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Abstract

We provide an extension of the Condorcet Theorem. Our madkldes both the
Nitzan-Paroush framework of “unequal competencies” arahia&s model of “corre-
lated voting by the jurors.” We assume that the jurors beHmfermatively”; that
is, they do not make a strategic use of their information itingp Formally, we
consider a sequence of binary random variallles (X, Xy, ..., Xn, ...) with range in
{0,1} and a joint probability distributio®. The pair(X,P) is said to satisfy th€on-
dorcet Jury TheorentCJT) if lim ... P (£, X > ) = 1. For a general (dependent)
distribution P we provide necessary as well as sufficient conditions foCth€ that
establishes the validity of tHeéJT for a domain that strictly (and naturally) includes
the domain of independent jurors. In particular we providellecharacterization of
the exchangeable distributions that satisfy@id. We exhibit a large family of dis-
tributions P with liminf e 7rigy 24 Zj4CoMX;, X;j) > O that satisfy the€JT. We
do that by “interlacing” carefully selected paiiX,P) and(X’,P’). We then proceed
to project the distribution® on the planesp,y), and(p,y*) wherep = liminf,_. Py,

y = liminfy .. E(Xn = Pn)%, ¥* = liminfp_ E[Xy — Py, Pr = (P1+ P2,-.. + Pn)/N,

and X, = (Xg + Xg,... + Xn)/n. We determine all feasible points in each of these
planes. Quite surprisingly, many important results on thesfbility of theCJT are
obtained by analyzing various regions of the feasible s#tése planes.

In the space? of all probability distributions org, = {0,1}, let &, be the set
of all probability distributions in%? that satisfy th&€JT and letZ?, = 22\ &, be the
set of all probability distributions i? that do not satisfy th€JT. We prove that
both &7, and %2, are convex sets and th&#, is dense inZ (in the weak topology).
Using an appropriate separation theorem we then providdfiae &inctional that
separates these two sets.

We thank Marco Scarsini and Yosi Rinott for drawing our aitemto de Finetti’s theorem.
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Introduction

The simplest way to present our problem is by quoting Coretsrelassic result (see
Young (1997)):

Theorem 1. (CJT—Condorcet 1785) Let n voters (n odd) choose between
two alternatives that have equal likelihood of being cotr@priori. Assume
that voters make their judgements independently and thet bas the same
probability p of being correc(% < p < 1). Then, the probability that the
group makes the correct judgement using simple majority isul

n

[nt/h(n—h)1Jp(1—p)" "
h=(n+1)/2

which approache& as n becomes large.

We generalize Condorcet’s model by presenting it gsume with incomplete infor-
mationin the following way: Letl = {1,2,...,n} be a set of jurors and ldd be the
defendant. There are tvatates of natureg — in whichD is guilty, andz— in whichD is
innocent. Thus the set of states of natur8is {g, z}. Each juror has an action s&with
two actions:A = {c,a}. The actiorc is to convict D The actiora is to acquit D. Before
the voting, each jurorgets a private random sigriale T' := {t! t!}. In the terminology
of games with incomplete informatiof; is thetype sebf jurori. The interpretation is
that jurori of typeté thinks thatD is guilty while jurori of typet! thinks thatD is innocent.
The signals of the jurors may be dependent and may also depetit the state of na-
ture. In our model the jurors aciriformatively (not “strategically”); that is, the strategy
of juroriis o' : T' — A given byd' (t}) = canda'(t}) = a. The definition of informative
voting is due to Austen-Smith and Banks (1996), who questiervalidity of the CJT in a
strategic framework. Informative voting was, and is siisumed in the vast majority of
the literature on th€JT, mainly because it is implied by the original Condorcet agsu
tions. More precisely, assume, as Condorcet did, figj = P(z) = 1/2 and that each
juror is more likely to receive the “correct” signal (that B{t}|g) = P(t}z) = p > 1/2);
then the strategy of voting informatively maximizes thehability of voting correctly,
among all four pure voting strategies. Following AustenitBrand Banks, strategic vot-
ing and Nash Equilibrium were studied by Wit (1998), Myer$d898), and recently by
Laslier and Weibull (2008), who discuss the assumption efepences and beliefs under
which sincere voting is a Nash equilibrium in a general dsigistic majoritarian voting
rule. As we said before, in this work we do assume informatoteng and leave strategic
considerations and equilibrium concepts for the next plodsrir research. The action
taken by a finite society of jurorgl, ..., n} (i.e. the jury verdict) is determined by a sim-
ple majority (with some tie-breaking rule, e.g., by coinding)). We are interested in the
probability that the (finite) jury will reach the correct dgon. Again in the style of games
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with incomplete information le®, = Sx T1x, ..., xT" be the set ostates of the world
A state of the world consists of the state of nature and a fish® types of all jurors.
Denote byp(" the probability distribution oif2,. This is a joint probability distribution
on the state of nature and the signals of the jurors. For esohijlet the random variable
X; 1 Sx T' — {0,1} be the indicator of his correct voting, i.&(g,ty) = Xi(zt}) = 1 and
Xi(g,th) = Xi(z, tg) = 0. The probability distributiop™ on Q, induces a joint probability
distribution on the the vectof = (Xy,...,X,), which we denote also by{". If nis odd,
then the probability that the jury reaches a correct degisio

p" <i><. > g)

Figure 1 illustrates our construction in the caise 2. In this example, according to
p@ the state of nature is chosen with unequal probabilitiegHertwo statesP(g) =
1/4 andP(z) = 3/4 and then the types of the two jurors are chosen accordingdinta
probability distribution that depends on the state of ratur

Nature
1/4 3/4
g Z
2 42 2 2 2
1 tg z 1 tg t;
2 x| 2 g 0 | O
| | 2 7| 0 | 1

Figure 1 The probability distributiorp(?.

Guided by Condorcet, we are looking for limit theorems astheesize of the jury
increases. Formally, asgoes to infinity we obtain an increasing sequence of “worlds”
(Qn)y_1, such that for alh, the projection o€, 1 on Qp is the wholeQ,. The corre-
sponding sequence of probability distributiong ri}é”))ﬁzl and we assume that for every
n, the marginal distribution 0p™Y) on Q. is p". It follows from the Kolmogorov ex-
tension theorem (see Loeve (1963), p. 93) that this definesqaue probability measure
P on the (projective, oinversg limit

Q=1imQ,=SxTix...xT"...

00—

such that, for alh, the marginal distribution o on Q,, is p(".



In this paper we address the the following problem: Whicltbptolity measureP de-
rived in this manner satisfy théondorcet Jury Theoref€CJT); that is, Which probability
measure® satisfy

. n
lim P (21 > 5) ~1

As far as we know, the only existing result on this generabf@m is that of Berend and
Paroush (1998), which deals only with independent jurors.

Rather than working with the spa€eand its probability measure, it will be more
convenient to work with the infinite sequence of binary randa@riables
X = (X1,X2,...,%n,...) (the indicators of “correct voting”) and the induced proitib
measure on it, which we shall denote alsofhySince the pai(X, P) is uniquely deter-
mined by(Q,P) , in considering all pair$X,P) we cover all pairgQ, P).

We provide a full characterization of the exchangeablesegesX = (X1, X2, ..., Xn, -..)
that satisfy theCJT. For a general (dependent) distributiBnnot necessarily exchange-
able, we provide necessary as well as sufficient conditionheCJT. We exhibit a large
family of distributionsP with liminfp_.. ﬁz{‘zlz#ﬁov(xi,xj) > 0 that satisfy the
CJT.

In the space” of all probability distributions o1, = {0,1}, let &, be the set of all
probability distributions inZ” that satisfy theCJT and letZ, = &2\ &, be the set of all
probability distributions inZ that do not satisfy th€JT. We prove that botl¥’, and %,
are convex sets and tha#, is dense in# (in the weak topology). Using an appropriate
separation theorem we then provide an affine functionaldparates these two sets.

1 Sufficient conditions

Let X = (X1, X2, ..., Xn, ...) be a sequence of binary random variables with rand®jt}
and with joint probability distributio®. The sequencX is said to satisfy th€ondorcet
Jury Theoren{CJT) if 0

lim P (7% > é) =1 (1)

We shall investigate necessary as well as sufficient camitiorCJT.

Given a sequence of random binary variabfes (X1, Xp, ..., Xn, ...) with joint distri-
butionP denotep; = E(X), Var(X) = E(X — pi)2 andCov(X;, X;) = E[(X — pi)(Xj —
pj)], for i # j, whereE denotes, as usual, the expectation operator. Als@let
(pL+ P2, ... + pn)/NnandX, = (Xg + Xz, ... +Xn) /n.

Ouir first result provides a sufficient condition ©©JT:

Theorem 2. Assume thaX] ;p; > 5 for all n > Np and

lim w =0, (2)
Pn—

n—oo )2

o]
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or equivalently assume that

1
lim — = oo, 3)

then the CJT is satisfied.

Proof.

P(sx<s) =

2 (—z{‘:m = _E>

P 2
n
=P <Zin=1pi — 3L X >3 pi— §>
n

P <\Zin=1pi — 3L X > 2l pi— 5)
By Chebyshev’s inequality (assumid ; p; > 5) we have
E (XL X — Zinzlpi)z _ E(Xn—P0n)°

(=n,pi—)° (Pn—3)?

As this last term tends to zero by (2), 88T (1) then follows. ]

n
P (|Zin:1pi XX > pi— é) <

Corollary 3. If I ;Z;4CovX;, Xj) < 0for n> Np (in particular if Cou(X;, Xj) < O for
alli # j) and limp_« /N(P, — 3) = o, then the CJT is satisfied.

Proof. Since the variance of a binary random variallevith meanp is
p(1—p) <1/4 we have fon > Np,

- 1
0<E(Xn—Pn)® = SE(EL(X—p))

! 1
= 2 (ZLqVar(X) +ZL 2 j4CouX;, X)) < y

O

Remark 4. Note that under the condition of corollary 3, namely, for hdad random

variable with all covariances being non-positive, the (Welaw of large numbers (LLN)
holds for arbitrarily dependent variables (see, e.g., &l(1957) volume I, exercise 9,
p. 262). This is not implied by corollary 3 since, as we shad# &ater, the CJT, strictly
speaking, is not a law of large numbers. In particular, CJTesloot imply LLN and LLN

does notimply CJT.



Remark 5. When X, Xo, ..., Xp, ... are independent, then under mild conditions
limp e /NP — %) = o iS a necessary and sufficient condition for CJT
(see Berend and Paroush (1998)).

Remark 6. The sequence X (Xi,Xp,...,Xn,...) Of i.i.d. variables with BX; = 1) =
P(X = 0) = 1/2 satisfies the LLN but does not satisfy the CJT, since it doesatisfy
Berend and Paroush’s necessary and sufficient conditicgrefore LLN does not imply
CJT.

Given a sequence = (X1, Xp, ..., X, ...) of binary random variables with a joint prob-
ability distributionP, we define the following parameters ©f, P):

p = liminfp, (4)
p = "Tfo?pb” (5)
y = liminfE(Xn—py)? (6)
y = limsupE(Xs—ppn)? (7
y© o= IirrEEfE|Yn—r)n| (8)
y* = limsupE|X,— P, 9)

N—o0

We first observe the following:

Remark 7. If p > 1/2 andy = O then the CJT is satisfied.

Proof. As E(Xy—Pp)? > 0, if y= 0 then lim_.. E(Xn — P,)? = 0. Sincep > 1/2, there
existsnp such thap,, > (1/2+ p)/2 for alln > ng. The result then follows by Theorem 2.
L]

2 Necessary conditions using the;-norm

Given a sequence = (X1, X2, ..., Xn, ...) of binary random variables with a joint probabil-
ity distributionP, if y > 0, then we cannot use Theorem 2 to conclGdé.
To derive necessary conditions for 68T, we first have:

Proposition 8. If the CJT holds then p 3.

Proof. Define a sequence of ever(B,)_, by By = {w|Xn(w) —1/2 > 0}. Since the
CJT holds, lim P (Z; X > 5) = 1 and hence lim.. P(B,) = 1. Since

1 - 1 1
Ph—>5= E(Xn— E» > —EP(Q\Bn%
taking the liminf, the right-hand side tends to zero and waiolxhat



We shall first consider a stronger violation of Theorem 2 thanO; namely, assume
thaty > 0. We shall prove that in this case, there is a range of digtabsP for which
theCJT is false.

First we notice that for-1 <x <1, |x| > x?. HenceE|Xp —P,| > E(X, —P,)? for
all nand thugy > 0 implies thaty* > 0

We are now ready to state our first impossibility theorem olvltan be readily trans-
lated into a necessary condition.

Theorem 9. Given a sequence % (X, Xp, ..., X, ...) of binary random variables with
joint probability distribution P, if p< % + % then the(X, P) violates the CJT .

Proof. If y* =0, then theCJT is violated by Proposition 8. Assume then tlyat> 0
and chooseg Such that 0< ¥ < y* and 2 := %—i— % — p > 0. First we notice that, since
E(Xn—Pn) =0, we haveE max0, p, — Xn) = Emax0, X, —Py), and thus, sincg* > 0,
we have

~

E max(0,p, — Xn) > % for n>n. (10)

If (Q,P) is the probability space on which the sequeKds defined, fom > n define
the events

~

B — {@[Py — Xn(w) = max0, ~1)} (11)
By (10) and (11)P(By) > g > 0 for someg and
Prn— Xn(w) > %—t for we By, n>n. (12)
Choose now a subsequer(ecg)y_; such that
y 1
P <5+5-t=p+t, k=12, (13)

By (12) and (13), for altw € B, we have,

= Y 1
Xny (@) <Py, — > +t< >
and thusP(X,, > 3) < 1-q< 1, which implies thaP violates theCJT. O

Corollary 10. If liminfy_. P, < 2 and liminfn_. E[Xn — P, > 0, then P violates the
CJT.



3 Necessary conditions using the,-norm

Let X = (X1, X, ..., Xn, ...) be a sequence of binary random variables with a joint proba-
bility distribution P. In this section we take a closer look at the relationshipvben the
parametery andy*(see (7) and (9)). We first notice that- 0 if and only ify* > 0. Next

we notice thap,, > % for n > nimplies thatX, — p,, < % for n>n. Thus, by corollary 10,

if y> 0 and theCJT is satisfied then mdg, X, —,) < % for n > n. Finally we observe
the following lemma, whose proof is straightforward:

Lemma 11. If limsup, ., P{®|Py — Xn(w) > Pn/2} > 0, then the CJT is violated.
We now use the previous discussion to prove the followingrit:
Theorem 12.1f (i) liminf,_. Py, > % and (i) liminf_ P(Xn > P,/2) = 1, then y > 2y.

Proof. Condition {) implies thatp,, > % for all n > Ng for someNg. This implies that
liMn—e P(Xn — Py < 3) = 1. Also, (i) implies that limy_... P(p, — Xn < 3) = 1, and thus

1 - 1
IimP(=5 <Xn-Ph=5) =1 (14)
Define the eventB, = {w| — 3 < Xn(w) — P, < 3}; then by (14)
liminf (Xn—Pp)%dP=y (15)
—e /B, =
and
Iirrpinf/ Xn—PydP=y". (16)
—c /B =

Since anyu € [—3, 3] satisfiegu| > 2u?, it follows from (15) and (16) thay* >2y. [

Corollary 13. Let p=liminfn_«P, and y=liminf,_... E(Xn — Py)% Then if p< 1 +y
then P does not satisfy the CJT.

Proof. Assume thap < %er. If y=0, thenCJT is not satisfied by Proposition 8. Hence
we may thus assume that- 0, which also implies that® > 0. Thus, if liminf, .. P, < %
thenCJT fails by Corollary 10. Assume then that limjnf. p,, > % By Lemma 11 we
may also assume that liminfe, P (X, > P,/2) = 1 and thus by Theorem 12 we have

y* > 2y and hencep < %4—)_/ < %+% and theCJT fails by Theorem 9. O



4 Dual Conditions

A careful reading of Sections 2 and 3 reveals that it is pdss$tobtain “dual” results to
Theorems 9 and 12 and Corollary 13 by replacing “liminf’ byrfsup”. More precisely,
for a sequenc&X = (Xz,Xo, ..., Xn, ...) Of binary random variables with joint probability
distributionP, we letp = limsup,_,., P, andy* = limsup,_.., E|Xn — P/, and we have:

Theorem 14.1f p< % + 7, then the(X, P) violates the CJT.
Proof. As we saw in the proof of Corollary 13, we may assume that
liminfn_« P, > 3 and hence also

o 1

P=Ilimsupp, > liminfp, > =,
n—oo N—oo 2

and hencg* > 0. Chooseg/Suchthat< y<y*and 2 = 3—;+ % —P>0. Let(Xq ), be

a subsequence of such that

I!i_'T!oE‘Ynk _bnk| =y

As in (10) we get

y

Emax0, Py, — Xn,) > B for k> k. (17)
Define the event&B,, )p_; by
B, = { [Py, — X (@) > % ), (18)
By (17) and (18)P(Bp,) > q for someqg > 0 and
P, — Xn (W) > 3—2/—t for we By, and k> k. (19)
Now 5
: .y 1
limsupp,=p< =+ —t. (20)
n—oo 2 2
Thus, forn sufficiently largep,, < 3—27+ % —t. Hence, fok sufficiently large and all € By,
_ y 1
X () <P~ 3+ < 5. (21)

ThereforeP (X, > %) < 1-—q< 1 for sufficiently largek in violation of theCJT. O
Similarly we have the “dual” results to those of Theorem 1@ &orollary 13:

Theorem 15. If (i) liminf,_.. P, > 3 and
(i) liminfp_o P(Xn > P,/2) = 1, theny* > 2y.

Corollary 16. If p< % +y then P does not satisfy the CJT.

The proofs, which are similar respectively to the proofs bedrem 12 and Corol-
lary 13, are omitted.



5 Existence of distributions satisfying theCJT

In this section we address the issue of the existence ofldistins that satisfy th€JT.
For that, let us first clarify the relationship between @&T and law of large numbers
which, at first sight, look rather similar. Recall that anmite sequence of binary random
variablesX = (Xg, Xz, ..., Xn, ...) With @ joint probability distributiorP satisfies the (weak)
law of large numbersLLN) if (in our notations):

Ve >0, r!immP(Rn—r)rJ <g)=1 (22)

while it satisfies the Condorcet Jury Theoredd7) if:

lim P (Yn > %) =1 (23)

N—o0

Since by Proposition 8, the conditiq> % is necessary for the validity of tl&JT, let us
check the relationship between theN and theCJT in this region. Our first observation
IS:

Proposition 17. For a sequence % (Xg,Xo, ..., Xn, ...) With probability distribution P
satisfying p> 3, if the LLN holds then the CJT also holds.

Proof. Let p=1/2+- 35 for somed > 0 and letNy be such thap, > 1/2+ 24 for all
n > Np; then for alln > Ny we have

o 1 v o 1 X
P(Xn>§) zp(xn2§+5) > P ([Xn—Pnl < 3)

Since the last expression tends to as oo, the first expression does too, and hence the
CJT holds. ]

Remark 18. The statement of Proposition 17 does not hold fer é Indeed, the se-
quence X= (X, Xz, ..., Xp, ...) of i.i.d. variables with X; = 1) = P(X; = 0) = 1/2 satis-
fies the LLN but does not satisfy the CJT (see Remark 6).

Unfortunately, Proposition 17 is of little use to us. Thiglige to the following fact:
Proposition 19. If the random variables of the sequence=X Xy, Xz, ..., Xn, ...) are uni-
formly bounded then the condition

lim E (Xn—Pn) =0

n—oo

is a necessary condition for LLN to hold.

The proof is elementary and can be found, e.g., in Uspensk§7(1 page 185. For
the sake of completeness it is provided here in the Appendix.

It follows thus from Proposition 19 thatl N cannot hold whery > 0 and thus we
cannot use Proposition 17 to establish distributions i thgion that satisfy th€JT.
Nevertheless, we shall exhibit a rather large family ofrdistions P with y > 0 (and
p > 1/2) for which theCJT holds. Our main result is the following: -
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Theorem 20.Lette [0 ,2] If F is a distribution with parameter§p,y*), then there exists
a distribution H with parameterf = 1 -t +tp andy* = ty* that satisfy the CJT.

Proof. To illustrate the idea of the proof we first prove (somewh#&brnimally) the case
t=1/2. LetX = (Xg,Xg, ..., Xy, ...) be a sequence of binary random variables with a joint
probability distributior. Let G be the distribution of the sequente= (Y1,Y2,..., Y, ...),
whereEY, =1 for alln (thatis,Y1 = Y> = ...Yy = ... andP(Y; = 1) = 1Vi). Consider now
the following “interlacing” of the two sequencesandY:

Z= (Y17Y27X17Y37X27Y47X37 ~~~7Yn7xn—17Yn+17Xn~~~)»

and let the probability distributiorl of Z be the product distributiorl = F x G. It is
verified by straightforward computation that the pararrﬂetffrthe distributiorH are in
accordance with the theorem for= 1 5, hamely,p’= 3 14 2p andy* = 2y* Finally, as
each initial segment of voters ihcontains a majority oY;’s (thus ‘with all values 1), the
distributionH satisfies th€JT, completing the proof for = 1 5

The proof for a generale [0,1/2) follows the same lines: We construct the sequence
Z so that any finite initial segment ofvariables, includes “about, but not more than” the
initial tn segment of th&X sequence, and the rest is filled with the cons¥anariables.
This will imply that theCJT is satisfied.

Formally, for any reak > O let | x| be the largest integer less than or equad émd let
[X] be smallest integer greater than or equal.tdNote that for anyn and any 0<t <1
we have|tn| + [(1—t)n] = n; thus, one and only one of the following holds:

() ltn] < [t(n+1)] or
(i) [(L—t)n] < [(1-t)(n+1)]

From the given sequeneéand the above-defined sequeiYc@f constant 1 variables) we
define now the sequen@e= (Z1,72, ...,Z,,...) as follows:Z; =Y; and for anyn > 2, let
Zn = X(ns-1)| If () holds andZn = Y(1_t)(n+-1)7 if (ii) holds. This inductive construction
guarantees that for afi, the sequence containgn| X coordinates and(1—t)n]| Y,
coordinates. The probability distributidth is the product distributior x G. The fact
that(Z,H) satisfies th&€JT follows from:

[(1—-t)n] > (1—t)n>tn> |tn],
and finallypg'=1—t+tpandy* =ty" is verified by straightforward computation. []

Remark 21. The “interlacing” of the two sequences X and Y described & phoof of
Theorem 20 may be defined for any 0, 1]. We were specifically interested ig{0,1/2]
since this guarantees the CJT.
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6 Feasibility considerations

The conditions developed so far for a sequeKce (X, X, ..., Xn, ...) With joint proba-
bility distribution P to satisfy theCJT involved only the parameters p,y,y,y", andy*.

In this section we pursue our characterization in the spatieese parameters. We shall
look at the distributions in two different spaces: the spafgaoints(p,y*), which we call
theL; space, and the spa¢p,y), which we call the_, space. o

6.1 Feasibility and characterization inL4

With the pair(X,P) we associate the poirip,y*) in the Euclidian plan&?. It follows
immediately that 6< p < 1. We claim thay* < 2p(1— p) holds for all distributionsP.
To see that, we first observe thaX; — pi| = 2pi(1— p;); hence

— 1 n 1 n
ElXn—Pn| = HE|Z(X‘ —P)l<_E <_lexi — pil )

The functiony ., pi(1— pi) is (strictly) concave. Hence

2 n

le.

3 |

n
_ 1
E|Xn_r)n|§2_z ﬁpi(l_pogzr)n(l_bn)- (24)
i=

Finally, IetE = Iimkﬁwbnk; then

y = liminf EXn—Pnl < Iirkninf E[Xn — P | < 2klim Pn (1—Pn) =2p(1-p).
The second inequality is due to (24).
Thus, if (u,w) denote a point ifR?, then any feasible paiip,y*) is in the region

FE;={(uw)|0<u<1 0<w<2u(l-u)}. (25)

We shall now prove that all points in this region are feasitiat is, any point ifFE; is
attainable as a paip,y*) of some distributior. Then we shall indicate the sub-region
of FE; where theCJT may hold. We first observe that any poiik, W) € FE; on the
parabolaw = 2u(1 —u), for 0 < u < 1, is feasible. In fact sucfup,wp) is attainable by
the sequencl = (Xg,Xo, ..., Xn, ...) with identical variables;, X; =Xo = ... = X,..., and
EXy = up (clearly p = up, andy* = 2up(1 — up) follows from the dependence and from
E|X — pil = 2pi(1— pi) = 2up(1— up)).

Let again(up,Wp) be a point on the parabola, which is thus attainable. Assinate t
they are the paramete(p,y*) of the pair(X,F). Let (Y,G) be the pair (of constant
variables) described in the proof of Theorem 20 and ketl0,1]. By Remark 21 the-
interlacing of(X,F) and(Y,G) can be constructed to yield a distribution with parameters
p=tp+(1-t) andy* =ty (see the proof of Theorem 20). Thus, the line segment
defined byu™ tug+ (1 —t) andw = twg for 0 < t < 1, connecting(up, Wo) to (1,0),

12
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Figure 2 The feasible sdtE;.

consists of attainable pairs containedrig;. Since any pointu,w) in FE; lies on such a
line segment, we conclude thextery point in FEk is attainable We shall refer td-E; as
the feasible sewhich is shown in Figure 2.

We now attempt to characterize the points of the feasiblaszirding to whether the
CJT is satisfied or not. For that we first define:

Definition 22.
e ThestrongCJT set, denoted by sCJT, is the set of all pofotsv) € FE; such that
any pair (X, P) with parameters p= u and y = w satisfies the CJT.

e TheweakCJT set, denoted by wCJT, is the set of all poimtsv) € FE; for which
there exists a paifX, P) with parameters p= u and y = w that satisfies the CJT.

We denote-sCJT= FE;\sCJT and—wCJT=FE;\wCJT.

For example, as we shall see later (see Proposition(24)) € sCJT and
(1/2,0) € wCJT.

By Theorem 9, ifu < 1/2+ 1/2w, then(u,w) € —wCJT. Next we observe that if
(up,Wp) is on the parabola = 2u(1—u) andM is the midpoint of the segmefitip, Wp), (1,0)],
then by the proof of Theorem 20, the segm@t (1,0)] C wCJT (see Figure 2). To
find the upper boundary of the union of all these segmentsjghthe locus of the mid
pointsM in Figure 2, we eliminatgup, wp) from the equationsvp = 2up(1 — up), and
(u,w) = 1/2(ug,wWo) +1/2(1,0), and obtain

w=2(2u—1)(1—u) (26)

This is a parabola with maximuny2 atu = 3/4. The slope of the tangentat= 1/2
is 2; that is, the tangent of the parabola at that point is ithew = 2u — 1 defining the
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region—wCJT. Finally, a careful examination of the proof of Theorem 28gals that for
every(Up,Wp) on the parabola = 2u(1 — u), the line segmeni{(up, wp),M] is in —sCJT
(see Figure 2).

Our analysis so far leads to the conclusions summarizedgur&i3 describing the
feasibility and and regions &JT possibility for all pairs(X, P).

A w=2u(l-u) w=2u-1

1/2 &/‘
1/4, ,,,,,,,,,,,,,,,,,,,, —WCJT ,,,,,,,,,,, ~ SC‘]T W= 2(2u - 1)(1 -u
wCJT
0 i ‘ = UuU=p
0 1/2 3/4 1 -

Figure 3 Regions of possibility o€JT in L;.

Figure 3 is not complete in the sense that the regw@3T and —sCJT are not dis-
joint, as it may mistakenly appear in the figure. More prdygjsee complete Definition 22
by defining:

Definition 23. ThemixedCJT set, denoted by mCJT, is the set of all pofotsv) € FE;
for which there exists a paifX, P) with parameters p= u and y = w that satisfies the

CJT, and a pair(X,P) with parameterg) = u andy* = w for which the CJT is violated.

Then the regionsCJT, —wCJT, andmCJT are disjoint and form a partition of the
feasible set of all distributionSE;

FE; =—wCJTUsSCIJTUmMCJIT (27)

To complete the characterization we have to find the regibtisi®partition, and for
that it remains to identify the regianCJTsince, by definitionwCJT\mCJTC sCJTand
—sCIT\mCJT C —wCJT.

Proposition 24. All three regions sCJT—wCJT, and mCJT are not empty.

Proof. As can be seen from Figure 3, the regiewCJT is clearly not empty; it contains
for example the point§0,0) and(1/2,1/2). As we remarked already (following Defini-
tion 22), the regiosCJT contains the pointl, 0). This point corresponds to a unique pair
(X,P), in which X; = 1 for all i with probability 1, that trivially satisfies th€JT). The
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regionmCJT contains the pointl/2,0). To see this recall that the Berend and Paroush’s
necessary and sufficient condition f0d T in the independent case (see Remark 5) is

lim v/n(P; 1) o0 (28)

Nn—oo

First consider the paifX,P) in which (%), arei.i.d with P(X; = 1) = 1/2 and
P(X = 0) =1/2. Clearly/n(p,— %) = 0for allnand hence condition (28) is not satisfied,
implying that theCJT is not satisfied.

Now consider(X,P) in which X = (1,1,0,1,0,1---) with probability 1. This pair
corresponds to the poilt/2,0) since

o 141 if niseven
X”—p”_{ 1.1 i nisodd °

and hence = 1/2 andy* = 0. Finally this sequence satisfies 88T asXp > % with
probability one for alh. O

6.2 Feasibility and characterization inL,

Replacingy* = liminf,_.. E|X,, — P,| by the parametey = liminf, .., E(X;, — P, )%, we
obtain results in the space of poiri{s y) similar to those obtained in the previous section
in the spacép,y*). -

Given a sequence of binary random variabtewith its joint distributionP, we first
observe that for any+# |,

CouXi, X)) = E(XXj) — pipj < min(pi, pj) — pPipj-.
Therefore,

EXn—Pn)® = {i;mv(x. Xj) + ipi(l—po} (29)

< n_lz{izl;[min(pi,pj)—pipj]+izlpi(l—pi)}. (30)

We claim that the maximum of the last expression (30), urfieconditions ' ; pi = Py,

is Pr(1—P,). This is attained whem; = --- = p, = p,. To see that this is indeed the
maximum, assume to the contrary that the maximum is attaah@d= (f1,-- -, Pn) with

i # p;j for somei and j. Without loss of generality assume thai: < f, < --- < py with

P1 < pj andpy = P, for ¢ < j. Let 0< € < (Ppj — P1)/2 and defing* = (p3,---, pp) by
pi=P1+e pj=Pj—¢& andp; =P for £ ¢ {1,j}. A tedious, but straightforward,
computation shows that the expression (30) is highepfdhan forp, in contradiction to
the assumption that it is maximized@tWe conclude that

E(Xn—Pn)? < Pn(1—Pp)-

15



Let now (P, )i_, be a subsequence convergingtdhen

y = liminf E(Xq—Pp)? < liminf E(Xn, — Py, )2

= n—oo k— o0
< liminf Py (1-Pp) = p(1=p).
We state this as a theorem:

Theorem 25. For every pair(X, P), the corresponding paramete(p, y)
satisfy y< p(1—p).

Next we have the analogue of Theorem 20, proved in the same way

Theorem 26. Let t € [0, %]. If F is a distribution with parametergp,y), then there exists
a distribution H with parameter =1 -t +tpandy = t23_/ that satisfy the CJT.

We can now construct Figure 4, which is the analogue of Figuie the L, space
(p,y). The feasible set in this space is

FE;={(uw)|0<u<1 0<w<u(l-u)} (31)

1/4

Figure 4 The feasible sdtE,.

The geometric locus of the midpointin Figure 4 is derived from
() u=2uo+3, (2) w= Iwp, and(3) wo = up(1— up) and is given by
w = 3(2u—1)(1—u). This yields Figure 5, which is the analogue of Figure 3. Note
however, that unlike in Figure 3, the straight liwe= u— % is not tangentiato the small
parabolav = (u—3)(1—u) at(3,0).

16



A w=u(l-u) w=u-1/2
1/4 & &/
1/81 B w=(Uu-1/2)(1-u

wCJT sCIT
116
wCJT _
O f T = U = p
0 1/2 3/4 1 -

Figure 5 Regions of possibility o€JT in L.

The next step toward determining the regro@JT in the L, space (Figure 5) is the
following:

Proposition 27. For any (u,w) € {(uw)[0<u<1; 0<w<u(l-u)},
there is a pair(Z,H) such that:

(i) E(Z) = u,Vi.
(i) liminf, o E(Zn—u)?=w.
(i) The distribution H does not satisfy the CJT.
Proof. ForO<u< 1,
e let (X,Fp) be givenbyX; =Xo =...=Xp=...andE(X) = u;
e let(Y,F;) be a sequence of ofi.d. random variablegY;)? ; with expectatioru.

e For0<t <1 let(Zt,H') be the pair in whichz! =tX + (1L—t)Y; fori=1,2,...
andH! is the product distributiob! = Fy x Fy (that is, theX and theY sequences
are independent).

Note first thatE(Z!) = ufor all i and

lim E(Zf, —u)? = lim ((1—t)u(ln_ L) +tu(1—u)) =tu(1-u),

Nn—oo nN—oo
and therefore the paiZ',H!) corresponds to the poirft,w) in the L, space, where
w=tu(1—u)rangesinO,u(l—u))as 0<t <1.
Finally, (Zt,H!) does not satisfy th€JT since for alln,
= 1
Pr(Z'>3) < 1-Pr(Zi=2Z=...=0)=1-t(1-u) < L

17



As this argument does not apply fioe= O it remains to prove that, except fat, 0), to
any point(u,0) on thex axis corresponds a distribution that does not satisfi\CIhE. For
0<u<1/2, the sequenceY,Fy) of of i.i.d. random variable$Y;)” ; with expectatioru
does not satisfy th€JT, as follows from the result of Berend and Paroush (1998). For
1/2 < u< 1 such a sequence bf.d. random variables does satisfy 88T and we need
the following more subtle construction:

Given the two sequencéX, Fy) and (Y, F;) defined above we construct a sequence
Z = ()2 4 consisting of alternating blocks of-s andY;-s, with the probability distribu-
tion onZ being that induced by the product probabilily= Fy x F;. ClearlyE(Zj) =u
for all i, in particularp,, = u for all n and p = u. We denote by, the set of indices of the
¢-th block and its cardinality big,. Thusn(¢) = Zlebj is the index ofZ; at the end of the
¢-th block. Therefore

Brri={n(0)+1,....n(¢) +bps1)} and n(f+1) =n(l)+by1.
Define the block sizé, inductively by:
1. by=1,andfork=1,2,...,
2. by = kzlj(zlsz,l andboy 1 = bo.

Finally we define the sequenZe= (Z;);> ; to consist ofX;-s in the odd blocks ang-s in
the even blocks, that is,

2 { Xi if ieBy_1 forsomek=12,...
'Y if ieBy  forsomek=1,2,...

Denote byny(¢) andny(¢) the number oK coordinates and coordinates respectively
in the sequencg at the end of thé-th block and byn(¢) = ny(¢) +ny(¢) the number of
coordinates at the end of tlieh block ofZ. It follows from 1 and 2 (in the definition of
by) that fork=1,2,...,

k(2k—1) = ny(2k—1)+1 (32)
Nx(2K) 1 n(2k) 1
n(2k) = K and hence also n(2K) < P (33)

It follows from (32) that at the end of each odd-numbered bl2k— 1, there is a
majority of X; coordinates that with probabilifyt — u) will all have the value 0. Therefore,

= 1
Pr <Zn(2k_1) < E) >(1—u) for k=1,2,...,

and hence

liminf Pr (Z, > %) <u<li;

Nn—oo
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that is,(Z,H) does not satisfy th€JT.
It remains to show that

y= |irq1infE(Zn—pn)2 =0.

To do so, we show that the subsequencé®f(Z, — p,)?)},._, corresponding to the end
of the even-numbered blocks converges to 0, namely,

lim E(Zn (2 — P2 )> = 0.

k— o0

Indeed,

2
= - 2 _ Nx 1 on (2k)
E(Zn2k) —Pnaky) =E ( n(2K) (Xp—u)+ WZ Y — u)) .
Since they;-s arei.i.d. and independent of; we have

2
E(Zn(20) — Prizi)* = %U(l— u) + ?(Zk) u(l—u),

and by property (33) we get finally:

, = _ : 1 1
lim E(Zn21) — pn(Zk))z < IIn (@u(l— u)+ n—u(l— u)) =0,

k—oo

concluding the proof of the proposition. ]

Proposition 27 asserts that for every pdimtw) in Figure 5, except for the poiiil,0),
there is a distribution with these parameters that doesatisfg theCJT. This was known
from our previous results in the regiorsvCJIT and —sCJT. As for the regiorwCJT,
Proposition 27 and Theorem 26 yield the following conclasigresented in Figure 6.

Corollary 28. 1. The region below the small parabola in Figure 5, with theeption
of the point(1,0), is in mCJT, that is,

1

1
{(E,X)Ié <p<1; andy< 5( p— 1)(1—9)}ngJT

2. The point(p,y) = (1,0) is theonly point in sCJT. It corresponds to a single se-
quence with X=--- =X, =--- with F(X;=1) = 1.
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w=u(l-u) w=u-1/2

1/4

w=(Uu-1/2)(1-u

1/8
1/161 sCJT
mCJT
0 ; é u=p

0 12 3/4 1 =

Figure 6 mCJTandsCJTin theL, space.

7 Exchangeable variables

In this section we fully characterize the distributions efjlsenceX = (Xg, X2, ..., Xn, -..)
of exchangeablgariables that satisfy theJT. We first recall:

Definition 29. A sequence of random variables=X(X1, X, ..., X, ...) is exchangeablef
for every n and every permutatigky, ..., kn) of (1,...,n), the finite sequende,, . .., Xx,)
has same n-dimensional probability distribution(@g, . .., Xy).

We shall make use of the following characterization theodera to de Finetti (see,
e.g., Feller (1966), Vol. II, page 225).

Theorem 30. A sequence of binary random variables=X X, Xz, ..., Xn, ...) iS exchange-
able if and only if there is a probability distribution F df, 1] such that for every n:

PriXe = =X=1, Xgs1=... =Xn=0) = /016"(1—6)”de (34)

Prixg Xk = () [oHa-otar (@)

The usefulness of de Finetti for our purposes is that it essabh easy projection of
the distribution into out, space:

Theorem 31. Let X = (X1, X, ..., Xn,...) be a sequence of exchangeable binary random
variables and let F be the corresponding distribution fuoictin de Finetti’'s theorem.
Then,

y= lim E(X,—u)? =V(F), (36)

- N—oo
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where
1

u:/oledF and V(F):/O (6 — u)2dF.

Proof. We have
1
u=E(X) = Pr(X = 1) :/O xdF ; V(X) = u(1—u)
and fori # |,

1
CovX;, X)) == Pr(X = Xj = 1) —u? :/O X2dF — u? =V (F).

So,
1 2
EXn—u)? = E<ﬁzg(>q—u)>
1, 1
= ?21V(><i)+?zi#jCov(Xi,Xj)
nul—u) n(n—1)
= n2 + n2 V(F),
which implies equation (36). O

We can now state the characterization theorem:
Theorem 32. A sequence % (Xi, Xz, ..., Xn,...) Of binary exchangeable random vari-
ables with a corresponding distribution(P) satisfies the CJT if and only if

Pr(%<6§1):1, (37)

that is, if and only if the support of F is in the open semi-ingé (1/2,1].

Proof. The “only if” part follows from the fact that any sequen¥e= (Xy, X2, ..., Xn, ...)
of binaryi.i.d. random variables with expectati@{X;) = 6 < 1/2, violates theCJT (by
the Berend and Paroush’s necessary condition).

To prove that a sequence satisfying condition (37) alssfeegitheCJT, note that for
0<e<1/2,

- 1 1 - 1 1
— | > > — — > — .
Pr<xn>2)_Pr(6_2+s)Pr(Xn>2|6_2+s) (38)
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For the second term in (38) we have:

Pr <Yn > %|9 > %—FE) = ZepPr <X1+-~+Xk: k|@ > %Jre) (39)
n\ [t A n—k
_ zk>g< )/ (1 — 0)"*dF (40)
2\k) J3+e
1 n
= / [zk>n< )9"(1—9)”"} dF (41)
I+e 2 \k
1
- / S(0)dF (42)
3+
Now, using Chebyshev’s inequality we have:
S(6) =Pr <Yn>%|9) > Pr (Yn>%+s|9) (43)
(0—5—¢)? ne—s—e¢)?

Since the last expression in (44) converges to 1 uniformljdgR+ €, 1] asn — oo, taking
the limitn — o of (42) and using (44) we have:

, - _ 1 1 1 1
16> = > = > = _
r!moPr (Xn> 2|9_ 2+e) > %+de Pr (6_ 2+£) (45)

From (38) and (45) we have that for and fixed- O,

lim Pr<¥ >}) > [Pr(6>}+s>]2 (46)
e "T2) " -2 '

Since (46) must hold for all 2 > € > 0, and sincér (3 < 6 < 1) = 1, we conclude
that

. - 1
lim Pr (Xn > E) =1 47

Nn—oo

i.e., the sequencé = (X1, Xy, ..., Xn, ...) satisfies th&€JT. ]
To draw the consequences of Theorem 32 we prove first thenfiolgp

Proposition 33. Any distribution F of a variablé in [1/2, 1] satisfies

V(F) < (u-3)(1-u), (@8)
where u= E(F), and equality holds in (48) only for F in which
Pr(6 = %) =2(1—-u) and Pr(6=1)=2u—1. (49)
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Proof. We want to show that

1
620F(6) — 12 < (u— 2)(1 - u), (50)
1/2 2
or, equivalently,
/1 62dF(8) — ~u+ = <0 (51)
1/2 2 2=

Replacingu = fll/z 6dF(6) and3 = fl/z $dF(0), inequality (50) is equivalent to

1 3 1 1
62— 201 7)dF(8 ::/ 6)dF(6) < 0. 52
(67564 3)0F(6) 1= | o(6)cF(®) < 52)
The parabola(6) is convex and satisfieg{1/2) = g(1) = 0 andg(8) < 0 for all 1/2 <
6 < 1, which proves (52). Furthermore, equality to 0 in (52) isadted only wherf is
such thaPr(1/2 < 8 < 1) =0, and combined witlu = E(F) this implies (49). O

The next proposition provides a sort of an inverse to prajmrs83.

Proposition 34. For any pair (u,w) wherel/2<u<land0<w< (u—1/2)(1—u),
there is a distribution £6) on (1/2,1] such that EF ) = u and (F) =

Proof. For u = 1, the only point in this region is whew = 0 and for this point1, 0)
the claim is trivially true (with the distributioRr(6 = 1) = 1), and so it suffices to con-
sider only the casa < 1. Given(u,w), for anyy satisfying 2 <y < u < 1 define the
distributionFy for which

Pr(6=y)=(1-u)/(1-y) and Pr(@=1)=(u-y)/(1-y).

This distribution satisfieE(F,) = u and it remains to show that we can chogsso that
V(Fy) =w. Indeed,
~1-u u—-y -
V(R) = iy Y+ oy v
For a givenu < 1 this is a continuous function of satisfying: lim_,V(F) =0 and
limy_,1,V(Fy) = (u—1/2)(1—u). Therefore, for 0< w < (u—1/2)(1—u), there is a
valuey* for whichV (Fy) = w. O

The geometric expression of Theorem 32 can now be stated@asso
In theL, plane of(p,y) let

I\JII—‘

={(E,¥)| <p<l; andy<(p—} 1- D}U{lo

This is the region strictly below the small parabola in Feg6r excluding1/2,0) and
adding(1,0).
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Theorem 35. 1. Any exchangeable sequence of binary random variablds#issfy
the CJT corresponds t@,y) € A.

2. Toany(p,y) € Athere exists an exchangeable sequence of binary randdables
with parametersg p,y) that satisfy the CJT.

Proof. The statements of the theorems are trivially true for thenipdi, 0), as it corre-
sponds to the unique distributioRr(X; = ... = X,...) = 1, which is both exchangeable
and satisfies th€JT. For all other points i,

e Part 1. follows de Finetti's Theorem 30, Theorem 32 and Psitjom 33.

e Part 2. follows de Finetti’'s Theorem 30, Theorem 32 and Psitjom 34.

O

Remark 36. Note that Theorem 26 and part (ii) of Theorem 35 each establis ex-
istence of distributions satisfying the CJT in the interadrthe region below the small
parabola in Figure 6. The two theorems exhibit examples oh sudistribution: while
the proof of part (i) of Theorem (35) provides to each pdinmty) in this region a corre-
sponding exchangeable distribution that satisfies the Cdieprem (26), provides other
distributions satisfying the CJT that are clearly not excbeable.

8 General interlacing

We now generalize the main construction of the proof of Teeo20. This may be useful
in advancing our investigations.

Definition 37. Let X= (Xg, X2, ..., Xn, ...) be a sequence of binary random variables with
joint probability distribution F and let ¥= (Y1, Ya, ..., Yn, ...) be another sequence of binary
random variables with joint distribution G. Ford [0, 1], the tinterlacingof (X,F) and
(Y,G) is the pair(Z,H) := (X,F) % (Y,G) where forn=1,2,.. .,

Xitn if  [tn]>[t(n-1)]
7 — [tn] ) 53
i { Yiom if [@-tn>[1-t)(n-1)] ’ (®3)

and H=F x G is the product probability distribution of F and G.
The following lemma is a direct consequence of Definition 37.

Lemma 38. If (X,F) and (Y, G) satisfy the CJT then for any& [0, 1] the pair(Z,H) =
(X,F)* (Y,G) also satisfies the CJT.
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Proof. We may assume that (0,1). Note that

{ofza@)> 3} 2 {0Rin@)> 310 (@F wan(@) > 5}

By our construction and the fact that bdtk, F) and(Y, G) satisfy theCJT,

. - 1 . - 1
limF (x\_tnj > é) =1 and ImG (Y((l—t)m > é) =1.

n—oo n—oo

- 1 - 1 - 1
H (Zn > é) > F (XUnJ > é) -G (Y((lt)n} > é) 5

the proof follows. ]

As

Corollary 39. The region wCJT istar-convein the Ly space . Hence, in particular, it is
path-connected in this space.

Proof. Let (u,w) be a point inwCJT in the L; space. Then, there exists a péX,F)
which satisfie€CJT, whereX is the sequence of binary random variables with joint prob-
ability distributionF satisfyingp = u andy* =w. By Remark 21, Lemma 38, and the
proof of Theorem 20, the line segmefi, w), (1,0)] is contained irwCJT, proving that
wCJT is star-convex. ]

Corollary 40. The region wCJT ipath-connectedn the Ly space.

Proof. In the L, space a poinfu,w) corresponds t@ = u andy = w. By the same

arguments as before, the arc of the paralota ((1—u) /(1 — ug))>wp connecting u, w)
to (1,0) (see Figure 4) is contained wCJT, and thusvCJT is path-connected. ]

9 CJTinthe space of all probability distributions.

We look at the spac&, = {0,1}* already introduced in the proof of Proposition 27 on
page 17. We consid&, both as a measurable product space and as a topologicabprodu
space. Let? be the space of all probability distributions 8p. &7 is a compact metric
space in the weak topology. Le?, C & be the set of all probability distributions i

that satisfy th&CJT and let??, = 27\ &, be the set of all probability distributions i&’

that do not satisfy th€JT.

Lemma 41. If P; and B are two distributions inZ, and if B € &2, then forany0 < t < 1,
the distribution B=tP; + (1 —t)P is also in.Z,.
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Proof. Forn=1,2,---, let

Bn:{x:(xl,xZ,w)esp&_im%} (54)

SinceP; € &, there exists a subsequen@®&, )y , ande > 0 such thaP»(B, ) <1—¢
fork=1,2,---. Then

Ps(Bn,) =tPi(Bn) + (1 —t)P2(Bp,) <t+(1—-t)(1—&)=1—¢(1-1),

implying thatP; € &2,. O

Corollary 42. The set?, is dense inZ (in the weak topology) and is convex.

We proceed now to separaté, from &7, in the space”. We first observe that”, is
convex by its definition and”, is convex by Lemma 41. In order to separate from &2,
by some linear functional we first define the mapping” — R*" where.# = {1,2,...}
in the following way: FoP € & let

T(P) = (/XBldP,/XBZdP,...,/XBndP,...)

where the setB, are defined in (54) angg_is the indicator function of the s&;, that
is, forxe Ssandn=1,2,...,

1 if xeBy
XBn<X>—{o if x¢ By

The mappind is affine and continuous whé” is endowed with the product topol-
ogy. Clearly,T(Z?) C l». Also T(Z,) andT(Z,) are convex and iy € T(#,) and
2 € T(Z,) then liminf_(z1x —22x) > 0, wherez = (z,1,z»...) fori=1,2.

LetB: /» — R be anyBanach limiton /. (see Dunford and Schwartz (1958), p. 73);
thenB is a continuous linear functional da and adB(z) > liminfy_,, z for everyz € /o,
we haveB(z;) > B(z) wheneverzy € T(Z,) andz, € T(Z,). Thus the composition
BoT, which is also an affine function, satisfies

PLe Z, and e &Z,= BoT(P1) >BoT(P,).

We can now improve upon the foregoing separation resultéetiv( %, ) andT (Z,)
as follows:

Proposition 43. For any ye T(.2,) there existsp € ¢;, such that
(i) Y(z1) > Y(zo) foreveryze T(Z,)andz € T(Z,);
(i) Y(z)>y(y) forallze T(Z,).
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Proof. Giveny e T(Z,), letC=y—T(Z,). Then,C s a convex subset @, and there
exists are > 0 such that liminf_,., z« < —¢ for everyze C. Let

D= {ze £w|li|2ninf z > —8};

thenD is convex andCN D = ¢. Furthermore, & D is an interior point. Hence by
Dunford and Schwartz (1958) p. 417, there exigts ¢;,, (¢ # 0 such thaty(d) > ¢(c)
for all d € D andc € C. Sincel;; = {x € l»|x > 0} is a cone contained iD, andy is
bounded from below o® (and hence o) it follows that s > 0 (that isy(x) > 0 for
all x > 0). Also, as 0Z C and O< Int(D), there exist® > 0 such thaty(d) > —9 for all
de Dandy(D) O (—9,»). Hencey(c) < —0 for all c € C, that is,(y — x) < —9 for
allxe T(2,).

Finally, the con&C* = {z € /| liminfy_., z > 0} is contained irD; hencey is non-
negative orC*. AsT(Z,) —T(Z,) C C*, the functionaly separates weakly between
T(Z,) andT (Z,). 0]

Remark 44. The mappingp o T, which is defined o, may not be continuous in the
weak topology or”. Nevertheless, it may be useful in distinguishing the ahtsnef &,
from those of%,.
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Appendix

9.1 Proof of Proposition 19
Let C be the uniform bound of the variables, i.gX;| < C for all i (in our caseC = 1). Let

Qn=P(Xn—Py)| <€) and henceP (X, —P,)| >¢)=1-Qn.

Then
E (Xn—Pn)’ < C?(1— Qn) +£2Qn < C%(1— Qu) + £2

If LLN holds, then lim_.. Qn = 1 and thus the limit of the left-hand side is less than or equal
to €. Since this holds for al§ > 0, the limit of the left-hand side is zero. [l
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