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1 Introduction

Resource allocation in a public goods economy is central in public economics. When
there are multiple public goods, the problem is quite complex. We have to examine
how to allocate scarce resources not only between private consumption and public
goods, but also among the public goods.

In this paper, we consider a resource allocation problem in an economy with
multiple public goods. The allocation mechanism is simple voluntary contribution
(private provision of resources). As a specific feature of our model, we assume private
resources are non-consumable. This is because we focus on resource allocation among
the public goods. If there is only one public good, then the problem is trivial: All
agents contribute all their resources to public good, so an optimal allocation is always
achieved. But if there are multiple public goods, the problem becomes nontrivial even
if private resources are non-consumable. The basic problem, such as “whether or not
is Nash equilibrium allocation Pareto optimal?”, is unsolved in this framework.

This paper investigates the following classical problems of welfare economics in a
multiple public goods economy.

(A) Are Nash equilibrium allocations Pareto optimal? If the answer is “no” in
general, when is it “yes”?

(B) Are any Pareto optimal allocations attainable through Nash equilibrium when
redistribution of private resources is possible?

We provide answers to the problems by establishing a version of fundamental welfare
theorems. With respect to (A), we derive several sufficient conditions for Nash equi-
librium allocations to be Pareto optimal (Proposition 1,2, and 3). To deal with (B),
we first give a characterization of allocations attainable through Nash equilibrium
with transfaer (Theorem 2). This result enables us to derive a necessary and suffi-
cient condition for any Pareto optimal allocation to be achieved by Nash equilibrium
with transfer (Proposition 4).

Next, we discuss an extension of our results to the economy with private consump-
tion. It is well known that when private resource is consumable, Nash equilibrium
allocation is not Pareto optimal even if there is only one public good. This fact
shows difficulty in achieving optimal allocation between private and public goods.
Since we focus on resource allocation among the public goods, we will introduce the
concept of “constraint Pareto optimality” as another criterion of optimality to evalu-
ate an allocation of public goods. Under this optimality concept, we examine welfare
properties of Nash equilibrium allocations with or without transfer. In similar to
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the non-consumable resource case, we show that Nash equilibrium allocation is con-
strained Pareto optimal if all the agents’ preferences are identical, and the necessary
conditions for Nash equilibrium allocation is also sufficient for Nash equilibrium with
transfer in an economy with private consumption.

Our model with non-consumable resources may be regarded as income redistri-
bution game formulated by Nakayama (1980) if the number of public goods is equal
to the one of agents in the economy 1. Nakayama (1980) provide sufficient condi-
tions for Nash equilibrium of income redistribution games to be Pareto optimal. We
extend his results to the public goods economy. Our results admit the possibity of
productions, and are independent of the number of the agents in the economy.

The paper is organized as follows. In section 2, the basic model is introduced, and
the definition of Pareto optimality in our model is provided. Section 3 contains the
formal description of our games. Section 4 introduces allocations corresponding to
Nash equilibrium of the game, and gives a necessary condition for Nash equilibrium
allocation. Section 5 contains several sufficient conditions for the first welfare theo-
rem. In section 6, we investigate the possibility of the second welfare theorem in our
economy. Section 7 extends our model to the case of consumable private resources,
and discuss the results.

2 The Basic Economy

Our description of the economy with public goods follows Aumann, Kurz, and Ney-
man [1], [2]. There are one non-consumable resources and m public goods. Public
goods are produced from resources. The production technology is represented by a
production function F : Rm

+ → Rm
+ such that for any x = (x1, . . . , xm) ∈ Rm

+

F (x) =


f1(x1)

...
fm(xm)

 ,

where xi is resource input and fi is production function for public good i (i =
1, . . . ,m). Let H be a set of agents whose cardinality is n, i.e., |H| = n. The agent
h is characterized by the pair (uh, eh) of utility function uh : Rm

+ → R and initial
endowment of resources eh.

Definition 1. A public goods economy E is a list of the set of agents H, the production

1Then the public good i should be interpreted as the redistributed income of agent i.
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technology F , and the agents’ characteristics (uh, eh):

E =
(
H,F, (uh, eh)h∈H

)
.

We shall assume the standard convex environments.

Assumption 1.

(i) fi is increasing, continuous, and concave for i = 1, . . . ,m.

(ii) uh is increasing, continuous and strictly quasi concave for every h ∈ H.

(iii) eh ≥ 0 for all h ∈ H.

Let ē be the total resources of E ; ē :=
∑

h eh. The set of feasible resource input
vectors is denoted by C(ē):

C(ē) :=
{

x = (x1, . . . , xm) ∈ Rm
+

∣∣∣∣ m∑
i=1

xi ≤ ē

}
The feasible set of public goods bundle in E is denoted by A(E):

A(E) := {g ∈ Rm
+ | g ≤ F (x) for some x ∈ C(ē) }.

Definition 2. A feasible allocation g is Pareto optimal if there exists no g′ ∈ A(E)
such that uh(g′) ≥ uh(g) for any h ∈ H and uh(g′) > uh(g) for some h ∈ H.

Remark 1. Suppose all of the utility functions uh and the production functions fi

are smooth and concave. Then a feasible allocation g∗ ∈ Rm
++ is Pareto optimal if

and only if there exists λ ∈ Rn
+ such that

1
∇F (x∗)

=
∑
h∈H

λh∇uh(g∗)

where 1
∇F (x∗) :=

(
1

f ′
1(x∗

1)
, . . . , 1

f ′
1(x∗

m)

)
and g∗ = F (x∗).
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3 The Public Goods Games

In this section, we formulate voluntary contribution to public goods as a strategic
form game. Let xh

i be a contribution (resource input) to public good i of agent h,
and xh = (xh

1 , . . . , xh
m) be a contribution vector of agent h.

Given total resources ē, the set of feasible resource allocation vectors is denoted
by T (ē);

T (ē) :=
{

t = (th)h∈H ∈ Rn
+

∣∣∣∣ ∑
h∈H

th = ē

}
.

Given the resource allocation t ∈ T (ē), a contribution xh of agent h is feasible if∑
i x

h
i ≤ th. Let Xh(th) be a set of feasible contribution of agent h;

Xh(th) :=
{

xh = (xh
1 , . . . , xh

m) ∈ Rm
+

∣∣∣∣ m∑
i=1

xh
i ≤ th

}
.

Let X(t) be a set of profiles of feasible contributions; X(t) :=
∏

h∈H Xh(th). For any
x ∈ X(t), let x̄ = (x̄1, . . . , x̄m) be a total contribution (aggregate resource inputs);
x̄ :=

∑
h∈H xh. For any x = (xh)h∈H ∈ X(t), let x−h be the list (xk)k∈H\{h}.

The payoff functions are defined as follows:

Uh(x) := uh ◦ F (x̄) = uh

(
f1

( ∑
j∈H

xj
1

)
, . . . , fm

(∑
j∈H

xj
m

))
for h ∈ H

U(x) :=
∏
h∈H

Uh(x).

Definition 3. Given t ∈ T (ē), a public goods game Gt(E) consists of the set of player
H, the set of strategy profiles X(t), and the payoff function U :

Gt(E) = (H,X(t), U).

Definition 4. A strategy profile x ∈ X(t) is Nash equilibrium of Gt(E) if for any
h ∈ H and any yh ∈ Xh(th)

Uh(x) ≥ Uh(yh, x−h)

For consistency, we shall prove the existence of Nash equilibrium of our games
via a standard fixed point argument.

Theorem 1. There exists a Nash equilibrium of Gt(E) for any t ∈ T (ē).
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Proof . Note that Uh(x) is continuous and strictly quasi concave. Followig standard
arguments, we define the best reply functions such that for any x ∈ X(t),

bh(x−h) := arg max{ Uh(yh, x−h) | yh ∈ Xh(th) }.

B(x) :=
∏
h∈H

bh(x−h).

B : X(t) → X(t) is continuous and X(t) is compact and convex. By Brouwer’s fixed
point theorem, there exists x ∈ X(t) such that x = B(x). Then x is Nash equilibrium
of Gt(E).

Remark 2. In general, a Nash equilibrium of Gt(E) is not unique for t ∈ T (ē).

4 Nash Equilibrium Allocation

The goal of this section is to provide the necessary condition for an allocation to be at-
tainable through Nash equilibrium given a resource distribution (Lemma 1). We first
introuduce the concept of Nash equilibrium allocation which is the one corresponding
to Nash equilibrium of the public goods game.

Definition 5. Given t ∈ T (ē), a public goods bundle g = (g1, . . . , gm) is Nash
equilibrium allocation of Gt(E) if g = F (x̄) for some Nash equilbrium x of Gt(E)
where x̄ =

∑
h∈H xh.

Given g ∈ A(E), we define constrained feasible set Ag(E) as follows:

Ag(E) := {g′ ∈ A(E) | g′i ≥ gi for all i }.

Note that A(E) is compact in Rm and so is Ag(E) for any g ∈ A(E). Given g ∈ Rm
+

and J ⊂ {1, . . . ,m}, we define g(J) = (g1(J), . . . , gm(J)) ∈ Rm
+ as follows;

gi(J) :=

gi (i /∈ J)

0 (i ∈ J).

For notational simplicity, we write g(i) instead of g({i}).
Let us define the key concep in the following discussion.

Definition 6. Let g ∈ A(E) and I := {i | gi > 0}. g satisfies condition (M) if for
any i ∈ I, there exists h ∈ H such that uh(g) ≥ uh(g′) for any g′ ∈ Ag(i)(E).
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If an allocation g satisfies (M), then g may be regarded as a common solution of
several utility maximization problem over some constrained feasible set Ag(i)(E).

The next lemma states that (M) is the necessary condition for Nash equilibrium
allocation.

Lemma 1. Given t ∈ T (ē), let g be a Nash equilibrium allocation of Gt(E). Then g

satisfies condition (M).

Proof . If g is a Nash equilibrium allocation, then uh(g) ≥ uh(g′) for any g′ ∈ Agh(E)
and for all h ∈ H, where gh := F (x̄− xh) and x ∈ X(t) is Nash equilibrium of Gt(E).
Let us define Ih := {i | gi > gh

i }.
We will show that g is a maximizer of uh over Ag(Ih)(E). Suppose uh(g′) > uh(g)

for some g′ ∈ Ag(Ih)(E). Then g(ε) := ε · g′ + (1 − ε) · g ∈ Agh(E) for suffiently small
ε and uh(g(ε)) > uh(g) by quasi concavity of uh, which is contradiction.

Since gi = 0 for i /∈
∪

h Ih, I =
∪

h Ih. Therefore for any i ∈ I, there exists h ∈ H

such that i ∈ Ih, which implies the result.

5 Optimality of Nash equilibrium Allocations

In this section, we investigate optimality of Nash equilibrium allocations. Unfortu-
nately, Nash equlibrium allocations are not Pareto optimal in general even if private
resources are non-consumable.

Example 1 (The case of m = 3, n = 2). Suppose H = {a, b}. The initial endowments
of resources are ea = 2, eb = 1. The utility functions of each agent are ua(g1, g2, x3) =
−(g1−6)2−(g2−6)2−(g3−3)2 and ub(g1, g2, g3) = −(g1−6)2−(g2−3)2−(g3−6)2. The
production functions are f1(x) = f2(x) = f3(x) = x (identity mapping). Note that
the utility functions are smooth, strictly concave, and increasing over A(E). Then
g∗ = (g∗1, g

∗
2, g

∗
3) = (1, 1, 1) is Nash equilibrium allocation, which is Pareto-dominated

by (1 + 2ε, 1 − ε, 1 − ε) for sufficiently small ε > 0. Note that (1) both agents have
different preferences, (2) do not contribute their resources to all the public goods in
the equilibrium, 2 and (3) the number of public goods is 3, which is greater than
2.

When is a Nash equilibrium allocation Pareto optimal? We provide several suffi-
cient conditions for Nash equilibrium allocation to be Pareto optimal.

2The equilibrium strategies of each agent at g∗ are x∗
a = (1, 1, 0), x∗

b = (0, 0, 1), respectively.
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Proposition 1. If all the agents’ preferences for public goods bundle are identical,
then a (unique) Nash equilibrium allocation of Gt(E) for any t ∈ T (ē) is Pareto
optimal.

Proof . Suppose all the agents’ preferences are identical. Then there exists the
(representative) utility function u(g) such that u(g) = uh(g) for all h ∈ H. Let g∗

be Nash equilibrium allocation and I := {i | g∗i > 0}. By Lemma 1, g∗ satisfies
condition (M). Under the identical preference assumption, (M) is equivalent to that
u(g∗) ≥ u(g) for any g ∈ Ag∗(i)(E) and any i ∈ I. We will show that u(g∗) ≥ u(g)
for any g ∈ A(E). Suppose the contrary. Then there exists g′ ∈ A(E) such that
u(g′) > u(g∗). It follows from (M) that g′ /∈ Ag∗(i)(E) for any i ∈ I, which implies
g′j < g∗j for some j /∈ I. It follows from the fact that g∗j = 0 for j /∈ I that g′ /∈ A(E),
which is contradiction. Therefore g∗ ∈ arg max{u(g) | g ∈ A(E) }. The maximizer
g∗ must be unique by strict quasi concavity of u(g).

The next two results are extensions of the sufficient conditions for Pareto opti-
mality in Nakayama (1980) to the public goods economy. Note that our results are
independent of the number of agents.

Proposition 2. Suppose x is Nash equilibrium of Gt(E) and g is the corresponding
Nash equilibrium allocation. If there exists h ∈ H such that xh

i > 0 for all i ∈ I =
{i | gi > 0 }, then g is Pareto optimal.

Proof . Let a be the agent such that xa
i > 0 for all i ∈ I. By the proof of Lemma

1, ua(g) ≥ ua(g′) for any g′ ∈ Ag(I)(E). It follows from Ag(I)(E) = A(E) that there
is no g′ ∈ A(E) that Pareto dominates g.

Proposition 3. In the case of m = 2, any Nash equilibrium allocation of Gt(E) is
Pareto optimal for any t ∈ T (ē).

Proof . Let g be Nash equilibrium allocation of Gt(E) which is not Pareto optimal.
Then there exists g′ such that uh(g′) > uh(g) for all h ∈ H. Suppose g ∈ R2

++.
Without loss of generality, we assume g′ ∈ Ag(2)(E). This implies g /∈ arg max uh(g′′)
subject to g′′ ∈ Ag(2)(E) for any h ∈ H, which contradicts Lemma 1. If g1 = 0 and
g2 > 0, then g′ ∈ Ag(2)(E). So g /∈ arg max uh(g′′) subject to g′′ ∈ Ag(2)(E) for any
h ∈ H, which contradicts Lemma 1. If g1 > 0 and g2 = 0, then g′ ∈ Ag(1)(E). So
g /∈ arg max uh(g′′) subject to g′′ ∈ Ag(1)(E) for any h ∈ H, which contradicts Lemma
1.
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6 Decentralization of Pareto Optimal Allocation

In this section, we consider implementability of Pareto optimal allocations via Nash
equilibrium under resource redistribution policy (transfer). At first, we define the
concept of Nash equilibrium allocation with transfer.

Definition 7. A public goods bundle g is Nash equilibrium allocation with transfer
in E if there exists t ∈ T (ē) such that g is Nash equilibrium allocation of Gt(E).

In the following theorem, we provide characterization of the allocations attainable
through Nash equilibrium with transfer.

Theorem 2. Let g be a feasible allocation of public goods in E. Then g is Nash
equilibrium allocation with transfer if and only if g satisfies condition (M).

Proof . The “only if” part of the theorem is direct consequence of Lemma 1. We
will show the converse. Suppose g is a feasible allocation in E . Then there exists
resource inputs x̄ = (x̄1, . . . , x̄m) ∈ C(ē) such that g = F (x̄). Suppose that for every
i there exists hi ∈ H such that uhi

(g) ≥ uhi
(g) for any g ∈ Ag(i)(E). We define the

resource allocation vector t = (th)h∈H in the following way;

th =
∑
h=hi

x̄i

where th = 0 if h 6= hi for all i. Given t, consider the strategy profile x = (xh)h∈H ∈
X(t) such that

xh
j =

x̄i if j = i and h = hi

0 otherwise.

We show that the strategy profile x is a Nash equilibrium of Gt(E). For this, it is
sufficient to show that xh is best reply to x−h for h ∈ H. Fix h ∈ H arbitrarily. If
h = hi for some i, then the feasible set of public goods by agent h with his resources
th is Ag(i)(E), given the contributions x−h of other agents. By the assumption,
uh(g) ≥ uh(g′) for g′ ∈ Ag(i)(E). Therefore xh maximize Uh(xh, x−h); xh is a best
reply to x−h. If h 6= hi for all i, then xh = (0, . . . , 0), th = 0 and Xh(th) = {(0, . . . , 0)}.
It is clear that xh is best reply to x−h. So x is a Nash equilibrium of Gt(E). Therefore
g is a Nash equilibrium allocation with transfer in E .

Note that (M) is the necessary condition for Nash equilibrium allocation by
Lemma 1. Theorem 2 states that (M) is also sufficient condition for Nash equilibrium
allocation with transfer.

9



We consider the following question,“When is any Pareto optimal allocation Nash
equilibrium allocation with transfer?” By Theorem 2, the answer is as follows: “If
any Pareto optimal allocation satisfies (M), then the second welfare theorem holds”.
But, in general, this property does not hold in this economy: some Pareto optimal
allocation may not be Nash equilibrium allocation with transfer. The next example
shows this fact.

Example 2 (The case of m = n = 3). Suppose H = {a, b, c}. The aggregate initial
resources is ē = 3. We assume identical linear production functions, f1(x) = f2(x) =
f3(x) = x. The utility functions of each agents are as follows:

ua(g1, g2, x3) = −1
2
{(g1 − 6)2 + (g2 − 6)2 + (g4 − 3)2}

ub(g1, g2, x3) = −1
2
{(g1 − 3)2 + (g2 − 5)2 + (g3 − 5)2}

uc(g1, g2, x3) = −1
2
{(g1 − 5)2 + (g2 − 3)2 + (g3 − 5)2}.

Note that the utility functions are smooth, strictly concave, and increasing over A(E).
Then g∗ = (1, 1, 1) is Pareto optimal. For ∇ua(g∗) = (5, 5, 2),∇ub(g∗) = (2, 4, 4),

∇uc(g∗) = (4, 2, 4), and ∇F (g∗) = (1, 1, 1), so 1
∇F (g∗) = 1

14∇ua(g∗) + 3
28∇ub(g∗) +

3
28∇uc(g∗) (See Remark 1).

On the other hand, g∗ does not satisfy the conodition (M). Let α = (ε, ε,−2ε), β =
(−ε, 2ε,−ε), and γ = (2ε,−ε,−ε) for sufficiently small ε > 0. Then the allocations
g∗ + α, g∗ + β, and g∗ + γ belong to Ag∗(3). Furthermore ua(g∗ + α) > ua(g∗),
ub(g∗+β) > ub(g∗), and uc(g∗+γ) > uc(g∗), because ∇ua(g∗)·α > 0, ∇ub(g∗)·β > 0,
and ∇uc(g∗) · γ > 0. That is, g∗ /∈ arg max{uh(g) | g ∈ Ag∗(3)} for h = a, b, c. By
Theorem 2, it is impossible for g∗ to be supported as Nash equilibrium allocation.

To understand the situation more deeply, we look at (M) from a slightly different
angle. In Example 2, all agents agree to reduce the public good 3 (α3, β3, γ3 < 0).
But there is no common plan which all the agents agree, because g∗ is Pareto optimal.
Thus the preferences among the agents may be diverse on the local area Ag∗(3). Based
on this idea, we paraphrase (M) in terms of diversity of preferences of agents.

Definition 8. Suppose g is Pareto optimal. The economy E satisfies Local Non-
Diversity condition at g (g-LND) if there exists no public good i such that for every
h ∈ H, there exists g′ ∈ Ag(i)(E) such that uh(g′) > uh(g). The economy E satisfies
Local Non-Diversity condition (LND) if E satisfies g-LND for all Pareto optimal
allocation g.
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Remark 3. In the above definition, g′ may be different from every agent (g′ may
depend on the index of the agents).

The following theorem states that the second welfare theorem holds in the econ-
omy such that the agents’ prefereces for public goods are not so diverse at Pareto
optimal allocations.

Theorem 3. Any Pareto optimal allocation is Nash equilibrium allocation with trans-
fer in the economy E if and only if E satisfies LND.

Proof . Suppose E satisfies LND. Let g be a Pareto optimal allocation. If g is not
Nash equilibrium allocation with transfer, then it follows from Theorem 2 that for
every h ∈ H there exists g′ ∈ Ag(i)(E) such that uh(g′) > uh(g) for some i, which
contradicts LND.

Suppose E does not satisfy LND. Then for every h ∈ H, there exists g′ ∈ Ag(i)(E)
such that uh(g′) > uh(g) at some Pareto optimal g and for some i. This implies that
g is not maximizer of uh(g) over Ag(i)(E) for all h ∈ H. It follows from Theorem 2
that g is not Nash equilibrium allocation with transfer.

Corollary 1. Suppose that one of the following conditions holds:

(i) all the agents’ preferences for public goods bundle are identical,

(ii) m = 2.

Then any Pareto optimal allocation in E is Nash equilibrium allocation with transfer
in E.

7 An Extension

In this section, we extend our model to the general one including consumable private
resources. The resource-consumption of agent h is denoted by zh. To avoid the
boundary problem, we assume zh ∈ R (negative consumption is permitted). Let
denote z = (zh)h∈H . The extended utility function of agent h is denoted by ũh(zh, g).
In this section, we assume quasi linearity of preferences and differentiability of utility
and production functions.

Assumption 2.

11



(i) The extended utility function of every agent is quasi linear, i.e., ũh(zh, g) =
zh + vh(g) where vh is increasing, concave, and C1-function.

(ii) fi is increasing, concave, and C1 function, and fi(0) = 0 for i = 1, . . . ,m

An extended public goods economy Ẽ is a list (H, (ũh, eh)h∈H). An extended
public goods game is defined as (H,X, Ũ) where Ũ(x) :=

∏
h∈H Ũh(x) and Ũh(x) :=

ũh(th −
∑m

i=1 xh
i , F (x̄)).

An allocation (z, g) ∈ Rn ×Rm
+ is feasible if

∑
h zh +x ≤ ē and g ≤ F (x) for some

x ∈ C(ē). The set of feasible allocations in Ẽ is denoted by A(Ẽ). The concepts of
Pareto optimality and Nash equilibrium allocation are defined similarly.

Lemma 2. Let x∗ = (xh∗)h∈H be a Nash equilibrium of Gt(Ẽ), (z∗, g∗) be a Nash
equilibrium allocation corresponding to x∗, and x̄∗ be the aggregation of x∗. Then
(z∗, g∗) satisfies the following conditions;

(i) ∂vh
∂gi

(g∗) · f ′
i(x̄

∗
i ) ≤ 1 for all h ∈ H and all i = 1, . . . ,m,

(ii) for any i ∈ I there exists hi such that

∂vhi

∂gi
(g∗) · f ′

i(x̄
∗
i ) = 1

where I := {i|g∗i > 0}.

Proof . The Nash equilibrium x∗ = (xh∗)h∈H is a solutions of the following maxi-
mization problems:

max
xh∈Rm

+

Ũh(xh, x−h∗).

The Karush-Kuhn-Tucker conditions implies

∂Ũh

∂xh
i

(x∗) ≤ 0 ∀i,

with equality for xh∗
i > 0. That is equivalent to

∂vh

∂gi
(g∗) · f ′

i(x̄
∗
i ) ≤ 1 ∀i,

with equality for g∗i > 0. Furthermore g∗i > 0 implies that there exists hi who

contributes the public good i, i.e., xhi∗
i > 0. Thus

∂Ũhi

∂xh
i

(x∗) = 0, which is equivalent

to
∂vhi
∂gi

(g∗) · f ′
i(x̄i) = 1.
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It is well known that when private resource is consumable, Nash equilibrium
allocation is not Pareto optimal even if there is only one public good. This fact
shows difficulty in achieving optimal allocation between private and public goods.
Since we focus on resource allocation among the public goods, we will introduce
another criterion of optimality to evaluate a resource allocation among public goods.
Given an aggregate resource of inputs for public goods, w, define a constrained feasible
set with respect to w, Aw(E), such as

Aw(Ẽ) :=
{

(z, g) ∈ Rn × Rm
+

∣∣∣∣ ∑
h∈H

zh + w ≤ ē and g ≤ F (y) for some y ∈ C(w)
}

.

Definition 9. Let (z, g) be a feasible allocation, x be an input vector such that
g = F (x), and w be an aggregation of x, i.e., w =

∑
i xi. Then (z, g) is constrained

Pareto optimal if there exists no (z′, g′) ∈ Aw(Ẽ) such that ũh(z′h, g′) ≥ ũh(zh, g) for
all h ∈ H with at least one strict inequality.

The next lemma states that constrained optimality may be formulated as some
maximization problem under the assumption of quasi linearity of preferences.

Lemma 3. Let (z∗, g∗) be a feasible allocation such that g∗ = F (x∗). Then (z∗, g∗)
is constrained Pareto optimal if and only if

g∗ ∈ arg max
{∑

h∈H

vh(g)
∣∣∣∣ (z∗, g) ∈ Aw∗

(Ẽ)
}

where w∗ :=
∑m

i=1 x∗
i .

Proof . Under the assumption of quasi linearity of utilities, the feasible allocation
(z∗, g∗) is constrained Pareto optimal if and only if

(z∗, g∗) ∈ arg max
{∑

h∈H

ũh(zh, g)
∣∣∣∣ (z, g) ∈ Aw∗

(Ẽ)
}

.

Since
∑

h zh = ē − x̄∗ for any (z, g) ∈ Aw∗
, that is equivalent to

g∗ ∈ arg max
{∑

h∈H

vh(g)
∣∣∣∣ (z∗, g) ∈ Aw∗

(Ẽ)
}

.

Note that this maximization problem is concave programming. If x∗ 6= 0, then
the Karush-Kuhn-Tucker conditions for this problem is neccesary and sufficient for
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the maximization. That is, g∗ ∈ arg max{
∑

h∈H vh(g) | (z∗, g) ∈ Ax̄∗
(Ẽ)} if and only

if there exists µ∗ > 0 such that (g∗, µ∗) satisfies g∗ = F (x∗),
∑

i x
∗
i = x̄∗, and∑

h∈H

∂vh

∂gi
(g∗) · f ′

i(x
∗
i ) ≤ µ∗ ∀i = 1, . . . ,m

with equality for g∗i > 0.
Proposition 1 can be extended to the case of consumable resource.

Proposition 4. If all the agents’ preferences for public goods bundle are identical,
then Nash equilibrium allocation is constrained Pareto optimal.

Proof . When all the preferences of the agents are identical, it follows from Lemma
2 that

∂vhi
∂gi

(g∗) · f ′
i(x̄i) ≤ 1 for all h ∈ H with equality for i ∈ I. Then the Karush-

Kuhn-Tucker conditions for the maximization problem in Lemma 3 are satisfied when
we set the multiplier µ∗ = n.

We extend Proposition 2 to the consumable resource case under the more stringent
condition. It is insufficient for constrained optimality of Nash equilibrium allocation
that there exists an agent who contributes their resources to all public goods. Nash
equilibrium allocation is constrained optimal if all agents contribute their resources
to all public goods.

Proposition 5. Suppose x∗ is Nash equilibrium of Gt(Ẽ) and (z∗, g∗) is the corre-
sponding Nash equilibrium allocation. If x∗h

i > 0 for all i ∈ I = {i | g∗i > 0 } and all
h ∈ H, then g∗ is constrained Pareto optimal.

Proof . Suppose x∗h
i > 0 for all i ∈ I = {i | g∗i > 0 } and all h ∈ H. Then for all

h ∈ H,
∂vh

∂gi
(g∗) · f ′

i(x̄i) ≤ 1 ∀i

with equaility for i ∈ I. Thus∑
h∈H

∂vh

∂gi
(g∗) · f ′

i(x
∗
i ) ≤ n ∀i,

with equality for i ∈ I. This implies constrained optimality of (z∗, g∗).

What happen when some agent does not contribute to all public goods? Then the
Nash equilibrium allocation is not constrained optimal in many cases: It is “dense”
property that a Nash equilibrium allocation is constrained Pareto suboptimal. See
Appendix for a formal definition of the space of the economy and its topology.
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Proposition 6. Let (z∗, g∗) be Nash equilibrium allocation in Ẽ and x̄∗ be the aggre-
gate inputs for g∗. Suppose that there exists hi ∈ H such that

∂vhi
∂gi

(g∗) · f ′
i(x̄

∗
i ) < 1

for some i ∈ I and |I| ≥ 2 where I := {i|g∗i > 0}. Then the set of the economy in
which (z∗, g∗) is constrained Pareto suboptimal is dense in the space of the economy.

Proof . Suppose the Nash equilibrium allocation (z∗, g∗) is constrained Pareto opti-
mal and

∂vhi
∂gi

(g∗) ·f ′
i(x̄

∗
i ) < 1 for some agent hi and some i ∈ I in the economy Ẽ . We

will show that any sufficiently small perturbation of the utility function vhi
makes

(z∗, g∗) still Nash equilibrium allocation, but constrained suboptimal. We consider
the following perturbation of vhi

:

vε
hi

(g) := vhi
(g) + ε · gi for sufficiently small ε > 0.

Then
∂vε

hi
∂gi

(g) 6= ∂vhi
∂gi

(g) and
∂vε

hi
∂gj

(g) =
∂vhi
∂gj

(g) for j 6= i. It follows from
∂vε

hi
∂gi

(g∗) ·
f ′

i(x̄
∗
i ) < 1 for sufficiently small ε that (z∗, g∗) is a Nash equilibrium allocation under

the perturbed utility vε
hi

. On the other hand, because (z∗, g∗) is constrained optimal
under the unperturbed utilty vhi

,∑
h∈H

∂vh

∂gi
(g∗) · f ′

i(x
∗
i ) =

∑
h∈H

∂vh

∂gj
(g∗) · f ′

j(x
∗
j ) for j ∈ I, j 6= i.

It follows from
∂vε

hi
∂gi

(g∗) 6= ∂vhi
∂gi

(g∗) that (z∗, g∗) is not constrained Pareto optimal
under the perturbed utility vε

hi
.

Next, we discuss implementability of constrained optimal allocation as Nash equi-
librium allocation with transfer. We begin with extension of Theorem 2 to the con-
sumable resource case. In similar to Theorem 2, necessary conditions for Nash equi-
librium allocation in Ẽ are also sufficient for Nash equilibrium with transfer. The
proof strategy is similar to that of Theorem 3 in essence.

Theorem 4. Let (z∗, g∗) be a feasible allocation and x̄∗ be an input vector for g∗,
i.e., g∗ = F (x̄∗). Then (z∗, g∗) is a Nash equilibrium allocation with transfer if and
only if

(i) ∂vh
∂gi

(g∗) · f ′
i(x̄

∗
i ) ≤ 1 for all h ∈ H and all i = 1, . . . ,m,

(ii) for any i ∈ I there exists hi such that

∂vhi

∂gi
(g∗) · f ′

i(x̄
∗
i ) = 1

where I := {i|g∗i > 0}.
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Proof . (“if” part) We define the resource allocation vector t = (th)h∈H as

th =

z∗h + x̄∗
i if h = hi for some i

z∗h otherwise.

Construct a strategy profile (x∗h)h∈H in the following way:

x∗h
j =

x̄∗
i if h = hi and j = i

0 otherwise.

Then (x∗h)h∈H is Nash equilibrium of the extended public goods game whose outcome
is (z∗, g∗).

(“only if” part) If ∂vh
∂gi

(g∗)·f ′
i(x̄

∗
i ) > 1 for some h and i, then z∗h is not supported

as a best reply. If ∂vh
∂gi

(g∗) · f ′
i(x̄

∗
i ) < 1 for any h ∈ H and some i ∈ I, then g∗i is not

supported as Nash equilibrium allocation.

In similar to Proposition 6, a constrained optimal allocation is not Nash equilib-
rium allocation with transfer in many cases.

Proposition 7. The set of the economy in which a constrained Pareto optimal al-
location is not Nash equilibrium allocation with transfer is dense in the space of the
economy.

Proof . Suppose the constrained optimal allocation (z∗, g∗) is Nash equilibrium allo-
cation with transfer. Then we consider the perturbation of the production functions
as follows: for sufficiently small εi > 0,

fε
i (x) := fi(x) + εi · x for all i ∈ I := {i|g∗i > 0}.

If we set (εi)i∈I such that

εi

εj
=

∑
h∈H

∂vh
∂gj

(g∗) · f ′
j(x

∗
j )∑

h∈H
∂vh
∂gi

(g∗) · f ′
i(x

∗
i )

∀i, j ∈ I,

then ∑
h∈H

∂vh

∂gi
(g∗) · fεi′

i (x∗
i ) =

∑
h∈H

∂vh

∂gj
(g∗) · fεj ′

j (x∗
j ) ∀i, j ∈ I.

Thus (z∗, g∗) is constrained Pareto optimal in the perturbed economy.
On the other hand, since (z∗, g∗) is also Nash equilibrium allocation with transfer,

for any i ∈ I, ∂vh
∂gi

(g∗) · f ′
i(x

∗
i ) = 1 for some agents by Theorem 4. It follows from

εi > 0 that ∂vh
∂gi

(g∗) ·fεi′
i (x∗

i ) > 1 for the agents. Thus (z∗, g∗) is not Nash equilibrium
with transfer under the perturbation of production functions.
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8 Concluding Remarks

We study Nash equilibrium allocations of voluntary contribution of non-consumable
private resources in an economy with multiple public goods. We give us the several
sufficient conditions for Nash equilibrium allocations to be Pareto optimal (the first
welfare theorem). We provide us with also the necessary and sufficient condition
for Pareto optimal allocations to be Nash equilibrium allocations with transfer (the
second welfare theorem). We point out that both the first and the second welfare
theorems always hold when all the agents’ preferences for public goods bundle are
identical, or the number of public goods is two (Proposition 1, 3 and Corollary 1).
The economy with identical preferences or with two public goods may be a special
case. We cannot assume these settings without loss of generality.
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A Appendix: the space of the economy

Let C 1(Kα) be a set of C1-functions on a compact set Kα which is a subset of
Euclidean space Rα, and ‖ · ‖ be a norm on C 1(Kα);

‖f‖ := sup
x∈K

|f(x)| + sup
x∈K

|∇f(x)|α

where |∇f(x)|α := max
{ ∂f

∂x1
(x), . . . ,

∂f

∂xα
(x)

}
. Let U ⊂ C 1(Km) be a set of utility

functions;
U :=

{
v ∈ C 1(Km) | v is increasing and concave.

}
Let F ⊂ C 1(K1) be also a set of production functions;

F :=
{
f ∈ C 1(K1) | f is increasing, concave, and f(0) = 0.

}
Then we define the space of economies as U n ×Fm where U n(resp.Fm) is n (resp.
m) fold of U (resp. F ).
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