and

c %i d ⇐⇒ c %′
i d ∀ c, d ∈ N \ {a}.

We now establish the following claim:

Claim 2. f(%) = f(%′).

The proof for Claim 2 can be found in Appendix. Then, we have

fj(a)(%) = fj(a)(%′) = fa
j(a)(%|N\{a}) = b(%j(a)|N\{a}, N \ {a}) = b(%j(a), N \ {a}),

where the first equation follows from Claim 2; for each i ∈ N \ {n}, %i|N\{a} is a

preference relation over N \ {a} such that

c %i|N\{a} d ⇐⇒ c %i d ⇐⇒ c %′
i d ∀ c, d ∈ N \ {a}.

Hence, we observe that fj(a)(%) = b(%j(a), N \ {a}).
By repeating a similar argument, we can establish that f is a sequential dicta-

torship.

Remark. The proof of Proposition 5, particularly Claim 1, relies on the assumption

that each object is received by only one agent. In the proof, we often infer from the

assumption that since an object is received by an agent, the other agents cannot

receive it. Therefore, our proof does not work in a situation where there is a null

object, which refers to “not receiving any real object” because some agents may

receive the null object simultaneously. However, the existence of the null object

does not matter in a situation where any real object is always preferred to the null

object. Our proof can be extended in an appropriate way to such a situation.10

It is easy to verify that the “only if” part of Proposition 5 does not hold when any

of the three axioms—efficiency, strategy-proofness, and the rectangular property—
10The proof of this result is provided in the supplementary note that is available at the following

webpage: http://www.geocities.jp/takuma wakayama/housingnote.pdf
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is dropped. The strict core solution satisfies efficiency and strategy-proofness but

violates the rectangular property. The no-trade solution satisfies strategy-proofness,

and the rectangular property but violates efficiency. Finally, the following solution

satisfies efficiency and the rectangular property but violates strategy-proofness: let

f be a sequential choice solution such that for each % ∈ P{1,2,3},

(π%(1), π%(2), π%(3)) =

{
(1, 2, 3) if b(%i, N) = b(%j, N) ∀ i, j ∈ N ;

(2, 3, 1) otherwise.

The following result is a characterization of securely implementable solutions

satisfying efficiency and follows easily from Proposition 5.

Theorem 4. An efficient solution is securely implementable if and only if it is a

sequential dictatorship.

It is well-known that strategy-proofness together with non-bossiness implies effi-

ciency as long as no alternative is excluded in advance (Takamiya, 2001); this is an

axiom called ontoness. This axiom can be expressed as follows:

Ontoness: For each x ∈ X, there exists % ∈ PN such that f(%) = x.

Since ontoness is a necessary condition for efficiency, ontoness deems a minimal

efficiency condition. Then, we have the following corollary:

Corollary 2. An onto solution is securely implementable if and only if it is a se-

quential dictatorship.

5.3 Other securely implementable solutions

Thus far, we have considered securely implementable solutions satisfying certain

properties in the general case. Now, we present other securely implementable solu-

tions in the general case.

Example 2 (continued). It can easily be verified that f is securely implementable

but satisfies none of the other axioms. ¥

Example 3. Let N = {1, 2, 3, 4}. Let f be a solution satisfying the following: for

each % ∈ PN ,

f1(%) = b(%1, {1, 2, 3});
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f2(%) = b(%2, N \ {f1(%)});

f3(%) = b(%3, N \ {f1(%), f2(%)});

f4(%) = N \{f1(%), f2(%), f3(%)}.

This solution is securely implementable but satisfies none of the other axioms. ¥

It follows from Examples 2 and 3 that the class of securely implementable solu-

tions is expected to be of complicated form. Thus, the characterization of the class

of securely implementable solutions remains for future research.

6 Concluding remarks

To end our discussion, we mention some open questions that should be addressed

in future research.

1. Other axioms. We succeeded in classifying the securely implementable solu-

tions that satisfy a certain property such as individual rationality, neutrality, and

efficiency in Shapley-Scarf housing markets. Studies of characterizations with regard

to other desirable properties are also interesting; for example, anonymity (Miyagawa,

2002) states that a solution does not depend on the names of agents and objects, and

reallocation-proofness (Pápai, 2000) states that a solution is robust to pairwise ma-

nipulations through reallocations of assignments. Concerning reallocation-proofness,

since it immediately follows from the definition that the rectangular property im-

plies reallocation-proofness, Pápai (2000) and Theorem 4 together imply that any

“hierarchical exchange solution” other than sequential dictatorships is not securely

implementable.11 As mentioned in the above text, identifying the entire class of

securely implementable solutions in the general case still remains an open issue.

2. Coalitional stability. We studied double implementation through dominant

strategy equilibria and Nash equilibria. To study other weak notions of “double

implementation” is an important issue that should be addressed.12 In our model,

Takamiya (2009) shows that the strict core solution is implemented by its associ-

ated direct revelation mechanism in strict strong Nash equilibria. This finding and

Proposition 2 together imply that the solution is doubly implemented through domi-

11See Pápai (2000) for the formal definition of a hierarchical exchange solution. She fully char-
acterizes the solution by four axioms, including reallocation-proofness.

12This approach comes from Bochet and Sakai (2009), who study secure implementation in
allotment economies.
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nant strategy and strict strong Nash equilibria.13 This fact encourages us to provide

the characterization of such solutions in a future research.

3. Random allocation models. This paper discussed a deterministic object allo-

cation model and proved that while a serial dictatorship is securely implementable,

the strict core solution is not. In contrast, in a random allocation model, two so-

lutions related to a serial dictatorship and the strict core solution are equivalent:

Abdulkadiroğlu and Sönmez (1998) establish the equivalence between the random

serial dictatorship and the core solution from random endowment.14 Determining

whether or not the solution is securely implementable and identifying the securely

implementable solutions in the random allocation model are interesting issues.

13Wako (1999) establishes that the strict core solution is strong Nash implementable by con-
structing a “natural” mechanism. However, the mechanism does not implement the solution via
dominant strategy equilibria.

14See Abdulkadiroğlu and Sönmez (1998) for the formal definitions of the two solutions.
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Appendix: Proofs of claims

Proof of Claim 1

In the proof of Claim 1, we often use the following notation: for each S ⊆ N and

each %S ∈ PS, f(%S) ≡ f(%S, %̂−S), i.e., f(%S) denotes the allocation at the

preference profile (%S, %̂−S), where each agent i ∈ S has %i and each agent i /∈ S

has %̂i. We now prove Claim 1 by using an induction argument.

• Basic step: When k = 1, the claim holds: Pick any %1 ∈ P. Note that

f1(%̂N1
) = 1. Since L(1, %̂1) = {1}, L(1, %̂1) ⊆ L(1, %1). Thus, by monotonic-

ity (Fact 3), f(%N1) = f(%̂N1
). Therefore,

fi(%N1) = i ∀ i ∈ N \ N1;

f1(%N1) = 1 = b(%1, N1).

• Induction hypothesis: When k = ℓ−1, it holds that for each %Nℓ−1
∈ PNℓ−1 ,

fi(%Nℓ−1
) = i ∀ i ∈ N \ Nℓ−1; (3)

fℓ−1(%Nℓ−1
) = b(%ℓ−1, Nℓ−1). (4)

• Induction step: Let k = ℓ. In order to show that the claim for k = ℓ holds,

we proceed in three steps.

Step 1: For each %%%Nℓ
∈ PNℓ , if b(%%%ℓ,Nℓ) = ℓ, then fi(%%%Nℓ

) = i for each

i ∈ N \ Nℓ and fℓ(%%%Nℓ
) = b(%%%ℓ,Nℓ).

Let %Nℓ
∈ PNℓ be such that b(%ℓ, Nℓ) = ℓ. Since fℓ(%Nℓ−1

) = ℓ and Nℓ =

L(ℓ, %̂ℓ) ⊆ L(ℓ, %ℓ), by monotonicity (Fact 3), f(%Nℓ
) = f(%Nℓ−1

). Therefore,

fi(%Nℓ
) = i ∀ i ∈ N \ Nℓ;

fℓ(%Nℓ
) = ℓ = b(%ℓ, Nℓ).

Step 2: For each %%%Nℓ
∈ PNℓ , fℓ(%%%Nℓ

) = b(%%%ℓ,Nℓ).

Let %Nℓ
∈ PNℓ . To simplify notation, let b̄ ≡ b(%ℓ, Nℓ). By Step 1, it suffices

to consider the case where b̄ ̸= ℓ.
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Substep 2-1: fℓ(%%%Nℓ
) ∈ Nℓ. By the induction hypothesis and strategy-

proofness, fℓ(%Nℓ−1
) = ℓ %̂ℓ fℓ(%Nℓ

). This implies that fℓ(%Nℓ
) ∈ Nℓ.

Substep 2-2: fℓ(%%%Nℓ
) ̸= ℓ. Suppose, by contradiction, that fℓ(%Nℓ

) = ℓ.

Since b̄ ̸= ℓ, then b̄ ∈ Nℓ−1. Therefore, by the induction hypothesis, there exists

j ∈ Nℓ−1 such that fj(%Nℓ−1
) = b̄. Let %ℓb̄

j ∈ P be a preference relation of agent j

such that

%ℓb̄
j : ℓ, b̄, . . . (5)

We now establish that by applying the rectangular property,

f(%Nℓ−1\{j}, %ℓb̄
j ,%ℓ) = f(%Nℓ−1

). (6)

Let

%′ ≡ (%Nℓ−1\{j}, %ℓb̄
j ,%ℓ, %̂−Nℓ

);

%′′ ≡ (%Nℓ−1
, %̂−Nℓ−1

).

For agent ℓ, since we suppose that fℓ(%Nℓ
) = ℓ,

fℓ(%′′) = fℓ(%Nℓ−1
) = ℓ = fℓ(%Nℓ

) = fℓ(%′
ℓ,%′′

−ℓ), (7)

where the second equality follows from the induction hypothesis. By the induction

hypothesis, fℓ(%Nℓ−1\{j}, %ℓb̄
j ) = ℓ. Thus,

fj(%Nℓ−1\{j},%ℓb̄
j ) ̸= ℓ. (8)

On the other hand, by strategy-proofness and the fact that fj(%Nℓ−1
) = b̄,

fj(%Nℓ−1\{j},%ℓb̄
j ) %ℓb̄

j fj(%Nℓ−1
) = b̄. (9)

By (5), (8), and (9), we have fj(%Nℓ−1\{j},%ℓb̄
j ) = b̄, which implies that

fj(%′′) = fj(%Nℓ−1
) = b̄ = fj(%Nℓ−1\{j}, %ℓb̄

j ) = fj(%′
j,%′′

−j). (10)

Note that for each i ∈ N \ {ℓ, j}, %′
i = %′′

i . Therefore,

fi(%′′) = fi(%′
i, %′′

−i) ∀ i ∈ N \ {ℓ, j}. (11)
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By the rectangular property, (7), (10), and (11) together imply that f(%′) = f(%′′).

Hence, we obtain (6). Then,

b̄ ≻ℓ ℓ = fℓ(%Nℓ−1\{j},%ℓb̄
j ,%ℓ);

ℓ ≻ℓb̄
j b̄ = fj(%Nℓ−1\{j},%ℓb̄

j , %ℓ),

which is a contradiction to efficiency.

Substep 2-3: fℓ(%%%Nℓ
) = b̄. We first consider the case where b(%ℓ, Nℓ\{b̄}) = ℓ.

Then, by the induction hypothesis and strategy-proofness, fℓ(%Nℓ
) %ℓ ℓ = fℓ(%Nℓ−1

).

This result, together with Substeps 2-1 and 2-2, implies that fℓ(%Nℓ
) = b̄.

We next consider the case where b(%ℓ, Nℓ \ {b̄}) ̸= ℓ. Pick any %b̄ℓ
ℓ ∈ P such

that

%b̄ℓ
ℓ : b̄, ℓ, . . . .

Then, by the previous case (b(%ℓ, Nℓ \ {b̄}) = ℓ), fℓ(%Nℓ−1
,%b̄ℓ

ℓ ) = b̄. By strategy-

proofness,

fℓ(%Nℓ
) %ℓ b̄ = fℓ(%Nℓ−1

,%b̄ℓ
ℓ ). (12)

Note that by Substep 2-1, fℓ(%Nℓ
) ∈ Nℓ. Thus, (12) implies that fℓ(%Nℓ

) = b̄.

Step 3: For each %%%Nℓ
∈ PNℓ , fi(%%%Nℓ

) = i for each i ∈ N \ Nℓ.

Let %Nℓ
∈ PNℓ and b̄ ≡ b(%ℓ, Nℓ). By Step 1, it suffices to consider the case

b̄ ̸= ℓ. Let us consider the preference profile %′
Nℓ

∈ PNℓ such that:

P1. %′
ℓ : n, n − 1, . . . , ℓ + 2, ℓ + 1, b̄, ℓ, . . . ;

P2. For each i ∈ Nℓ−1, %′
i : b̄, fi(%Nℓ

), . . .

Note that for each i ∈ Nℓ−1, %′
i is well-defined since fi(%Nℓ

) ̸= b̄ = fℓ(%Nℓ
) by

Step 2.

Substep 3-1: f(%%%Nℓ
) = f(%%%′

Nℓ
). In order to establish f(%Nℓ

) = f(%′
Nℓ

), we

apply the rectangular property. For agent ℓ, by Step 2, fℓ(%Nℓ
) = b(%ℓ, Nℓ) and

fℓ(%Nℓ−1
,%′

ℓ) = b(%′
ℓ, Nℓ). Therefore,

fℓ(%Nℓ
) = b̄ = fℓ(%Nℓ−1

, %′
ℓ). (13)
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Let i ∈ Nℓ−1. Then, by Step 2, fℓ(%Nℓ\{i}, %′
i) = b(%ℓ, Nℓ) = b̄. This implies that

fi(%Nℓ\{i},%′
i) ̸= b̄. By strategy-proofness, fi(%Nℓ\{i}, %′

i) %′
i fi(%Nℓ

), which in turn

implies that

fi(%Nℓ
) = fi(%Nℓ\{i}, %′

i). (14)

Therefore, by the rectangular property, (13) and (14) imply that f(%Nℓ
) = f(%′

Nℓ
).

Substep 3-2: fi(%%%′
Nℓ

) ∈ Nℓ for each i ∈ Nℓ. Suppose, by contradiction,

that there exists j ∈ Nℓ−1 such that fj(%′
Nℓ

) /∈ Nℓ. Note that by Step 2, fℓ(%′
Nℓ

) =

b(%′
ℓ, Nℓ) = b̄. Then, by P1 and P2,

fj(%′
Nℓ

) ≻′
ℓ b̄;

b̄ ≻′
j fj(%′

Nℓ
),

which is a contradiction to efficiency. Thus, fi(%′
Nℓ

) ∈ Nℓ for each i ∈ Nℓ.

Substep 3-3: fi(%%%′
Nℓ

) = i for each i ∈ N \ Nℓ. Suppose, by contradiction,

that there exists j ∈ N \ Nℓ such that fj(%′
Nℓ

) ̸= j. Without loss of generality,

we assume that j is the largest index among those such that fi(%′
Nℓ

) ̸= i. Then,

j > fj(%′
Nℓ

) holds because fi(%′
Nℓ

) = i for each i > j. Note that, by Substep 3-2,

fj(%′
Nℓ

) ∈ N \ Nℓ. Now, let %∗
j ∈ P be such that

%∗
j : n, n − 1, . . . , j + 1, j, b̄, fj(%′

Nℓ
), . . .

By strategy-proofness, we have fj(%′
Nℓ

,%∗
j) %∗

j fj(%′
Nℓ

). If fj(%′
Nℓ

,%∗
j) ≥ j, then

fj(%′
Nℓ

,%∗
j) ≻̂j fj(%′

Nℓ
), which is a contradiction to strategy-proofness. Therefore,

we have either fj(%′
Nℓ

,%∗
j) = b̄ or fj(%′

Nℓ
,%∗

j) = fj(%′
Nℓ

).

Case 1: fj(%%%′
Nℓ

, %%%∗
j) = b̄. By the induction hypothesis and the fact that

j ∈ N \ Nℓ, fj(%′
Nℓ−1

) = j. Then, Nj = L(j, %̂j) ⊆ L(j, %∗
j). Thus, by monotonic-

ity (Fact 3),

f(%′
Nℓ−1

,%∗
j) = f(%′

Nℓ−1
). (15)

It follows from (15) and the induction hypothesis that

fℓ(%′
Nℓ−1

,%∗
j) = ℓ. (16)

By strategy-proofness, fℓ(%′
Nℓ

,%∗
j) %′

ℓ ℓ = fℓ(%′
Nℓ−1

,%∗
j) and fℓ(%′

Nℓ−1
,%∗

j) = ℓ %̂ℓ
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fℓ(%′
Nℓ

,%∗
j), which imply that we have either fℓ(%′

Nℓ
, %∗

j) = b̄ or fℓ(%′
Nℓ

,%∗
j) = ℓ.

Note that fj(%′
Nℓ

, %∗
j) = b̄, and hence, fℓ(%′

Nℓ
, %∗

j) ̸= b̄. Thus,

fℓ(%′
Nℓ

, %∗
j) = ℓ. (17)

By (16) and (17), fℓ(%′
Nℓ−1

,%∗
j) = fℓ(%′

Nℓ
, %∗

j). This result, together with non-

bossiness, implies that

f(%′
Nℓ−1

, %∗
j) = f(%′

Nℓ
,%∗

j). (18)

Further, (15) and (18) together imply that

fj(%′
Nℓ

, %∗
j) = fj(%′

Nℓ−1
) = j,

in contradiction to fj(%′
Nℓ

, %∗
j) = b̄.

Case 2: fj(%%%′
Nℓ

, %%%∗
j) = fj(%%%′

Nℓ
). By non-bossiness, f(%′

Nℓ
,%∗

j) = f(%′
Nℓ

).

Then, since fj(%′
Nℓ

) ∈ N \ Nℓ and fℓ(%′
Nℓ

) = b̄ by Step 2,

b̄ ≻∗
j fj(%′

Nℓ
);

fj(%′
Nℓ

) ≻′
ℓ b̄,

which is a contradiction to efficiency.

By Substeps 3-1, 3-2, and 3-3, we have fi(%Nℓ
) = i for each i ∈ N \ Nℓ. ¤

Proof of Claim 2

Since agent n is the first dictator and b(%n, N) = b(%′
n, N) = a, we have

fn(%) = fn(%′) = a; (19)

N = L(fn(%′),%′
n) = L(fn(%′),%n). (20)

On the other hand, by (19), fi(%′) ̸= a for each i ∈ N \ {n}. This implies that

L(fi(%′), %′
i) ⊆ L(fi(%′), %i) ∀ i ∈ N \ {n}. (21)

Hence monotonicity (Fact 3) together with (20) and (21) implies that f(%) = f(%′).

¤
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