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Abstract

We provide an extension of the Condorcet Theorem. Our model includes both the
Nitzan-Paroush framework of “unequal competencies” and Ladha’s model of “corre-
lated voting by the jurors.” We assume that the jurors behave“informatively”; that
is, they do not make a strategic use of their information in voting. Formally, we
consider a sequence of binary random variablesX = (X1,X2, ...,Xn, ...) with range in
{0,1} and a joint probability distributionP. The pair(X,P) is said to satisfy theCon-
dorcet Jury Theorem(CJT) if lim n→∞ P

(

Σn
i=1Xi >

n
2

)

= 1. For a general (dependent)
distributionP we provide necessary as well as sufficient conditions for theCJT that
establishes the validity of theCJT for a domain that strictly (and naturally) includes
the domain of independent jurors. In particular we provide afull characterization of
the exchangeable distributions that satisfy theCJT. We exhibit a large family of dis-
tributionsP with liminf n→∞

1
n(n−1)Σn

i=1Σ j 6=iCov(Xi ,Xj) > 0 that satisfy theCJT. We

do that by “interlacing” carefully selected pairs(X,P) and(X′,P′). We then proceed
to project the distributionsP on the planes(p,y), and(p,y∗) wherep= lim infn→∞ pn,
y = lim infn→∞ E(Xn− pn)

2, y∗ = lim infn→∞ E|Xn− pn|, pn = (p1 + p2, ...+ pn)/n,
and Xn = (X1 + X2, ... + Xn)/n. We determine all feasible points in each of these
planes. Quite surprisingly, many important results on the possibility of theCJT are
obtained by analyzing various regions of the feasible set inthese planes.

In the spaceP of all probability distributions onSp = {0,1}∞, let P1 be the set
of all probability distributions inP that satisfy theCJT and letP2 = P\P1 be the
set of all probability distributions inP that do not satisfy theCJT. We prove that
bothP1 andP2 are convex sets and thatP2 is dense inP (in the weak topology).
Using an appropriate separation theorem we then provide an affine functional that
separates these two sets.

1We thank Marco Scarsini and Yosi Rinott for drawing our attention to de Finetti’s theorem.
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Introduction

The simplest way to present our problem is by quoting Condorcet’s classic result (see
Young (1997)):

Theorem 1. (CJT–Condorcet 1785) Let n voters (n odd) choose between
two alternatives that have equal likelihood of being correct a priori. Assume
that voters make their judgements independently and that each has the same
probability p of being correct(1

2 < p < 1). Then, the probability that the
group makes the correct judgement using simple majority rule is

n

∑
h=(n+1)/2

[n!/h!(n−h)!]ph(1− p)n−h

which approaches1 as n becomes large.

We generalize Condorcet’s model by presenting it as agame with incomplete infor-
mation in the following way: LetI = {1,2, . . . ,n} be a set of jurors and letD be the
defendant. There are twostates of nature: g – in whichD is guilty, andz – in whichD is
innocent. Thus the set of states of nature isS= {g,z}. Each juror has an action setA with
two actions:A = {c,a}. The actionc is to convict D. The actiona is to acquit D. Before
the voting, each jurori gets a private random signalt i ∈ T i := {t i

g, t
i
z}. In the terminology

of games with incomplete information,T i is thetype setof juror i. The interpretation is
that jurori of typet i

g thinks thatD is guilty while jurori of typet i
z thinks thatD is innocent.

The signals of the jurors may be dependent and may also dependon the the state of na-
ture. In our model the jurors act “informatively” (not “strategically”); that is, the strategy
of juror i is σ i : T i → A given byσ i(t i

g) = c andσ i(t i
z) = a. The definition of informative

voting is due to Austen-Smith and Banks (1996), who questionthe validity of the CJT in a
strategic framework. Informative voting was, and is still,assumed in the vast majority of
the literature on theCJT, mainly because it is implied by the original Condorcet assump-
tions. More precisely, assume, as Condorcet did, thatP(g) = P(z) = 1/2 and that each
juror is more likely to receive the “correct” signal (that is, P(t i

g|g) = P(t i
z|z) = p > 1/2);

then the strategy of voting informatively maximizes the probability of voting correctly,
among all four pure voting strategies. Following Austen-Smith and Banks, strategic vot-
ing and Nash Equilibrium were studied by Wit (1998), Myerson(1998), and recently by
Laslier and Weibull (2008), who discuss the assumption on preferences and beliefs under
which sincere voting is a Nash equilibrium in a general deterministic majoritarian voting
rule. As we said before, in this work we do assume informativevoting and leave strategic
considerations and equilibrium concepts for the next phaseof our research. The action
taken by a finite society of jurors{1, . . . ,n} (i.e. the jury verdict) is determined by a sim-
ple majority (with some tie-breaking rule, e.g., by coin tossing). We are interested in the
probability that the (finite) jury will reach the correct decision. Again in the style of games
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with incomplete information letΩn = S×T1×, . . . ,×Tn be the set ofstates of the world.
A state of the world consists of the state of nature and a list of the types of all jurors.
Denote byp(n) the probability distribution onΩn. This is a joint probability distribution
on the state of nature and the signals of the jurors. For each juror i let the random variable
Xi : S×T i →{0,1} be the indicator of his correct voting, i.e.,Xi(g, t i

g) = Xi(z, t i
z) = 1 and

Xi(g, t i
z) = Xi(z, t i

g) = 0. The probability distributionp(n) onΩn induces a joint probability

distribution on the the vectorX = (X1, . . . ,Xn), which we denote also byp(n). If n is odd,
then the probability that the jury reaches a correct decision is

p(n)

(

n

∑
i=1

Xi >
n
2

)

.
Figure 1 illustrates our construction in the casen = 2. In this example, according to

p(2) the state of nature is chosen with unequal probabilities forthe two states:P(g) =
1/4 andP(z) = 3/4 and then the types of the two jurors are chosen according to ajoint
probability distribution that depends on the state of nature.
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Figure 1 The probability distributionp(2).

Guided by Condorcet, we are looking for limit theorems as thethe size of the jury
increases. Formally, asn goes to infinity we obtain an increasing sequence of “worlds”,
(Ωn)

∞
n=1, such that for alln, the projection ofΩn+1 on Ωn is the wholeΩn. The corre-

sponding sequence of probability distributions is(p(n))∞
n=1 and we assume that for every

n, the marginal distribution ofp(n+1) on Ωn is p(n). It follows from the Kolmogorov ex-
tension theorem (see Loeve (1963), p. 93) that this defines a unique probability measure
P on the (projective, orinverse) limit

Ω = lim
∞←n

Ωn = S×T1× . . .×Tn . . .

such that, for alln, the marginal distribution ofP onΩn is p(n).
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In this paper we address the the following problem: Which probability measuresP de-
rived in this manner satisfy theCondorcet Jury Theorem(CJT); that is, Which probability
measuresP satisfy

lim
n→∞

P
(

Σn
i=1Xi >

n
2

)

= 1.

As far as we know, the only existing result on this general problem is that of Berend and
Paroush (1998), which deals only with independent jurors.

Rather than working with the spaceΩ and its probability measureP, it will be more
convenient to work with the infinite sequence of binary random variables
X = (X1,X2, ...,Xn, ...) (the indicators of “correct voting”) and the induced probability
measure on it, which we shall denote also byP. Since the pair(X,P) is uniquely deter-
mined by(Ω,P) , in considering all pairs(X,P) we cover all pairs(Ω,P).

We provide a full characterization of the exchangeable sequencesX =(X1,X2, ...,Xn, ...)
that satisfy theCJT. For a general (dependent) distributionP, not necessarily exchange-
able, we provide necessary as well as sufficient conditions for theCJT. We exhibit a large
family of distributionsP with liminfn→∞

1
n(n−1)Σn

i=1Σ j 6=iCov(Xi,Xj) > 0 that satisfy the
CJT.

In the spaceP of all probability distributions onSp = {0,1}∞, letP1 be the set of all
probability distributions inP that satisfy theCJT and letP2 = P\P1 be the set of all
probability distributions inP that do not satisfy theCJT. We prove that bothP1 andP2

are convex sets and thatP2 is dense inP (in the weak topology). Using an appropriate
separation theorem we then provide an affine functional thatseparates these two sets.

1 Sufficient conditions

Let X = (X1,X2, ...,Xn, ...) be a sequence of binary random variables with range in{0,1}
and with joint probability distributionP. The sequenceX is said to satisfy theCondorcet
Jury Theorem(CJT) if

lim
n→∞

P
(

Σn
i=1Xi >

n
2

)

= 1 (1)

We shall investigate necessary as well as sufficient conditions forCJT.
Given a sequence of random binary variablesX = (X1,X2, ...,Xn, ...) with joint distri-

butionP denotepi = E(Xi), Var(Xi) = E(Xi − pi)
2 andCov(Xi,Xj) = E[(Xi− pi)(Xj −

p j)], for i 6= j, whereE denotes, as usual, the expectation operator. Also letpn =
(p1+ p2, ...+ pn)/n andXn = (X1+X2, ...+Xn)/n.

Our first result provides a sufficient condition forCJT:

Theorem 2. Assume thatΣn
i=1pi > n

2 for all n > N0 and

lim
n→∞

E(Xn− pn)
2

(pn− 1
2)2

= 0, (2)
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or equivalently assume that

lim
n→∞

pn− 1
2

√

E(Xn− pn)
2

= ∞; (3)

then the CJT is satisfied.

Proof.

P
(

Σn
i=1Xi ≤

n
2

)

= P
(

−Σn
i=1Xi ≥−

n
2

)

= P
(

Σn
i=1pi −Σn

i=1Xi ≥ Σn
i=1pi−

n
2

)

≤ P
(

|Σn
i=1pi−Σn

i=1Xi| ≥ Σn
i=1pi−

n
2

)

By Chebyshev’s inequality (assumingΣn
i=1pi > n

2) we have

P
(

|Σn
i=1pi−Σn

i=1Xi| ≥ Σn
i=1pi−

n
2

)

≤ E
(

Σn
i=1Xi−Σn

i=1pi
)2

(

Σn
i=1pi− n

2

)2 =
E(Xn− pn)

2

(pn− 1
2)2

As this last term tends to zero by (2), theCJT (1) then follows.

Corollary 3. If Σn
i=1Σ j 6=iCov(Xi,Xj)≤ 0 for n > N0 (in particular if Cov(Xi,Xj) ≤ 0 for

all i 6= j) and limn→∞
√

n(pn− 1
2) = ∞, then the CJT is satisfied.

Proof. Since the variance of a binary random variableX with meanp is
p(1− p)≤ 1/4 we have forn > N0,

0≤ E(Xn− pn)
2 =

1
n2E (Σn

i=1(Xi− pi))
2

=
1
n2

(

Σn
i=1Var(Xi)+Σn

i=1Σ j 6=iCov(Xi,Xj)
)

≤ 1
4n

Therefore if limn→∞
√

n(pn− 1
2) = ∞, then

0≤ lim
n→∞

E(Xn− pn)
2

(pn− 1
2)2

≤ lim
n→∞

1

4n(pn− 1
2)2

= 0

Remark 4. Note that under the condition of corollary 3, namely, for bounded random
variable with all covariances being non-positive, the (weak) law of large numbers (LLN)
holds for arbitrarily dependent variables (see, e.g., Feller (1957) volume I, exercise 9,
p. 262). This is not implied by corollary 3 since, as we shall see later, the CJT, strictly
speaking, is not a law of large numbers. In particular, CJT does not imply LLN and LLN
does not imply CJT.
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Remark 5. When X1,X2, ...,Xn, ... are independent, then under mild conditions
limn→∞

√
n(pn− 1

2) = ∞ is a necessary and sufficient condition for CJT
(see Berend and Paroush (1998)).

Remark 6. The sequence X= (X1,X2, ...,Xn, ...) of i.i.d. variables with P(Xi = 1) =
P(Xi = 0) = 1/2 satisfies the LLN but does not satisfy the CJT, since it does not satisfy
Berend and Paroush’s necessary and sufficient condition; therefore LLN does not imply
CJT.

Given a sequenceX = (X1,X2, ...,Xn, ...) of binary random variables with a joint prob-
ability distributionP, we define the following parameters of(X,P):

p := lim inf
n→∞

pn (4)

p := limsup
n→∞

pn (5)

y := lim inf
n→∞

E(Xn− pn)
2 (6)

y := limsup
n→∞

E(Xn− pn)
2 (7)

y∗ := lim inf
n→∞

E|Xn− pn| (8)

y∗ := limsup
n→∞

E|Xn− pn| (9)

We first observe the following:

Remark 7. If p > 1/2 andy = 0 then the CJT is satisfied.

Proof. As E(Xn− pn)
2≥ 0, if y = 0 then limn→∞ E(Xn− pn)

2 = 0. Sincep > 1/2, there
existsn0 such thatpn > (1/2+ p)/2 for all n> n0. The result then follows by Theorem 2.

2 Necessary conditions using theL1-norm

Given a sequenceX = (X1,X2, ...,Xn, ...) of binary random variables with a joint probabil-
ity distributionP, if y > 0, then we cannot use Theorem 2 to concludeCJT.

To derive necessary conditions for theCJT, we first have:

Proposition 8. If the CJT holds then p≥ 1
2.

Proof. Define a sequence of events(Bn)
∞
n=1 by Bn = {ω |Xn(ω)−1/2≥ 0}. Since the

CJT holds, limn→∞ P
(

Σn
i=1Xi > n

2

)

= 1 and hence limn→∞ P(Bn) = 1. Since

pn−
1
2

= E(Xn−
1
2
))≥−1

2
P(Ω\Bn),

taking the liminf, the right-hand side tends to zero and we obtain that
liminfn→∞ pn = p≥ 1

2.
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We shall first consider a stronger violation of Theorem 2 thany > 0; namely, assume
thaty > 0. We shall prove that in this case, there is a range of distributionsP for which
theCJT is false.

First we notice that for−1≤ x≤ 1, |x| ≥ x2. HenceE|Xn− pn| ≥ E(Xn− pn)
2 for

all n and thusy > 0 implies thaty∗ > 0
We are now ready to state our first impossibility theorem, which can be readily trans-

lated into a necessary condition.

Theorem 9. Given a sequence X= (X1,X2, ...,Xn, ...) of binary random variables with

joint probability distribution P, if p< 1
2 +

y∗

2 , then the(X,P) violates the CJT.

Proof. If y∗ = 0, then theCJT is violated by Proposition 8. Assume then thaty∗ > 0

and choose ˜y such that 0< ỹ < y∗ and 2t := ỹ
2 + 1

2− p > 0. First we notice that, since
E(Xn− pn) = 0, we haveEmax(0, pn−Xn) = Emax(0,Xn− pn), and thus, sincey∗ > 0,
we have

Emax(0, pn−Xn) >
ỹ
2

for n > n. (10)

If (Ω,P) is the probability space on which the sequenceX is defined, forn > n define
the events

Bn = {ω|pn−Xn(ω)≥max(0,
ỹ
2
− t)} (11)

By (10) and (11),P(Bn) > q > 0 for someq and

pn−Xn(ω)≥ ỹ
2
− t for ω ∈ Bn, n > n. (12)

Choose now a subsequence(nk)
∞
k=1 such that

pnk
<

ỹ
2

+
1
2
− t = p+ t, k = 1,2, ... (13)

By (12) and (13), for allω ∈ Bnk we have,

Xnk(ω)≤ pnk
− ỹ

2
+ t <

1
2
,

and thusP(Xnk > 1
2)≤ 1−q < 1, which implies thatP violates theCJT.

Corollary 10. If lim infn→∞ pn ≤ 1
2 and lim infn→∞ E|Xn− pn| > 0, then P violates the

CJT.
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3 Necessary conditions using theL2-norm

Let X = (X1,X2, ...,Xn, ...) be a sequence of binary random variables with a joint proba-
bility distribution P. In this section we take a closer look at the relationship between the
parametersy andy∗(see (7) and (9)). We first notice thaty > 0 if and only ify∗ > 0. Next
we notice thatpn≥ 1

2 for n> n implies thatXn− pn≤ 1
2 for n > n. Thus, by corollary 10,

if y > 0 and theCJT is satisfied then max(0,Xn− pn)≤ 1
2 for n > n. Finally we observe

the following lemma, whose proof is straightforward:

Lemma 11. If limsupn→∞ P{ω|pn−Xn(ω)≥ pn/2}> 0, then the CJT is violated.

We now use the previous discussion to prove the following theorem:

Theorem 12. If (i) lim infn→∞ pn > 1
2 and (ii) lim infn→∞ P(Xn > pn/2) = 1, then y∗ ≥ 2y.

Proof. Condition (i) implies thatpn > 1
2 for all n > N0 for someN0. This implies that

limn→∞ P(Xn− pn < 1
2) = 1. Also, (ii ) implies that limn→∞ P(pn−Xn≤ 1

2) = 1, and thus

lim
n→∞

P(−1
2
≤ Xn− pn≤

1
2
) = 1 (14)

Define the eventsBn = {ω|− 1
2 ≤ Xn(ω)− pn≤ 1

2}; then by (14)

liminf
n→∞

∫

Bn

(Xn− pn)
2dP= y (15)

and
liminf

n→∞

∫

Bn

|Xn− pn|dP= y∗. (16)

Since anyu∈ [−1
2, 1

2] satisfies|u| ≥ 2u2, it follows from (15) and (16) thaty∗ ≥ 2y.

Corollary 13. Let p= lim infn→∞ pn and y= lim infn→∞ E(Xn− pn)
2. Then if p< 1

2 +y
then P does not satisfy the CJT.

Proof. Assume thatp < 1
2 +y. If y= 0, thenCJT is not satisfied by Proposition 8. Hence

we may thus assume thaty> 0, which also implies thaty∗ > 0. Thus, if lim infn→∞ pn≤ 1
2

thenCJT fails by Corollary 10. Assume then that liminfn→∞ pn > 1
2. By Lemma 11 we

may also assume that liminfn→∞ P
(

Xn > pn/2
)

= 1 and thus by Theorem 12 we have

y∗ ≥ 2y and hencep < 1
2 +y≤ 1

2 +
y∗

2 and theCJT fails by Theorem 9.
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4 Dual Conditions

A careful reading of Sections 2 and 3 reveals that it is possible to obtain “dual” results to
Theorems 9 and 12 and Corollary 13 by replacing “liminf” by “limsup”. More precisely,
for a sequenceX = (X1,X2, ...,Xn, ...) of binary random variables with joint probability
distributionP, we letp = limsupn→∞ pn andy∗ = limsupn→∞ E|Xn− pn|, and we have:

Theorem 14. If p < 1
2 + y∗

2 , then the(X,P) violates the CJT.

Proof. As we saw in the proof of Corollary 13, we may assume that
liminfn→∞ pn≥ 1

2 and hence also

p = limsup
n→∞

pn≥ lim inf
n→∞

pn≥
1
2
,

and hencey∗ > 0. Choose ˜y such that 0< ỹ < y∗ and 2t = ỹ
2 + 1

2− p > 0. Let(Xnk)
∞
k=1 be

a subsequence ofX such that

lim
k→∞

E|Xnk− pnk
|= y∗.

As in (10) we get

Emax(0, pnk
−Xnk) >

ỹ
2

for k > k. (17)

Define the events(Bnk)
∞
k=1 by

Bnk = {ω|pnk
−Xnk(ω)≥ ỹ

2
− t}. (18)

By (17) and (18),P(Bnk) > q for someq > 0 and

pnk
−Xnk(ω)≥ ỹ

2
− t for ω ∈ Bnk and k > ¯̄k. (19)

Now

limsup
n→∞

pn = p <
ỹ
2

+
1
2
− t. (20)

Thus, forn sufficiently largepn < ỹ
2 + 1

2−t. Hence, fork sufficiently large and allω ∈Bnk,

Xnk(ω)≤ pnk
− ỹ

2
+ t <

1
2
. (21)

ThereforeP(Xnk > 1
2)≤ 1−q < 1 for sufficiently largek in violation of theCJT.

Similarly we have the “dual” results to those of Theorem 12 and Corollary 13:

Theorem 15. If (i) lim infn→∞ pn > 1
2 and

(ii) lim infn→∞ P(Xn > pn/2) = 1, theny∗ ≥ 2y.

Corollary 16. If p < 1
2 +y then P does not satisfy the CJT.

The proofs, which are similar respectively to the proofs of Theorem 12 and Corol-
lary 13, are omitted.
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5 Existence of distributions satisfying theCJT

In this section we address the issue of the existence of distributions that satisfy theCJT.
For that, let us first clarify the relationship between theCJT and law of large numbers
which, at first sight, look rather similar. Recall that an infinite sequence of binary random
variablesX = (X1,X2, ...,Xn, ...) with a joint probability distributionP satisfies the (weak)
law of large numbers (LLN) if (in our notations):

∀ε > 0, lim
n→∞

P
(

|Xn− pn|< ε
)

= 1 (22)

while it satisfies the Condorcet Jury Theorem (CJT) if:

lim
n→∞

P

(

Xn >
1
2

)

= 1 (23)

Since by Proposition 8, the conditionp≥ 1
2 is necessary for the validity of theCJT, let us

check the relationship between theLLN and theCJT in this region. Our first observation
is:

Proposition 17. For a sequence X= (X1,X2, ...,Xn, ...) with probability distribution P
satisfying p> 1

2, if the LLN holds then the CJT also holds.

Proof. Let p = 1/2+ 3δ for someδ > 0 and letN0 be such thatpn > 1/2+ 2δ for all
n > N0; then for alln > N0 we have

P

(

Xn >
1
2

)

≥ P

(

Xn≥
1
2

+δ
)

≥ P
(

|Xn− pn|< δ
)

Since the last expression tends to 1 asn→ ∞, the first expression does too, and hence the
CJT holds.

Remark 18. The statement of Proposition 17 does not hold for p= 1
2. Indeed, the se-

quence X= (X1,X2, ...,Xn, ...) of i.i.d. variables with P(Xi = 1) = P(Xi = 0) = 1/2 satis-
fies the LLN but does not satisfy the CJT (see Remark 6).

Unfortunately, Proposition 17 is of little use to us. This isdue to the following fact:

Proposition 19. If the random variables of the sequence X= (X1,X2, ...,Xn, ...) are uni-
formly bounded then the condition

lim
n→∞

E
(

Xn− pn

)2
= 0

is a necessary condition for LLN to hold.

The proof is elementary and can be found, e.g., in Uspensky (1937), page 185. For
the sake of completeness it is provided here in the Appendix.

It follows thus from Proposition 19 thatLLN cannot hold wheny > 0 and thus we
cannot use Proposition 17 to establish distributions in this region that satisfy theCJT.
Nevertheless, we shall exhibit a rather large family of distributionsP with y > 0 (and
p > 1/2) for which theCJT holds. Our main result is the following:
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Theorem 20.Let t∈ [0, 1
2]. If F is a distribution with parameters(p,y∗), then there exists

a distribution H with parameters̃p = 1− t + t p andỹ∗ = ty∗ that satisfy the CJT.

Proof. To illustrate the idea of the proof we first prove (somewhat informally) the case
t = 1/2. LetX = (X1,X2, ...,Xn, ...) be a sequence of binary random variables with a joint
probability distributionF . LetG be the distribution of the sequenceY = (Y1,Y2, ...,Yn, ...),
whereEYn = 1 for all n (that is,Y1 = Y2 = ...Yn = ... andP(Yi = 1) = 1 ∀i). Consider now
the following “interlacing” of the two sequencesX andY:

Z = (Y1,Y2,X1,Y3,X2,Y4,X3, ...,Yn,Xn−1,Yn+1,Xn...),

and let the probability distributionH of Z be the product distributionH = F ×G. It is
verified by straightforward computation that the parameters of the distributionH are in
accordance with the theorem fort = 1

2, namely, ˜p = 1
2 + 1

2 p and ỹ∗ = 1
2y∗. Finally, as

each initial segment of voters inZ contains a majority ofYi ’s (thus with all values 1), the
distributionH satisfies theCJT, completing the proof fort = 1

2.
The proof for a generalt ∈ [0,1/2) follows the same lines: We construct the sequence

Z so that any finite initial segment ofn variables, includes “about, but not more than” the
initial tn segment of theX sequence, and the rest is filled with the constantYi variables.
This will imply that theCJT is satisfied.

Formally, for any realx≥ 0 let⌊x⌋ be the largest integer less than or equal tox and let
⌈x⌉ be smallest integer greater than or equal tox. Note that for anyn and any 0≤ t ≤ 1
we have⌊tn⌋+ ⌈(1− t)n⌉= n; thus, one and only one of the following holds:

(i) ⌊tn⌋< ⌊t(n+1)⌋ or

(ii) ⌈(1− t)n⌉< ⌈(1− t)(n+1)⌉

From the given sequenceX and the above-defined sequenceY (of constant 1 variables) we
define now the sequenceZ = (Z1,Z2, ...,Zn, ...) as follows:Z1 = Y1 and for anyn≥ 2, let
Zn = X⌊t(n+1)⌋ if (i) holds andZn = Y⌈(1−t)(n+1)⌉ if (ii) holds. This inductive construction
guarantees that for alln, the sequence contains⌊tn⌋ Xi coordinates and⌈(1− t)n⌉ Yi

coordinates. The probability distributionH is the product distributionF ×G. The fact
that(Z,H) satisfies theCJT follows from:

⌈(1− t)n⌉ ≥ (1− t)n> tn≥ ⌊tn⌋,

and finally p̃ = 1− t + t p andỹ∗ = ty∗ is verified by straightforward computation.

Remark 21. The “interlacing” of the two sequences X and Y described in the proof of
Theorem 20 may be defined for any t∈ [0,1]. We were specifically interested in t∈ [0,1/2]
since this guarantees the CJT.
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6 Feasibility considerations

The conditions developed so far for a sequenceX = (X1,X2, ...,Xn, ...) with joint proba-
bility distribution P to satisfy theCJT involved only the parametersp, p,y,y,y∗, andy∗.
In this section we pursue our characterization in the space of these parameters. We shall
look at the distributions in two different spaces: the spaceof points(p,y∗), which we call
theL1 space, and the space(p,y), which we call theL2 space.

6.1 Feasibility and characterization inL1

With the pair(X,P) we associate the point(p,y∗) in the Euclidian planeR2. It follows
immediately that 0≤ p≤ 1. We claim thaty∗ ≤ 2p(1− p) holds for all distributionsP.
To see that, we first observe thatE|Xi− pi |= 2pi(1− pi); hence

E|Xn− pn|=
1
n

E|
n

∑
i=1

(Xi− pi)| ≤
1
n

E

(

n

∑
i=1
|Xi− pi |

)

≤ 2
n

n

∑
i=1

pi(1− pi).

The function∑n
i=1 pi(1− pi) is (strictly) concave. Hence

E|Xn− pn| ≤ 2
n

∑
i=1

1
n

pi(1− pi)≤ 2pn(1− pn). (24)

Finally, let p = limk→∞ pnk
; then

y∗ = lim inf
n→∞

E|Xn− pn| ≤ lim inf
k→∞

E|Xnk− pnk
| ≤ 2 lim

k→∞
pnk

(1− pnk
) = 2p(1− p).

The second inequality is due to (24).
Thus, if(u,w) denote a point inR2, then any feasible pair(p,y∗) is in the region

FE1 = {(u,w)|0≤ u≤ 1, 0≤ w≤ 2u(1−u)}. (25)

We shall now prove that all points in this region are feasible; that is, any point inFE1 is
attainable as a pair(p,y∗) of some distributionP. Then we shall indicate the sub-region
of FE1 where theCJT may hold. We first observe that any point(u0,w0) ∈ FE1 on the
parabolaw = 2u(1−u), for 0≤ u≤ 1, is feasible. In fact such(u0,w0) is attainable by
the sequenceX = (X1,X2, ...,Xn, ...) with identical variablesXi, X1 = X2 = ... = Xn..., and
EX1 = u0 (clearly p = u0, andy∗ = 2u0(1−u0) follows from the dependence and from
E|Xi− pi |= 2pi(1− pi) = 2u0(1−u0)).

Let again(u0,w0) be a point on the parabola, which is thus attainable. Assume that
they are the parameters(p,y∗) of the pair(X,F). Let (Y,G) be the pair (of constant
variables) described in the proof of Theorem 20 and lett ∈ [0,1]. By Remark 21 thet-
interlacing of(X,F) and(Y,G) can be constructed to yield a distribution with parameters
p̃ = t p+ (1− t) and ỹ∗ = ty∗ (see the proof of Theorem 20). Thus, the line segment
defined by ˜u = tu0 + (1− t) and w̃ = tw0 for 0≤ t ≤ 1, connecting(u0,w0) to (1,0),

12
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w = y*

FE1
u = p

11/20
0

1/2

u w00

M

(    ,    ) u01 − 

u w(1 −   )  0=w

Figure 2 The feasible setFE1.

consists of attainable pairs contained inFE1. Since any point(u,w) in FE1 lies on such a
line segment, we conclude thatevery point in FE1 is attainable. We shall refer toFE1 as
the feasible set, which is shown in Figure 2.

We now attempt to characterize the points of the feasible setaccording to whether the
CJT is satisfied or not. For that we first define:

Definition 22.

• ThestrongCJT set, denoted by sCJT, is the set of all points(u,w) ∈ FE1 such that
any pair(X,P) with parameters p= u and y∗ = w satisfies the CJT.

• TheweakCJT set, denoted by wCJT, is the set of all points(u,w) ∈ FE1 for which
there exists a pair(X,P) with parameters p= u and y∗ = w that satisfies the CJT.

We denote−sCJT= FE1\sCJT and−wCJT= FE1\wCJT.

For example, as we shall see later (see Proposition 24),(1,0) ∈ sCJTand
(1/2,0) ∈ wCJT.

By Theorem 9, ifu < 1/2+ 1/2w, then(u,w) ∈ −wCJT. Next we observe that if
(u0,w0) is on the parabolaw= 2u(1−u) andM is the midpoint of the segment[(u0,w0),(1,0)],
then by the proof of Theorem 20, the segment[M,(1,0)] ⊆ wCJT (see Figure 2). To
find the upper boundary of the union of all these segments, that is, the locus of the mid
pointsM in Figure 2, we eliminate(u0,w0) from the equationsw0 = 2u0(1− u0), and
(u,w) = 1/2(u0,w0)+1/2(1,0), and obtain

w = 2(2u−1)(1−u) (26)

This is a parabola with maximum 1/4 atu = 3/4. The slope of the tangent atu = 1/2
is 2; that is, the tangent of the parabola at that point is the line w = 2u−1 defining the

13



region−wCJT. Finally, a careful examination of the proof of Theorem 20, reveals that for
every(u0,w0) on the parabolaw = 2u(1−u), the line segment[(u0,w0),M] is in−sCJT
(see Figure 2).

Our analysis so far leads to the conclusions summarized in Figure 3 describing the
feasibility and and regions ofCJT possibility for all pairs(X,P).

uu (1 −   )  2=w u − 12

w = y*

u = p
11/20

0

1/2

3/4

1/4

=w

2=w (2   − 1)(1 −   )  u u
−wCJT

−sCJT

wCJT

Figure 3 Regions of possibility ofCJT in L1.

Figure 3 is not complete in the sense that the regionswCJT and−sCJT are not dis-
joint, as it may mistakenly appear in the figure. More precisely, we complete Definition 22
by defining:

Definition 23. ThemixedCJT set, denoted by mCJT, is the set of all points(u,w) ∈ FE1
for which there exists a pair(X,P) with parameters p= u and y∗ = w that satisfies the
CJT, and a pair(X̂, P̂) with parameterŝp = u andŷ∗ = w for which the CJT is violated.

Then the regionssCJT, −wCJT, andmCJT are disjoint and form a partition of the
feasible set of all distributionsFE1

FE1 =−wCJT∪sCJT∪mCJT (27)

To complete the characterization we have to find the regions of this partition, and for
that it remains to identify the regionmCJTsince, by definition,wCJT\mCJT⊂ sCJTand
−sCJT\mCJT⊂−wCJT.

Proposition 24. All three regions sCJT, −wCJT , and mCJT are not empty.

Proof. As can be seen from Figure 3, the region−wCJT is clearly not empty; it contains
for example the points(0,0) and(1/2,1/2). As we remarked already (following Defini-
tion 22), the regionsCJTcontains the point(1,0). This point corresponds to a unique pair
(X,P), in which Xi = 1 for all i with probability 1, that trivially satisfies theCJT). The
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regionmCJTcontains the point(1/2,0). To see this recall that the Berend and Paroush’s
necessary and sufficient condition forCJT in the independent case (see Remark 5) is

lim
n→∞

√
n(pn−

1
2
) = ∞ (28)

First consider the pair(X̃, P̃) in which (X̃i)
∞
i=1 are i.i.d with P(X̃i = 1) = 1/2 and

P(X̃i = 0)= 1/2. Clearly
√

n(pn− 1
2) = 0 for allnand hence condition (28) is not satisfied,

implying that theCJT is not satisfied.
Now consider(X,P) in which X = (1,1,0,1,0,1· · ·) with probability 1. This pair

corresponds to the point(1/2,0) since

Xn = pn =

{ 1
2 + 1

n if n is even
1
2 + 1

2n if n is odd
,

and hencep = 1/2 andy∗ = 0. Finally this sequence satisfies theCJT asXn > 1
2 with

probability one for alln.

6.2 Feasibility and characterization inL2

Replacingy∗ = lim infn→∞ E|Xn− pn| by the parametery = lim infn→∞ E(Xn− pn)
2, we

obtain results in the space of points(p,y) similar to those obtained in the previous section
in the space(p,y∗).

Given a sequence of binary random variablesX with its joint distributionP, we first
observe that for anyi 6= j,

Cov(Xi,Xj) = E(XiXj)− pi p j ≤min(pi, p j)− pi p j .

Therefore,

E(Xn− pn)
2 =

1
n2

{

n

∑
i=1

∑
j 6=i

Cov(Xi,Xj)+
n

∑
i=1

pi(1− pi)

}

(29)

≤ 1
n2

{

n

∑
i=1

∑
j 6=i

[min(pi , p j)− pi p j ]+
n

∑
i=1

pi(1− pi)

}

. (30)

We claim that the maximum of the last expression (30), under the condition∑n
i=1 pi = pn,

is pn(1− pn). This is attained whenp1 = · · · = pn = pn. To see that this is indeed the
maximum, assume to the contrary that the maximum is attainedat p̃ = (p̃1, · · · , p̃n) with
p̃i 6= p̃ j for somei and j. Without loss of generality assume that: ˜p1≤ p̃2≤ ·· · ≤ p̃n with
p̃1 < p̃ j and p̃1 = p̃ℓ for ℓ < j. Let 0< ε < (p̃ j − p̃1)/2 and definep∗ = (p∗1, · · · , p∗n) by
p∗1 = p̃1 + ε, p∗j = p̃ j − ε, and p∗ℓ = p̃ℓ for ℓ /∈ {1, j}. A tedious, but straightforward,
computation shows that the expression (30) is higher forp∗ than for p̃, in contradiction to
the assumption that it is maximized at ˜p. We conclude that

E(Xn− pn)
2≤ pn(1− pn).
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Let now(pnk
)∞
k=1 be a subsequence converging top; then

y = lim inf
n→∞

E(Xn− pn)
2≤ lim inf

k→∞
E(Xnk− pnk

)2

≤ lim inf
k→∞

pnk
(1− pnk

) = p(1− p).

We state this as a theorem:

Theorem 25. For every pair(X,P), the corresponding parameters(p,y)
satisfy y≤ p(1− p).

Next we have the analogue of Theorem 20, proved in the same way.

Theorem 26. Let t∈ [0, 1
2]. If F is a distribution with parameters(p,y), then there exists

a distribution H with parameters̃p = 1− t + t p andỹ = t2y that satisfy the CJT.

We can now construct Figure 4, which is the analogue of Figure2 in theL2 space
(p,y). The feasible set in this space is

FE2 = {(u,w)|0≤ u≤ 1, 0≤w≤ u(1−u)} (31)

FE2
u = p

10
0

1/4

u w00

uu (1 −   )  =w

w = y

1 +1/2

M

(    ,    )

u0

w0u0

2

1 −
w =

1 −   u
2

Figure 4 The feasible setFE2.

The geometric locus of the midpointsM in Figure 4 is derived from
(1) u = 1

2u0 + 1
2, (2) w = 1

4w0, and(3) w0 = u0(1−u0) and is given by
w = 1

2(2u−1)(1− u). This yields Figure 5, which is the analogue of Figure 3. Note,
however, that unlike in Figure 3, the straight linew = u− 1

2 is not tangentialto the small
parabolaw = (u− 1

2)(1−u) at (1
2,0).
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Figure 5 Regions of possibility ofCJT in L2.

The next step toward determining the regionmCJT in theL2 space (Figure 5) is the
following:

Proposition 27. For any(u,w) ∈ {(u,w)|0 < u < 1 ; 0≤w≤ u(1−u)},
there is a pair(Z,H) such that:

(i) E(Zi) = u,∀i.

(ii) lim infn→∞ E(Zn−u)2 = w.

(iii) The distribution H does not satisfy the CJT.

Proof. For 0< u < 1,

• let (X,F0) be given byX1 = X2 = . . . = Xn = . . . andE(Xi) = u;

• let (Y,F1) be a sequence of ofi.i.d. random variables(Yi)
∞
i=1 with expectationu.

• For 0< t ≤ 1 let (Zt ,Ht) be the pair in whichZt
i = tXi +(1− t)Yi for i = 1,2, . . .

andHt is the product distributionHt = F0×F1 (that is, theX and theY sequences
are independent).

Note first thatE(Zt
i ) = u for all i and

lim
n→∞

E(Zt
n−u)2 = lim

n→∞

(

(1− t)
u(1−u)

n
+ tu(1−u)

)

= tu(1−u),

and therefore the pair(Zt ,Ht) corresponds to the point(u,w) in the L2 space, where
w = tu(1−u) ranges in(0,u(1−u)) as 0< t ≤ 1.

Finally, (Zt ,Ht) does not satisfy theCJT since for alln,

Pr(Zt
n >

1
2
)≤ 1−Pr(Zt

1 = Zt
2 = . . . = 0) = 1− t(1−u) < 1.
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As this argument does not apply fort = 0 it remains to prove that, except for(1,0), to
any point(u,0) on thex axis corresponds a distribution that does not satisfy theCJT. For
0≤ u≤ 1/2, the sequence(Y,F1) of of i.i.d. random variables(Yi)

∞
i=1 with expectationu

does not satisfy theCJT, as follows from the result of Berend and Paroush (1998). For
1/2 < u < 1 such a sequence ofi.i.d. random variables does satisfy theCJT and we need
the following more subtle construction:

Given the two sequences(X,F0) and(Y,F1) defined above we construct a sequence
Z = (Zi)

∞
i=1 consisting of alternating blocks ofXi-s andYi-s, with the probability distribu-

tion onZ being that induced by the product probabilityH = F0×F1. ClearlyE(Zi) = u
for all i, in particularpn = u for all n andp = u. We denote byBℓ the set of indices of the
ℓ-th block and its cardinality bybℓ. Thusn(ℓ) = Σℓ

j=1b j is the index ofZi at the end of the
ℓ-th block. Therefore

Bℓ+1 = {n(ℓ)+1, . . . ,n(ℓ)+bℓ+1)} and n(ℓ+1) = n(ℓ)+bℓ+1.

Define the block sizebℓ inductively by:

1. b1 = 1, and fork = 1,2, . . .,

2. b2k = kΣk
j=1b2 j−1 andb2k+1 = b2k.

Finally we define the sequenceZ = (Zi)
∞
i=1 to consist ofXi-s in the odd blocks andYi-s in

the even blocks, that is,

Zi =

{

Xi if i ∈ B2k−1 for some k = 1,2, . . .
Yi if i ∈ B2k for some k = 1,2, . . .

Denote bynx(ℓ) andny(ℓ) the number ofX coordinates andY coordinates respectively
in the sequenceZ at the end of theℓ-th block and byn(ℓ) = nx(ℓ)+ny(ℓ) the number of
coordinates at the end of theℓ-th block ofZ. It follows from 1 and 2 (in the definition of
bℓ) that fork = 1,2, . . .,

nx(2k−1) = ny(2k−1)+1 (32)
nx(2k)
ny(2k)

≤ 1
k

and hence also
nx(2k)
n(2k)

≤ 1
k

(33)

It follows from (32) that at the end of each odd-numbered block 2k− 1, there is a
majority ofXi coordinates that with probability(1−u) will all have the value 0. Therefore,

Pr

(

Zn(2k−1) <
1
2

)

≥ (1−u) for k = 1,2, . . . ,

and hence

liminf
n→∞

Pr

(

Zn >
1
2

)

≤ u < 1;
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that is,(Z,H) does not satisfy theCJT.
It remains to show that

y = lim inf
n→∞

E(Zn− pn)
2 = 0.

To do so, we show that the subsequence of
{

E((Zn− pn)
2)
}∞

n=1 corresponding to the end
of the even-numbered blocks converges to 0, namely,

lim
k→∞

E(Zn(2k)− pn(2k))
2 = 0.

Indeed,

E(Zn(2k)− pn(2k))
2 = E

(

nx(2k)
n(2k)

(X1−u)+
1

n(2k)
Σny(2k)

i=1 (Yi−u)

)2

.

Since theYi-s arei.i.d. and independent ofX1 we have

E(Zn(2k)− pn(2k))
2 =

n2
x(2k)

n2(2k)
u(1−u)+

ny(2k)

n2(2k)
u(1−u),

and by property (33) we get finally:

lim
k→∞

E(Zn(2k)− pn(2k))
2≤ lim

k→∞

(

1
k2u(1−u)+

1
n(2k)

u(1−u)

)

= 0,

concluding the proof of the proposition.

Proposition 27 asserts that for every point(u,w) in Figure 5, except for the point(1,0),
there is a distribution with these parameters that does not satisfy theCJT. This was known
from our previous results in the regions−wCJT and−sCJT. As for the regionwCJT,
Proposition 27 and Theorem 26 yield the following conclusions, presented in Figure 6.

Corollary 28. 1. The region below the small parabola in Figure 5, with the exception
of the point(1,0), is in mCJT, that is,

{

(p,y)|1
2
≤ p < 1; and y≤ 1

2
(2p−1)(1− p)

}

⊆mCJT.

2. The point(p,y) = (1,0) is theonly point in sCJT. It corresponds to a single se-
quence with X1 = · · ·= Xn = · · · with F(Xi = 1) = 1.
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Figure 6 mCJTandsCJT in theL2 space.

7 Exchangeable variables

In this section we fully characterize the distributions of sequencesX = (X1,X2, ...,Xn, ...)
of exchangeablevariables that satisfy theCJT. We first recall:

Definition 29. A sequence of random variables X= (X1,X2, ...,Xn, ...) is exchangeableif
for every n and every permutation(k1, . . . ,kn) of (1, . . . ,n), the finite sequence(Xk1, . . . ,Xkn)
has same n-dimensional probability distribution as(X1, . . . ,Xn).

We shall make use of the following characterization theoremdue to de Finetti (see,
e.g., Feller (1966), Vol. II, page 225).

Theorem 30.A sequence of binary random variables X= (X1,X2, ...,Xn, ...) is exchange-
able if and only if there is a probability distribution F on[0,1] such that for every n:

Pr(X1 = · · ·= Xk = 1, Xk+1 = . . . = Xn = 0) =

∫ 1

0
θk(1−θ)n−kdF (34)

Pr(X1+ · · ·+Xn = k) =

(

n
k

)

∫ 1

0
θ k(1−θ)n−kdF (35)

The usefulness of de Finetti for our purposes is that it enables an easy projection of
the distribution into ourL2 space:

Theorem 31. Let X = (X1,X2, ...,Xn, ...) be a sequence of exchangeable binary random
variables and let F be the corresponding distribution function in de Finetti’s theorem.
Then,

y = lim
n→∞

E(Xn−u)2 = V(F), (36)
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where

u =

∫ 1

0
θdF and V(F) =

∫ 1

0
(θ −u)2dF.

Proof. We have

u = E(Xi) = Pr(Xi = 1) =

∫ 1

0
xdF ; V(Xi) = u(1−u)

and fori 6= j,

Cov(Xi,Xj) == Pr(Xi = Xj = 1)−u2 =
∫ 1

0
x2dF−u2 = V(F).

So,

E(Xn−u)2 = E

(

1
n

Σn
1(Xi−u)

)2

=
1
n2Σn

1V(Xi)+
1
n2Σi 6= jCov(Xi,Xj)

=
nu(1−u)

n2 +
n(n−1)

n2 V(F),

which implies equation (36).

We can now state the characterization theorem:

Theorem 32. A sequence X= (X1,X2, ...,Xn, ...) of binary exchangeable random vari-
ables with a corresponding distribution F(θ) satisfies the CJT if and only if

Pr

(

1
2

< θ ≤ 1

)

= 1, (37)

that is, if and only if the support of F is in the open semi-interval (1/2,1].

Proof. The “only if” part follows from the fact that any sequenceX = (X1,X2, ...,Xn, ...)
of binary i.i.d. random variables with expectationE(Xi) = θ ≤ 1/2, violates theCJT (by
the Berend and Paroush’s necessary condition).

To prove that a sequence satisfying condition (37) also satisfies theCJT, note that for
0 < ε < 1/2,

Pr

(

Xn >
1
2

)

≥ Pr

(

θ ≥ 1
2

+ ε
)

Pr

(

Xn >
1
2
|θ ≥ 1

2
+ ε
)

. (38)
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For the second term in (38) we have:

Pr

(

Xn >
1
2
|θ ≥ 1

2
+ ε
)

= Σk> n
2
Pr

(

X1+ · · ·+Xk = k|θ ≥ 1
2

+ ε
)

(39)

= Σk> n
2

(

n
k

)

∫ 1

1
2+ε

θk(1−θ)n−kdF (40)

=

∫ 1

1
2+ε

[

Σk> n
2

(

n
k

)

θ k(1−θ)n−k
]

dF (41)

:=
∫ 1

1
2+ε

Sn(θ)dF (42)

Now, using Chebyshev’s inequality we have:

Sn(θ) = Pr

(

Xn >
1
2
|θ
)

≥ Pr

(

Xn >
1
2

+ ε|θ
)

(43)

≥ 1− V(Xn|θ)

(θ − 1
2− ε)2

= 1− θ(1−θ)

n(θ − 1
2− ε)2

(44)

Since the last expression in (44) converges to 1 uniformly on[1/2+ε,1] asn→∞, taking
the limit n→ ∞ of (42) and using (44) we have:

lim
n→∞

Pr

(

Xn >
1
2
|θ ≥ 1

2
+ ε
)

≥
∫ 1

1
2+ε

dF = Pr

(

θ ≥ 1
2

+ ε
)

. (45)

From (38) and (45) we have that for and fixedε > 0,

lim
n→∞

Pr

(

Xn >
1
2

)

≥
[

Pr

(

θ ≥ 1
2

+ ε
)]2

. (46)

Since (46) must hold for all 1/2 > ε > 0, and sincePr
(

1
2 < θ ≤ 1

)

= 1, we conclude
that

lim
n→∞

Pr

(

Xn >
1
2

)

= 1, (47)

i.e., the sequenceX = (X1,X2, ...,Xn, ...) satisfies theCJT.

To draw the consequences of Theorem 32 we prove first the following:

Proposition 33. Any distribution F of a variableθ in [1/2,1] satisfies

V(F)≤ (u− 1
2
)(1−u), (48)

where u= E(F), and equality holds in (48) only for F in which

Pr(θ =
1
2
) = 2(1−u) and Pr(θ = 1) = 2u−1. (49)
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Proof. We want to show that

∫ 1

1/2
θ2dF(θ)−u2≤ (u− 1

2
)(1−u), (50)

or, equivalently,
∫ 1

1/2
θ2dF(θ)− 3

2
u+

1
2
≤ 0. (51)

Replacingu =
∫ 1

1/2 θdF(θ) and1
2 =

∫ 1
1/2

1
2dF(θ), inequality (50) is equivalent to

∫ 1

1/2
(θ2− 3

2
θ +

1
2
)dF(θ) :=

∫ 1

1/2
g(θ)dF(θ)≤ 0. (52)

The parabolag(θ) is convex and satisfiesg(1/2) = g(1) = 0 andg(θ) < 0 for all 1/2 <
θ < 1, which proves (52). Furthermore, equality to 0 in (52) is obtained only whenF is
such thatPr(1/2 < θ < 1) = 0, and combined withu = E(F) this implies (49).

The next proposition provides a sort of an inverse to proposition 33.

Proposition 34. For any pair (u,w) where1/2 < u≤ 1 and0≤ w < (u−1/2)(1−u),
there is a distribution F(θ) on (1/2,1] such that E(F) = u and V(F) = w.

Proof. For u = 1, the only point in this region is whenw = 0 and for this point(1,0)
the claim is trivially true (with the distributionPr(θ = 1) = 1), and so it suffices to con-
sider only the caseu < 1. Given(u,w), for anyy satisfying 1/2 < y≤ u < 1 define the
distributionFy for which

Pr(θ = y) = (1−u)/(1−y) and Pr(θ = 1) = (u−y)/(1−y).

This distribution satisfiesE(Fy) = u and it remains to show that we can choosey so that
V(Fy) = w. Indeed,

V(Fy) =
1−u
1−y

y2 +
u−y
1−y

−u2.

For a givenu < 1 this is a continuous function ofy satisfying: limy→uV(Fy) = 0 and
limy→1/2V(Fy) = (u−1/2)(1−u). Therefore, for 0≤ w < (u−1/2)(1−u), there is a
valuey∗ for whichV(Fy∗) = w.

The geometric expression of Theorem 32 can now be stated as follows:
In theL2 plane of(p,y) let

A =

{

(p,y)|1
2

< p≤ 1; and y < (p− 1
2
)(1− p)

}

⋃

{(1,0)}

This is the region strictly below the small parabola in Figure 6, excluding(1/2,0) and
adding(1,0).
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Theorem 35. 1. Any exchangeable sequence of binary random variables that satisfy
the CJT corresponds to(p,y) ∈ A.

2. To any(p,y)∈A there exists an exchangeable sequence of binary random variables
with parameters(p,y) that satisfy the CJT.

Proof. The statements of the theorems are trivially true for the point (1,0), as it corre-
sponds to the unique distribution:Pr(X1 = . . . = Xn . . .) = 1, which is both exchangeable
and satisfies theCJT. For all other points inA,

• Part 1. follows de Finetti’s Theorem 30, Theorem 32 and Proposition 33.

• Part 2. follows de Finetti’s Theorem 30, Theorem 32 and Proposition 34.

Remark 36. Note that Theorem 26 and part (ii) of Theorem 35 each establish the ex-
istence of distributions satisfying the CJT in the interiorof the region below the small
parabola in Figure 6. The two theorems exhibit examples of such a distribution: while
the proof of part (ii) of Theorem (35) provides to each point(p,y) in this region a corre-
sponding exchangeable distribution that satisfies the CJT,Theorem (26), provides other
distributions satisfying the CJT that are clearly not exchangeable.

8 General interlacing

We now generalize the main construction of the proof of Theorem 20. This may be useful
in advancing our investigations.

Definition 37. Let X= (X1,X2, ...,Xn, ...) be a sequence of binary random variables with
joint probability distribution F and let Y= (Y1,Y2, ...,Yn, ...) be another sequence of binary
random variables with joint distribution G. For t∈ [0,1], the t-interlacingof (X,F) and
(Y,G) is the pair(Z,H) := (X,F)∗t (Y,G) where for n= 1,2, . . .,

Zn =

{

X⌊tn⌋ if ⌊tn⌋>⌊t(n−1)⌋
Y⌈(1−t)n⌉ if ⌈(1−t)n⌉>⌈(1−t)(n−1)⌉

, (53)

and H= F×G is the product probability distribution of F and G.

The following lemma is a direct consequence of Definition 37.

Lemma 38. If (X,F) and(Y,G) satisfy the CJT then for any t∈ [0,1] the pair(Z,H) =
(X,F)∗t (Y,G) also satisfies the CJT.
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Proof. We may assume thatt ∈ (0,1). Note that
{

ω|Zn(ω) >
1
2

}

⊇
{

ω |X⌊tn⌋(ω) >
1
2
}∩{ω|Y⌈(1−t)n⌉(ω) >

1
2

}

By our construction and the fact that both(X,F) and(Y,G) satisfy theCJT,

lim
n→∞

F

(

X⌊tn⌋ >
1
2

)

= 1 and lim
n→∞

G

(

Y⌈(1−t)n⌉ >
1
2

)

= 1.

As

H

(

Zn >
1
2

)

≥ F

(

X⌊tn⌋ >
1
2

)

·G
(

Y⌈(1−t)n⌉ >
1
2

)

,

the proof follows.

Corollary 39. The region wCJT isstar-convexin the L1 space . Hence, in particular, it is
path-connected in this space.

Proof. Let (u,w) be a point inwCJT in the L1 space. Then, there exists a pair(X,F)
which satisfiesCJT, whereX is the sequence of binary random variables with joint prob-
ability distributionF satisfyingp = u andy∗ = w. By Remark 21, Lemma 38, and the
proof of Theorem 20, the line segment[(u,w),(1,0)] is contained inwCJT, proving that
wCJT is star-convex.

Corollary 40. The region wCJT ispath-connectedin the L2 space.

Proof. In the L2 space a point(u,w) corresponds top = u and y = w. By the same
arguments as before, the arc of the parabolaw = ((1−u)/(1−u0))

2w0 connecting(u,w)
to (1,0) (see Figure 4) is contained inwCJT, and thuswCJT is path-connected.

9 CJT in the space of all probability distributions.

We look at the spaceSp = {0,1}∞ already introduced in the proof of Proposition 27 on
page 17. We considerSp both as a measurable product space and as a topological product
space. LetP be the space of all probability distributions onSp. P is a compact metric
space in the weak topology. LetP1 ⊆P be the set of all probability distributions inP
that satisfy theCJT and letP2 = P\P1 be the set of all probability distributions inP
that do not satisfy theCJT.

Lemma 41. If P1 and P2 are two distributions inP, and if P2∈P2 then for any0< t < 1,
the distribution P3 = tP1+(1− t)P2 is also inP2.
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Proof. Forn = 1,2, · · · , let

Bn =

{

x = (x1,x2, · · ·) ∈ Sp|
1
n

n

∑
i=1

xi >
1
2

}

(54)

SinceP2 ∈P2, there exists a subsequence(Bnk)
∞
k=1 andε > 0 such thatP2(Bnk) ≤ 1− ε

for k = 1,2, · · · . Then

P3(Bnk) = tP1(Bnk)+(1− t)P2(Bnk)≤ t +(1− t)(1− ε) = 1− ε(1− t),

implying thatP3 ∈P2.

Corollary 42. The setP2 is dense inP (in the weak topology) and is convex.

We proceed now to separateP1 from P2 in the spaceP. We first observe thatP1 is
convex by its definition andP2 is convex by Lemma 41. In order to separateP1 from P2

by some linear functional we first define the mappingT : P→RN whereN = {1,2, . . .}
in the following way: ForP∈P let

T(P) =

(

∫

χB1
dP,
∫

χB2
dP, . . . ,

∫

χBn
dP, . . .

)

where the setsBn are defined in (54) andχBn
is the indicator function of the setBn, that

is, for x∈ Sp andn = 1,2, . . .,

χBn
(x) =

{

1 if x∈ Bn

0 if x 6∈ Bn
.

The mappingT is affine and continuous whenRN is endowed with the product topol-
ogy. Clearly,T(P) ⊂ ℓ∞. Also T(P1) andT(P2) are convex and ifz1 ∈ T(P1) and
z2 ∈ T(P2) then liminfk→∞(z1,k−z2,k)≥ 0, wherezi = (zi,1,zi,2 . . .) for i = 1,2.

Let B : ℓ∞→ R be anyBanach limiton ℓ∞ (see Dunford and Schwartz (1958), p. 73);
thenB is a continuous linear functional onℓ∞ and asB(z)≥ lim infk→∞ zk for everyz∈ ℓ∞,
we haveB(z1) ≥ B(z2) wheneverz1 ∈ T(P1) andz2 ∈ T(P2). Thus the composition
B◦T, which is also an affine function, satisfies

P1 ∈P1 and P2 ∈P2 =⇒ B◦T(P1)≥ B◦T(P2).

We can now improve upon the foregoing separation result betweenT(P1) andT(P2)
as follows:

Proposition 43. For any y∈ T(P2) there existsψ ∈ ℓ∗∞ such that

(i) ψ(z1)≥ ψ(z2) for every z1 ∈ T(P1) and z2 ∈ T(P2);

(ii) ψ(z) > ψ(y) for all z∈ T(P1).
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Proof. Giveny∈ T(P2), letC = y−T(P1). Then,C is a convex subset ofℓ∞ and there
exists anε > 0 such that liminfk→∞ zk <−ε for everyz∈C. Let

D =

{

z∈ ℓ∞| lim inf
k→∞

zk ≥−ε
}

;

then D is convex andC∩D = φ . Furthermore, 0∈ D is an interior point. Hence by
Dunford and Schwartz (1958) p. 417, there existsψ ∈ ℓ∗∞, ψ 6= 0 such thatψ(d)≥ ψ(c)
for all d ∈ D andc ∈C. Sinceℓ+

∞ = {x ∈ ℓ∞|x≥ 0} is a cone contained inD, andψ is
bounded from below onD (and hence onℓ+

∞) it follows thatψ ≥ 0 (that isψ(x) ≥ 0 for
all x≥ 0). Also, as 06∈C and 0∈ Int(D), there existsδ > 0 such thatψ(d)≥−δ for all
d ∈ D andψ(D)⊇ (−δ ,∞). Henceψ(c)≤ −δ for all c∈C, that is,ψ(y−x) ≤ −δ for
all x∈ T(P1).

Finally, the coneC∗ = {z∈ ℓ∞| lim infk→∞ zk ≥ 0} is contained inD; henceψ is non-
negative onC∗. As T(P1)−T(P2) ⊆C∗, the functionalψ separates weakly between
T(P1) andT(P2).

Remark 44. The mappingψ ◦T, which is defined onP, may not be continuous in the
weak topology onP. Nevertheless, it may be useful in distinguishing the elements ofP1

from those ofP2.
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Appendix

9.1 Proof of Proposition 19

LetC be the uniform bound of the variables, i.e.,|Xi| ≤C for all i (in our caseC = 1). Let

Qn = P
(

|Xn− pn

)

| ≤ ε) and hence P
(

|Xn− pn

)

|> ε) = 1−Qn.

Then
E
(

Xn− pn

)2≤C2(1−Qn)+ ε2Qn≤C2(1−Qn)+ ε2

If LLN holds, then limn→∞ Qn = 1 and thus the limit of the left-hand side is less than or equal
to ε. Since this holds for allε > 0, the limit of the left-hand side is zero.
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